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ABSTRACT: Clusters of dipolar-coupled nuclear spins are excellent model systems for

implementing various quantum experiments. The presented examples demonstrate

recent techniques of coherent control for spin systems, as well as quantum dynamic

schemes, like amplified quantum detection and measurement, state purification, adia-

batic transfer of coherences, or projective measurement with NMR. � 2007 Wiley Periodicals,

Inc. Concepts Magn Reson Part A 30A: 194–217, 2007.
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INTRODUCTION

There are several factors, which make clusters of

coupled nuclear spins truly unique systems for exper-

imental studies of quantum dynamics. Nuclear spin

degrees of freedom can be extremely well isolated

from the other degrees of freedom (lattice). In liquids

and liquid crystals, fast molecular motions average

out intermolecular spin–spin interactions and convert

a system into an ensemble of noninteracting spin

clusters. Liquid-crystalline solvents can be used to

preserve anisotropic intramolecular interactions.

Desired spin Hamiltonians can be created by choos-

ing or synthesizing an appropriate molecule, and by

specific isotope labeling. Therefore, one can prepare

well-isolated spin clusters with desired and known

spin Hamiltonians. Modern NMR spectrometers are

specially designed to allow a precise coherent control

over spin dynamics. Modulation with radiofrequency

(RF) pulses can be sufficiently fast to convert the

spin Hamiltonians into effective (average) Hamil-

tonians. This allows, as an example, studying quan-

tum dynamics with Hamiltonians, which naturally do

not exist.

Clusters of up to 12 spins ½, used in the experi-

mental examples below, are still toys, in a sense that

their quantum dynamics can be simulated using mod-

ern computers. However, they are, at present, the

largest and the most complex quantum systems

where individual quantum states have been addressed

and coherently manipulated. They present an excel-

lent test bed for trying new quantum algorithms and

exploring unknown features of collective quantum

dynamics.

This review highlights our results on implement-

ing various schemes of quantum experiments using

clusters of 6, 7, and 12 dipolar-coupled nuclear spins

of (labeled) benzene in a liquid crystalline matrix.

The paper is organized as follows. First, we describe

the methods of preparing pseudopure states in clus-

ters of homonuclear and heteronuclear dipolar-

coupled spins. The technique is then extended to

build the 12-spin ‘‘Schrödinger cat’’ state. Next, some

algorithms exploiting the ‘‘cat’’ states are demon-

strated on a 7-spin cluster: quantum amplifier, ampli-

fied measurement of quantum state, and ‘‘resurrection

of Schrödinger cat.’’ Finally, we demonstrate that

NMR experiments can provide information about
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possible outcomes of projective measurement and

probabilities of such outcomes, and that the quantum

coherences can be efficiently transferred via multiple

adiabatic energy-level crossings.

PSEUDOPURE STATES

At thermal equilibrium, nuclear spin systems are in

highly mixed states, which mean that individual sys-

tem can be, with some probability, in any of many

possible quantum states. The idea of state initializa-

tion by creating a so-called pseudopure state was

originally proposed for NMR-based quantum com-

puting (QC) (1, 2). In a pseudopure state, populations

of all but one state are made equal. As a result, the

spin density matrix is a sum of a maximally mixed

background, which is proportional to the identity ma-

trix, and a deviation part, which is proportional to a

density matrix of a pure state. The identity matrix

does not contribute to observables and is not changed

by unitary transformations. Therefore, the unitary dy-

namics of a system in a pseudopure state is exactly

the same as it would be at zero spin temperature.

Pseudopure states have been used in NMR im-

plementations of QC algorithms (1–4), quantum

simulations (5, 6), and demonstration of quantum

mechanisms of amplified detection (7) and mea-

surement (8). With conventional approaches using

qubit-selective or transition-selective (9) pulses to

equalize populations, there are two major limitations

on the system’s size: spectral resolution and the length

of a pulse sequence. Both the number of allowed tran-

sitions and the length of the pulse sequence grow with

the system’s size. With multifrequency irradiation, it

is possible to cause fast and efficient simultaneous

evolution of all populations to desired values (10), but
this technique also requires a well-resolved spectrum.

From a traditional NMR point of view, pseudo-

pure states are nonequilibrium highly correlated

states, which produce very unusual linear-response

spectra. Let us consider the following simple exam-

ple. Suppose that there are two spins with different

Larmor frequencies and zz-interaction between them.

There are four quantum states: j::i, j:;i, j;:i, and
j;;i, and four peaks in the thermal-equilibrium spec-

trum, corresponding to single-quantum (SQ) transi-

tions between these states. The peak for each spin is

split into two peaks by interaction with the neighbor

spin. If a pseudopure state is prepared, where popula-

tions of the three states other than j::i are equal,

there remain only two peaks in the linear-response

spectrum and only two frequencies in the correspond-

ing free induction signal. Splitting caused by interac-

tion with the neighbor spin disappears. Each spin is

still up or down with almost equal probability, but

the spectrum is the same, except for lower intensity,

as for 100% polarized system, and the spins ‘‘feel’’

only one of the two possible local fields created by

its neighbor. Therefore, pseudopure states can be

used to simplify NMR spectra.

In this paper, the term ‘‘linear-response spectrum’’

is used frequently. It is defined as the imaginary part

of magnetic susceptibility in the limit of zero ampli-

tude of the excitation field. In a conventional Fou-

rier-transform NMR, where the spectra are obtained

by Fourier transforming the free induction decays,

the spectra do not depend on the flip angle of the ex-

citation pulse (except for their intensity) and coincide

with the linear-response spectra. This is only true for

high-temperature spin states with Zeeman order. In a

general case, the spectrum depends on the flip angle

of the excitation pulse. The linear-response spectra,

that provide direct information about differences of

populations, are Fourier transforms of the free induc-

tion signals, excited by a pulse with an infinitely

small flip angle. In practice, we used small-angle

reading pulses with flip angles between 18 and 108.
In each particular experiment, the choice was made

by decreasing the flip angle until the spectrum stop

changing.

Pseudopure States in Spin Clusters
with Unresolved Spectra

In this section, we describe a method of creating

pseudopure spin states in large clusters of coupled

spins (11). It is based on filtering multiple-quantum

(MQ) coherence of the highest order, followed by a

time-reversal period and partial saturation. The first

experimental example is a cluster of six dipolar-

coupled proton spins of a benzene molecule in liquid

crystalline matrix. It is a relatively small quantum

system with 26 ¼ 64 states and well-resolved NMR

spectrum. Later we will show how further develop-

ment of this technique allows addressing individual

quantum states in larger clusters with truly unre-

solved spectra.

The first step of many quantum algorithms is the

state initialization or preparation of a pseudopure

state (1, 2). Conveniently, the algorithms start with a

pseudopure ground state with equal populations of all

states except the ground state. Algorithms, involving

up to 7 and, more recently, 12 qubits have been real-

ized with liquid-state NMR (12, 13). Until now, all
practical schemes used transition-selective or qubit-

selective pulses for the state initialization. Therefore,

the size of a spin system which can be prepared in a
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pseudopure state has been limited by spectral resolu-

tion. For an N-spin system, the number of quantum

levels 2N grows very fast with increasing number of

spins, and the number of peaks in NMR spectrum

increases even faster. As an example, the maximum

number of peaks for N dipolar-coupled spins is�
2N

N þ 1

�
� 22N . The number of operations or the

length of a pulse sequence needed for state prepara-

tion also grows with the number of spins.

In contrast to the thermal equilibrium state, which

contains all quantum states, the highest-order multi-

ple-quantum (HOMQ) coherence is built of only two

states, jui and jdi, where jui is the state with all spins

up and jdi is the state with all spins down. The rela-

tion between the HOMQ coherence and the maxi-

mally entangled ‘‘Schrödinger cat’’ state uj i þ dj ið Þ�
uh j þ dh jð Þ has been discussed in (14), where the

implemented logic circuit used qubit-selective pulses

and required a resolved spectrum. At the same time,

there exist efficient techniques for exciting MQ

coherences (15–17), which use sequences of nonse-

lective hard pulses and can be applied to systems

with unresolved spectra.

Our scheme consists of the following steps: exci-
tation of MQ coherences (preparation period), filter-
ing the HOMQ coherence, time-reversal period, and
partial saturation. MQ coherences are excited by the
multipulse sequence with an 8-pulse cycle (15),
which creates the double-quantum (DQ) effective
Hamiltonian

Hav ¼ Hþ2 þ H�2 ¼ � 1

2

X
i<j

Dij IiþIjþ þ Ii�Ij�
� �

;

[1]

where I6 ¼ Ix 6 iIy and Dij’s are the dipolar coupling

constants. This effective Hamiltonian excites MQ

coherences of all even orders. The HOMQ coherence

can be excited in clusters of 2 þ 4n (n ¼ 0, 1, 2, . . .)
coupled spins. In finite clusters, intensities of individ-

ual MQ coherences oscillate. Total duration of the

pulse sequence is adjusted to correspond to one of

the maxima of HOMQ coherence. A combination of

phase cycling and 1808 pulse is used to average out

all MQ coherences except the HOMQ coherence

(18). The deviation density matrix after this temporal

averaging is i uj i dh j � dj i uh jð Þ. Then the time-rever-

sal period of the same duration follows. The pulse

sequence for this period is the same as for the prepa-

ration period except that the phases of all pulses are

shifted by 908. This sequence creates the effective

Hamiltonian �Hav. After the time-reversal period,

off-diagonal elements of the density matrix are small

if its duration corresponds to a maximum of the

HOMQ intensity. Then, from conservation of Tr{r},
Tr{r2}, and Tr r2H2

av

� �
during the unitary time-re-

versal period, we conclude that the deviation density

matrix becomes juihuj�jdihdj.
The state juihuj�jdihdj is a mixture of two states,

which means that a nonunitary operation is needed to

prepare the pseudopure ground state juihuj. We used

partial saturation, which redistributes the excessive

population of the state jdihdj among other states but

does not change the population of the state juihuj. If
irradiation does not contain frequencies of transition

from the ground state, the population of the ground

state remains ‘‘trapped.’’ In this experiment we used

shaped Gaussian pulses for the partial saturation.

The physical system was six dipolar-coupled pro-

ton spins of a benzene molecule dissolved in liquid

crystal ZLI 1167. Details of the sample preparation

and parameters of the spin Hamiltonian are described

elsewhere (19). The experiment has been performed

with a Varian Unity/Inova 500 MHz NMR spectrom-

eter. The pulse sequence for preparation of the pseu-

dopure ground state juihuj is displayed in Fig. 1.

Both of the shaped pulses had 1.5-ms duration and

maximum amplitude gB1/2p ¼ 1.5 kHz. The gradient

pulses G are applied to assist eliminating the

unwanted coherences. The pulse R is a small-angle

reading pulse with a flip angle 58.
The spectrum at thermal equilibrium is shown in

Fig. 2(a). Positions and intensities of 76 peaks are

determined by dipole–dipole interactions between six

proton spins of the benzene molecule (20). The lin-

ear-response spectrum, corresponding to the state

juihuj�jdihdj is presented in Fig. 2(b). The central

frequency of the saturating Gaussian pulses was set

to the frequency of SQ transition from the state jdihdj
[the left peak in Fig. 2(b)]. The spectrum of the satu-

rating pulse covers mostly the left side of the spec-

trum while the intensity at the frequency of transition

from the state juihuj [the right peak in Fig. 2(b)] is

Figure 1 Scheme of the NMR pulse sequence for creat-

ing the pseudopure ground state.
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very small. As one can see in Fig. 2(c), population of

the state juihuj is practically unaffected by the satu-

rating pulses. The peak intensity is 5.5% of the inte-

gral intensity of the thermal equilibrium spectrum.

The theoretical maximum (21) N�2�N is 9.3% for

this system. It should be noted that the spectra in

Figs. 2(b,c) are not MQ spectra but conventional SQ

linear-response spectra for unusual and strongly cor-

related spin states.

For the pseudopure ground state of the N-spin
cluster, there exist no more than N peaks in the lin-

ear-response spectrum. The spectrum can be well-

resolved even for very large clusters of coupled

spins. Starting with this simplified spectrum, it is

possible to apply selective pulses for manipulating

individual states and observing their dynamics. As an

example, relaxation and decoherence rates of individ-

ual quantum states can be measured.

Pseudopure State of a Twelve-Spin System

The system described in this section is a cluster of

dipolar-coupled nuclear spins of fully labeled 13C6-

benzene in a liquid crystalline matrix (22). It is a

complex system of dipolar-coupled spins with 212 ¼
4096 quantum states.

The method is an extension of the technique used

to prepare a pseudopure state in a cluster of seven

dipolar-coupled nuclear spins: single-labeled 13C-

benzene in liquid-crystalline solvent (8). Here we

apply a double-filtering using both phase cycling and

an array of evolution times to create pseudopure

states in a system consisting of two types of nuclear

spins. The experiment has been performed with a

Varian Unity/Inova 500 MHz NMR spectrometer.

The sample contained 5% of fully labeled 13C6-ben-

zene (Aldrich) dissolved in liquid-crystalline solvent

MLC-6815 (EMD Chemical).

The 1H thermal equilibrium spectrum of 13C6-ben-

zene in MLC-6815 is shown in Fig. 3. It consists of a

broad, about 20 kHz, spectrum of liquid crystal and,

on top of its left slope, a poorly resolved spectrum of
13C6-benzene with a width of about 5 kHz. The two

sharp peaks in Fig. 3 are due to impurities. The pro-

ton signal from liquid crystal has been eliminated

with a two-frequency saturation. According to the

Provotorov’s saturation theory (23), the off-reso-

nance saturation results in a stationary state with

nonzero Zeeman and dipolar temperatures. If satura-

tion is performed at two different frequencies, the

only stationary solution gives infinite spin tempera-

ture (zero magnetization). As a result, saturation at

two frequencies outside the spectrum of 13C6-ben-

zene completely eliminates the signal of a liquid-

crystalline matrix. The ‘‘purified’’ 1H spectrum of
13C6-benzene is presented in Fig. 5(a), which is a

nice and symmetric spectrum with flat baseline. The

impurity peak is marked with an asterisk.

Figure 2 (a) Conventional 1H NMR spectrum of ben-

zene in liquid crystal; (b) linear-response spectrum for the

state juihuj�jdihdj; (c) linear-response spectrum for the

pseudopure ground state juihuj; Flip angle of the reading

pulse was 58 for all spectra.

Figure 3 1H NMR spectrum of 13C6-benzene in liquid

crystal MLC-6815 at 258C.
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For further discussion it will be convenient to use

compact notations for spin states. The symbols juiH
¼ j::::::iH and jdiH ¼ j;;;;;;iH will denote the

states of the proton spins with all six spins up and

down, respectively. Similarly, the notations juiC and

jdiC will be used for the 13C spin states with all six

carbon spins up or down.

The experimental scheme is shown in Fig. 4.

Step A: It starts with a sequence of 13C RF

pulses and gradient pulses to saturate the 13C

magnetization, followed by the excitation of the

MQ coherence and filtering of the HOMQ coher-

ence, six-quantum (6Q) in this experiment, for

proton spins. Twenty cycles of the 8-pulse

sequence (15) for exciting proton spins’ MQ co-

herence automatically decouple the carbon spins.

The deviation density matrix after this first filter-

ing becomes rA ¼ 1C � i uh i dh i � dh i uh ið ÞH.
Step B: The secular dipole–dipole interactions

between heteronuclei consist of zz-terms only.

The zz-interaction with the 13C spins causes a

rotation of the proton spins’ 6Q coherence,

which does not evolve under the homonuclear

dipole–dipole interactions between proton spins

(7, 8). The phase of this rotation is proportional

to the evolution time t and the total z-compo-

nent of the 13C spins. Similar to filtering the 6Q

coherence using an array of phases, it is possi-

ble to filter out the two states of the 13C spins

with the extreme values of z-component of the

total 13C spin, which are 63, using an array of

the evolution times mt with m ¼ 0, 1, 2,. . . The
unit of the evolution time t ¼ 65.6 ms corre-

sponds to a rotation of the protons’ 6Q coher-

ence by p when the 13C spins are in the state

juiC or jdiC. After this second filtering, the

deviation density matrix becomes rB ¼
uj i uh j þ dj i dh jð ÞC�i uj i dh j � dj i uh jð ÞH. The total

number of experiments in this phase–time dou-

ble array is only 12 � 6 ¼ 72.

Step C: The second 20-cycle evolution period

converts the proton spins’ 6Q coherence into a

diagonal state. This creates the density matrix

rC ¼ uj i uh j þ dj i dh jð ÞC� uj i uh j � dj i dh ið ÞH
which is a mixture of the four pure states:

juiCjuiH, juiCjdiH, jdiCjuiH, and jdiCjdiH. Due
to the high symmetry of the system, there is

only one 1H or 13C allowed SQ transition from

each of these four states. The linear-response
1H and 13C spectra of the four-state mixture are

shown in Figs. 5(b,b0), respectively.
Step D: A single pseudopure state has been

selected by a partial saturation with four 1H

sinc-shaped pulses. The linear-response 1H and
13C spectra of the pseudopure state jdiCjdiH are

presented in Figs. 5(c,c0), respectively. Using

the state jdiCjdiH as an initial state, the other

three states: juiCjuiH, juiCjdiH, and jdiCjuiH
can be obtained by applying nonselective

‘‘hard’’ p-pulses to 13C and proton spins. One of

the examples is shown in Figs. 5(d,d0), where
13C p-pulse has been applied to the state

jdiCjdiH to create the state juiCjdiH.

Twelve-Spin ‘‘Schrödinger Cat’’

Here we demonstrate the pseudopure ‘‘cat’’ state, a

superposition of quantum states with all spins up and

all spins down for a system of 12 dipolar-coupled nu-

clear spins of fully 13C-labeled benzene in a liquid-

crystalline matrix (24).
Quantum entanglement, a form of nonclassical

correlation, has been an important issue in recent

debates on the foundations of quantum mechanics

(25). In quantum information science, the entangle-

ment is considered as a physical resource, which plays

a crucial role in quantum teleportation (26), quantum
key distribution (27, 28), and QC (29, 30). A cat state

is a special case of entanglement: superposition of the

two most distinct states (alive and dead). Building a

cat state is a benchmark for controlling quantum sys-

tems (14). The decoherence time of the cat state sets

limitation on QC because this state is supposed to be

the most fragile among quantum states.

The experimental scheme is shown in Fig. 6. It

consists of the three parts: preparation of the pseudo-

pure state as described above (step A), creation of

the 12-spin cat state (steps B–E), and its verification

and life-time estimation (steps F–J). The pulse

sequence in step A initializes our system in a pseudo-

pure state j�Ai ¼ jdiCjdiH. The 1H linear-response

spectrum of j�Ai is presented in Fig. 7(a). Hard

pulses (1808) on both protons and carbons convert

the state j�Ai into the pseudopure state juiCjuiH
[Fig. 7(b)].

Figure 4 NMR pulse sequence for creating the 12-spin

pseudopure state. For the notations, see the text.
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Figure 5 (a) 1H and (a0) 13C NMR spectra of the thermal equilibrium state; (b) 1H and (b0) 13C

spectra of the mixture of four states: rC ¼ uj i uh j þ dj i dh jð ÞC� uj i uh j � dj i dh jð ÞH; (c) 1H and (c0)
13C spectra of the pseudopure state jdiCjdiH; (d) 1H and (d0) 13C spectra of the pseudopure state

juiCjdiH.
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In step B, 10 cycles of a 16-pulse sequence were

applied to convert the state jdiC into a superposition

of juiC and jdiC. The 16-pulse sequence (31), with
slightly better performance for 13C spins, evolves the

system with the same DQ Hamiltonian as the 8-pulse

sequence (15) used for the proton spins. Therefore,

with optimized parameters, the 16-pulse sequence

transforms j�Ai into �Bj i ¼ 2�1=2 uj iCþ dj iC
� �

dj iH.
In step C, the 8-pulse sequence brings the proton

spins into a superposition, and the state becomes

�Cj i ¼ 2�1 uj iCþ dj iC
� �

uj iHþ dj iH
� �

. In step D, free

evolution gives phase factors according to a sum

of the total z-components of proton and carbon

spins: �Dj i ¼ 2�1 uj iC uj iH�i uj iC dj iH�i dj iC uj iH þ�
dj iC dj iHÞ. Finally in step E, the 8-pulse sequence

converts j�Di into the cat state �Ej i ¼ 2�1=2 �
uj iC uj iHþ dj iC dj iH

� �
. The spectrum for this state,

shown in Fig. 7(c), is consistent with the equally-

weighted superposition of juiCjuiH and jdiCjdiH.

However, the linear-response spectrum depends only

on the two diagonal elements of the corresponding

density matrix. The other two off-diagonal elements

of the cat state density matrix constitute the 12-quan-

tum coherence, which is not directly observable.

Therefore, we added the state-verification steps by

time-reversing the sequences of the steps B–E. The

pulse sequences and their phases were arranged so that

steps G, H, I, and J are respectively the inverses of the

steps E, D, C, and B. The delay step F was added for

measuring decoherence time of the cat state. With no

delay in step F, we expected that the state would be

converted back to the state j�Ai. Figure 7(d) shows

the result of such experiment. It confirms that the state

j�Ei after the step E is a superposition of the states

juiCjuiH and jdiCjdiH rather than their mixture.

QUANTUM AMPLIFIER

With nonlinear classical dynamics, two states of a

system, which are close at one moment of time, can

Figure 6 NMR pulse sequence for building a twelve-

spin cat state. For 1H and 13C channels, rectangular and

sinc shapes represent 908 hard and sinc-shaped pulses,

respectively. The symbols x, y, �x, and �y over the pulses

represent relative phases or the directions of the pulses in

the rotating frame. Pulsed gradient channels Gx, Gy, and

Gz provide linear gradients of static magnetic field along

the x, y, and z axes, respectively. (Step A) preparation of

the pseudopure state; (steps B–E) creation of the 12-spin

cat state; (steps F–J) state verification and life-time esti-

mation.

Figure 7 1H NMR linear-response spectra: (a) pseudo-

pure state jdiCjdiH; (b) pseudopure state juiCjuiH obtained

from jdiCjdiH by applying 1808 hard pulses to both proton

and 13C spins; (c) a cat state, superposition of jdiCjdiH
and juiCjuiH; (d) jdiCjdiH after the time-reversed sequen-

ces of entangling operations.
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exponentially diverge at later time. Such evolution

may amplify small perturbations and result in the so-

called ‘‘butterfly effect’’ (32). This property of nonlin-

ear dynamics can be beneficial in measuring small sig-

nals. On the other hand, quantum dynamics is gov-

erned by linear equations of motion. Unitary evolution

operators conserve distances between states: the states

that are close at one moment of time remain close at

all times. This means that the classical mechanisms of

amplifying weak signals cannot be implemented in

quantum systems. However, quantum mechanics offers

another alternative of converting a small perturbation

into a big change in observable values. It is based on

using special entangled states of a composite quantum

system (7, 33). For such states, perturbation acting on

a small part of a system changes a state of the whole

system in a coherent way and produces changes of

‘‘macroscopic’’ observables.

The experimental demonstration has been made

using a system of seven dipolar-coupled nuclear

spins of single-labeled 13C-benzene molecules in a

liquid-crystalline matrix.

The experimental scheme is shown in Fig. 8. Two

evolution periods with the effective Hamiltonians of

opposite signs constitute a time-reversal sequence.

The 13C spin is decoupled all the time except for a

short perturbation period between the two evolution

periods. The DQ effective Hamiltonian [1] is created

by 20 cycles of the 8-pulse sequence (15). The

HOMQ (6Q) coherence was filtered by a combina-

tion of phase cycling and 1808 pulse. The first evolu-
tion period with 6Q filtering converts the initial ther-

mal equilibrium state of proton spins into the state

with the deviation density matrix i uj i dh j � dj i uh jð Þ.
This matrix with two elements is the off-diagonal

part of the ‘‘cat’’ state uj i þ dj ið Þ uh j þ dh jð Þ. The sec-
ond, time-reversed, evolution period converts this

state into the diagonal state with only two nonzero

elements juihuj�jdihdj. The sample contained 5%

of single-labeled 13C-benzene (Aldrich) dissolved

in liquid-crystalline solvent MLC-6815 (EMD Chem-

ical).

The 1H thermal equilibrium spectrum of 13C-ben-

zene in MLC-6815 without 13C decoupling is shown

in Fig. 9(a). The proton spectrum with 13C decou-

pling is shown in Fig. 9(b). The peaks are somewhat

broader in the 13C-decoupled spectrum due to non-

perfect decoupling and RF heating of the sample. We

have found that CW decoupling is not very efficient

and that the two-pulse phase-modulation (TPPM)

decoupling sequence (34) with the phase excursion

angle 548 gave better results and was used in the

experiment. The RF power level was a compromise

between the decoupling quality and the RF heating,

which creates temperature gradients and broadens the

peaks. The rightmost peak in Fig. 9(b) is due to im-

purity.

A linear-response spectrum corresponding to the

state juihuj�jdihdj is presented in Fig. 9(c). Due to

the high symmetry of a benzene molecule, there is

only one allowed SQ transition from each of the

states: all spins up and all spins down. The two peaks

in spectrum 9(c) are at the frequencies of these tran-

Figure 8 Scheme of the NMR pulse sequence for quan-

tum amplifier.

Figure 9 (a) 1H thermal equilibrium spectrum of 13C-

benzene in MLC-6815; (b) 1H spectrum with 13C decou-

pling; (c) linear-response spectrum after the time-reversal

sequence with 6Q filtering (13C spin decoupled); (d) spec-

trum with the delay of 382.5 ms (perturbation period) in

between the two evolution periods (13C spin decoupled);

(e) spectrum with the decoupling turned off during the

perturbation period.
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sitions. When 382.5-ms delay was introduced

between the two evolution periods and the 13C spin

was decoupled during this perturbation period, there

were no noticeable changes in the spectrum [Fig.

9(d)]. However, if the decoupling was off, the spec-

trum reversed, indicating that the magnetization of

proton spins changed its sign [Fig. 9(e)].

The mechanism of this magnetization reversal is

the following. The 6Q deviation density matrix r6Q
after the first evolution period can be written, without

a concern for a phase factor, as

r6Q ¼ Sþ1 S
þ
2 S

þ
3 S

þ
4 S

þ
5 S

þ
6 þ S�1 S

�
2 S

�
3 S

�
4 S

�
5 S

�
6 ; [2]

where Sþj (S�j ) are the raising (lowering) operators

for the jth proton spin. The rotation of any one of the

spins by the angle j around z-axis adds only a phase

factor to each of the two product terms of the density

matrix [2] according to the relation expð�ijSzj ÞS6j �
expðijSzj Þ ¼ S6j expð�ijÞ. Therefore, the result does

not depend on whether all the spins are rotated by the

same angle j/6 or only one spin is rotated by the

angle j. As an example, when one of the spins is

rotated by p the whole density matrix [2] changes its

sign. As a result, the deviation density matrix after

the second evolution period changes its sign and all

observables, including the protons’ magnetization,

also change their signs. In our experiment such rota-

tion was performed by interaction with the 13C spin.

The interaction between 13C and the nearest proton

(2035 Hz), which includes the dipole–dipole interac-

tion (1877 Hz) and J-coupling (158 Hz), amounts to

80% of the 13C–protons interaction (2549 Hz). Dur-

ing the 382.5-ms perturbation period, the spin of the

proton nearest to 13C is rotated by almost p, while
the phases acquired by other proton spins remain

small. However, the entangled state [2] is not

‘‘spoiled’’ by these inhomogeneous rotations, as if all

the spins performed a coherent rotation. An interest-

ing implementation of a coherent rotation of all spins

in an entangled state is a high-precision spectros-

copy, which can reach the Heisenberg limit (35). It
should be noted that the experiment described here

was not designed to measure the state of the 13C

spin.

The experiment showed a big change in observ-

able values originating from perturbation acting on a

small part of a quantum system, which looks similar

to the classical ‘‘butterfly effect.’’ The scheme of the

time-reversal experiment in Fig. 8 follows a scenario

of the story (36) where a small perturbation per-

formed in the past produces dramatic changes in the

present. The scenario can be implemented both with

a classical dynamics and also with a quantum evolu-

tion, as it is demonstrated here. In contrast to a classi-

cal version, in a quantum experiment, big change of

the state occurs ‘‘instantly’’ during the perturbation

period. However, this change cannot be observed

directly. A long evolution period is needed for corre-

lations to propagate through the entire system and to

convert a change of the state into a change of observ-

able values.

AMPLIFIED MEASUREMENT OF
QUANTUM STATE

Here we experimentally demonstrate that an arbitrary

quantum state of a single spin ½: aj:iþbj;i can be

converted into a superposition of the two ferromag-

netic states of a spin cluster: aj::���::iþbj;;���;;i
(8). The physical system is a cluster of seven dipolar-

coupled nuclear spins of single-labeled 13C-benzene

molecules in a liquid-crystalline matrix.

Theory of quantum measurements, which describes

a boundary between quantum and classical worlds

(37, 38), is the least established part of quantum

theory. Different approaches to this problem lead to

different interpretations of quantum mechanics (39).
General aspects of measurements on ensembles have

been discussed in recent paper (40). A serious diffi-

culty in exploring this subject is that practical meas-

uring devices are too complex to allow a detail analy-

sis of their dynamics. It is helpful to consider some

simple and explicit models of quantum measurement,

using systems with controllable quantum dynamics.

Let us consider a system of N þ 1 spins ½ (qubits)

in the initial state

cinj i ¼ a 0j i0þb 1j i0
� �

0j i1 0j i2� � � 0j iN�1 0j iN;
aj j2þ bj j2¼ 1; [3]

where the qubit notations j0ik:j:ik and j1ik:j;ik
are used. In this state, the 0th qubit is in some arbi-

trary state, defined by two complex coefficients a and

b, while the qubits 1 to N are in the ground state. A

quantum logic circuit (8, 41) (a similar circuit has

been proposed in (33))

U ¼ CNOTN�1;NCNOTN�2;N�1 � � �CNOT1;2CNOT0;1

[4]

is a chain of unitary controlled-not gates CNOTm,n,

which flip the target qubit n when the control qubit m
is in the state j1im and do not change the qubit n
when the qubit m is in the state j0im. If the 0th qubit

is in the state j1i0, it flips the qubit 1, the qubit 1 flips
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the qubit 2, and so on. A wave of flipped qubits, trig-

gered by the 0th qubit, propagates until it covers the

entire system. As a result, the circuit [4] converts the

initial state [3] into the final state

coutj i ¼ U cinj i ¼ a 0j i0 0j i1� � � 0j iN�1 0j iN
þ b 1j i0 1j i1� � � 1j iN�1 1j iN: [5]

This state is a superposition of the most macro-

scopically distinct states: the ferromagnetic states

with all spins up and all spins down. It is interesting

that there exists an analytically solvable model (41)
with a ‘‘quantum domino’’ dynamics, similar to the

dynamics suggested by the circuit [4].

One might think that, since a macroscopic polar-

ization is associated with the state [5], a single mea-

surement can provide some information about the

state. However, transforming the state [3] to the state

[5] does not decrease relative quantum fluctuations.

As an example, an ensemble average of the square of

polarization has its maximum value, (N þ 1)2, which

indicates that the possible outcomes of polarization

measurement for a single system will be one of the

two extreme values, 6(N þ 1). Therefore, the only

goal of creating the state [5] is to increase a signal

produced by a system, without making this signal

more classical.

The experiment has been performed with a Varian

Unity/Inova 500 MHz NMR spectrometer. The sys-

tem is the same 7-spin cluster of singly labeled ben-

zene. The spin Hamiltonian is

H ¼ �oCI0Z � oH

X6
k¼1

SkZ þ
X6
k¼1

ðb0k þ J0kÞI0ZSkZ

þ
X6
k>j>0

bjk SkZSjZ � 1
2
SkXSjX � 1

2
SkYSjY

� �
; [6]

where index 0 is used for the 13C spin and indexes 1–

6 numerate the proton spins, starting from the one

closest to 13C nucleus. I and S are corresponding spin

operators, oC and oH are the Larmor frequencies, bjk
are the constants of residual dipole–dipole interac-

tion, and Jjk are the J-coupling constants. Among J-
constants, only J01 has a considerable value of J01/2p
¼ 158 Hz (19), the rest of the J-coupling constants

are small and can be neglected on the time scale of

our experiment. The 1H and 13C thermal equilibrium

spectra of 13C-benzene in MLC-6815 are presented

in Figs. 11(a,a0), respectively. In what follows, we

will use spin notations j:i and j;i for the two states of

the 13C spin, jui ¼ j::::::i and jdi ¼ j;;;;;;i for
the states of proton spins with all spins up or down.

As it was shown above, the superposition state of

proton spins 2�1=2 uj i þ dj ið Þ could be used to

amplify the effect of interaction with 13C spin (7).
Some basic elements used in that experiment, to-

gether with preparation of the pseudopure state jui
for the proton subsystem (11), are also the building

blocks of the experimental scheme in Fig. 10. To bet-

ter understand the following steps, it is convenient to

introduce the Pauli operators for a subspace of two

proton states jui and jdi: SZ ¼ juihuj�jdihdj, SX ¼
juihdiþjdihuj, and �Y ¼ i uj i dh j � dj i uh jð Þ.

The first two steps, A and B (Fig. 10) are designed

to prepare the pseudopure ground state j:ijui of the

seven-spin cluster. Step A starts with a sequence of

908 pulses and gradient pulses to saturate the 13C

magnetization. Then, the proton magnetization is

converted into MQ coherences by 20 cycles of the 8-

pulse sequence (15), which automatically decouples

protons from the 13C spin, and the 6Q coherence SY

is filtered. The next step is the evolution caused by

the interaction with the 13C spin, which rotates SY

towards 6SX depending on the state of the 13C spin.

After 908 rotation, the state density matrix �I0ZSX is

achieved. Then, evolution with another 20-cycle

pulse sequence follows. The multipulse period, with

about 90% fidelity, corresponds to a ‘‘908 pulse’’ in

the S-subspace around some axis in the XY-plane.
The phase of this ‘‘pulse’’ in the S-subspace is

adjusted by the global phase of the pulse sequence.

As an example, 908 phase shift can be achieved by

908/6 ¼ 158 phase shifting of all pulses of the

sequence. The ‘‘908 Y-pulse’’ in the S-subspace con-

verts the state �I0ZSX into the state rA ¼ I0Z�Z ¼
"j i "h j � #j i #h jð Þ uj i uh j � dj i dh jð Þ. This state is the

mixture of four pseudopure states. The 1H and 13C

linear-response spectra for this state are shown in

Figs. 11(b,b0), respectively.
In step B, the pseudopure ground state j:ijui (rB

¼ j:ih:jjuihuj) is obtained by redistributing the

excess population of the other three states by partial

saturation. The 1H and 13C linear-response spectra

for the pseudopure state j:ijui are presented in Figs.

11(c,c0), respectively. To verify the state, we applied

Figure 10 NMR pulse sequence for amplified measure-

ment of quantum state.
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Figure 11 (a) 1H and (a0) 13C spectra of the thermal equilibrium state; (b) 1H and (b0) 13C

spectra of the state rA ¼ I0ZSZ; (c)
1H and (c0) 13C spectra of the pseudopure state j:ijui; (d) 1H

and (d0) 13C spectra of the pseudopure state j;ijui; numerically calculated (e) 1H and (e0) 13C

spectra.
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hard 1808 pulses on the 13C and proton spins and

compared the spectra with numerically calculated

spectra. As one illustration, the spectra for the state

j;ijui are shown in Figs. 11(d,d0). The calculated

spectra for the states j:ijui and j;ijui are shown in

Figs. 11(e,e0).
In step C, a y-pulse on the 13C spin prepares the

state [3] with a ¼ cos(y/2) and b ¼ sin(y/2). To con-

vert this state into the state [5], the same pulse

sequence as in step A was used without any phase

cycling. The first ‘‘908 pulse’’ in the S-subspace
converted the state of proton spins jui to the entangled

state 2�1=2 uj i þ dj ið Þ. Then, interaction delay caused

Z-rotation in S-subspace, depending on the state of

the 13C spin, to yield the state cosðy=2Þ "j i uj i þð
dj iÞ þ sinðy=2Þ #j i uj i �ð dj iÞ. The relative phase of

the last 20-cycle pulse sequence was set to 458, creat-
ing 2708 phase shift in the S-subspace. This ‘‘908
pulse’’ in the S-subspace created the final state [5]:

cos(y/2)j:ijui þ sin(y/2)j;ijdi. The linear-response

spectra for this state at y ¼ 08, 908, and 1808 are

shown in Fig. 12.

When the 13C spin was prepared in an eigenstate

j:i (j;i), the 7-spin system resulted in the state with

all spins up (all spins down) to give spectra of Figs.

12(a,a0) [Figs. 12(c,c0)]. When the 13C spin was pre-

pared in a superposition state 2�1=2 "j i þ #j ið Þ, the

spectra in Figs. 12(b,b0) revealed proper correlation

between the six proton and 13C spins.

The implemented experimental scheme is an

explicit model of quantum measurement. Six proton

spins represent a measuring device designed to measure

a quantum state of the 13C spin. Conversion of the state

[3] to the state [5] takes 7.2 ms. For our small system,

this time is considerably shorter than the decoherence

time, about 50 ms, of the seven-quantum (7Q) coher-

ence in the state [5]. After a time, longer than the 7Q

decoherence time but much shorter than T1 (2 s), two

off-diagonal elements of the density matrix of the state

[5] decay, and the system reaches a mixed state with

the density matrix jaj2j:ih:jjuihujþjbj2j;ih;jjdihdj.
This state is indistinguishable from the mixture, with

fractions jaj2 and jbj2, of molecules in one of the two

pure states: j:ijui or j;ijdi. Each of the molecules

presents a result of individual measurement, where

‘‘macroscopic’’ magnetization of protons gives the

result of this measurement while the state of the 13C

spin is collapsed to the corresponding eigenstate.

RESURRECTION OF SCHRÖDINGER CAT

Here we demonstrate that quantum state, destroyed

by uncontrollable natural decoherence, can be puri-

fied by using results of projective measurement and

converted into a desired target pure state. Physical

system is a cluster of seven dipolar-coupled nuclear

spins of single-labeled 13C-benzene in liquid crystal.
13C spin plays a role of a device for measuring pro-

tons’ ‘‘cat’’ state, a superposition of states with six

spins up (alive) and six spins down (dead). Informa-

tion about the state, stored in the 13C spin, is used to

bring the protons’ subsystem into the target alive
state, while the excess entropy produced by decoher-

ence is transferred to the ‘‘measuring device,’’ the
13C spin (42). Compared to the previous section, now

a small subsystem (a single 13C spin) plays a role of

the measuring device.

Relaxation and decoherence, caused by interac-

tion with environment, convert a pure quantum

state of a system into a mixed one. The corre-

sponding increase of entropy quantifies irrever-

sibility and loss of information about the state.

Projective measurement collapses the wave func-

tion into one of the known states and the result of

measurement provides complete information about

the system’s state. Therefore, unitary transforma-

tions conditioned by the results of projective mea-

surement can be used to assemble a desired pure

state of the system.

The most striking difference between quantum

and classical systems is the ability of quantum

objects to be in a superposition state. A system in a

superposition of macroscopically distinct states (alive
and dead states of the ‘‘Schrödinger cat’’) would

demonstrate highly unusual behavior. Recent pro-

posals suggest that the cat state can play an important

role in quantum-enhanced measurements: high-preci-

sion spectroscopy (35), amplified detection (7, 33),
and quantum state measurement (8). Decoherence

resulting from interaction with environment is the

major obstacle in designing practical devices.

When each of an ensemble of identical systems

is characterized by the same quantum state, such

an ensemble is said to be in a pure state and can

be described by a wave function j�i or, equiva-

lently, by the corresponding density matrix r ¼
j�ih�j. When a system is in one of the two states:

jui (alive) or jdi (dead), in a basis where jui and

jdi are eigenstates, the density matrix has only one

nonzero matrix element. For the superposition state

2�1=2 uj i þ dj ið Þ, the density matrix of this pure

state contains four nonzero elements in the same

basis. Two diagonal elements are the populations

and the two off-diagonal elements describe a co-

herence between the two states. Interaction with

environment can destroy the coherence. The result

of this process, called decoherence, is the mixed

state of an ensemble. Individual systems are no
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Figure 12 (a) and (a0) 1H and 13C spectra at y ¼ 08; (b) and (b0) 1H and 13C spectra at y ¼
908; (c) and (c0) 1H and 13C spectra at y ¼ 1808.
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longer in the same quantum state but can be found

in one of the two states, jui or jdi, with equal

probability.

To be more specific, let us consider a system of N
coupled two-level systems (qubits). A cluster of spins

½ is a natural physical implementation of such

system. As the two most distinct states, one can

choose the ferromagnetic states jui ¼ j::::::i and

jdi ¼ j;;;;;;i with all spins up and down, respec-

tively. These two states have the maximum differ-

ence in polarization (magnetization). The off-diago-

nal part, N-quantum (NQ) coherence, of the cat state

density matrix r ¼ 2�1 uj i þ dj ið Þ uh j þ dh jð Þ has the

operator form (see [2]) uj i dh j þ dj i uh j ¼ Sþ1 S
þ
2 . . .

SþN þ S�1 S
�
2 . . . S�N , where Si+ and S�i are the raising

and lowering operators for individual spins. When

individual spins are rotated by angles ji around their

quantization axes, the two product operator terms in

the NQ coherence acquire the phases 6�iji. There-

fore, only the sum of the phases is important. This

unique feature of the cat state opens a way to inter-

esting applications. First, N times faster rotation of

the phase of the cat state, compared to that of an indi-

vidual spin, is used in high-precision measurements

of phases and frequencies (35). On the other hand,

local rotation of a single spin can produce a global

change of the phase for the entire system, which can

be then converted into a change of macroscopic

observables. This creates a base for amplified quan-

tum detection (7, 33) and state measurement (8).
The negative side of these useful properties is

high sensitivity of the cat state to phase noise. When

interaction with environment produces uncorrelated

rotations of individual spins by Dji, the change in

the phase of the NQ coherence, Dj, can be estimated

as Dj2
� � � N Dj2

i

� �
. This explains why even weak

interaction with environment may cause fast decoher-

ence in macroscopic systems. Random phases

acquired by the NQ coherences of individual systems

average out the off-diagonal part of the cat state den-

sity matrix and convert it to the diagonal mixed state.

Decoherence can be viewed as a loss of information

about the phase of the NQ coherence of an individual

system. This also means a loss of reversibility

because, in order to dynamically convert a state into

some target state, one needs to know the exact start-

ing state. A degree of irreversibility is quantified by

the entropy, which changes from zero for the pure

cat state to kB ln 2 for the mixed state.

Different states of the same system have different

sensitivity to noise. Some of them are resistant to

relaxation and decoherence (43–46). The cat state is

the most fragile in terms of the decoherence rate, but

the damage produced to this state by decoherence is

relatively small. In quantum mechanics, density ma-

trix gives the most complete description of a system.

This means that no physical measurement can distin-

guish between the mixed state r ¼ 2�1 uj i uh j þð
dj i dh jÞ, resulting from averaging out the NQ coher-

ences, and the mixture of systems in one of the two

states, jui or jdi. Therefore, the only missing infor-

mation is which of the two states has been chosen by

a system. This information can be stored in only one

additional qubit.

Let us consider a combined system of N þ 1

qubits. The symbols j:i and j;i will denote the two

states of the additional qubit. It will be called a con-

trol qubit because its state will be used to control a

change of the state of the N-qubit system. We will

start with the system in some superposition of the

states jui and jdi and the control qubit in its ground

state j:i:
�j iin¼ "j i a uj i þ b dj ið Þ; aj j2 þ bj j2 ¼ 1: [7]

By using interaction between the control qubit and

the system, one can design a reversible unitary evolu-

tion (8), which converts the state [7] into the state

�j iout ¼ a "j i uj i þ b #j i dj i: [8]

Decoherence eliminates the (Nþ1)Q coherence in

this state and produces the mixed state with the den-

sity matrix

rmix ¼ aa� "j i "h j � uj i uh j þ bb� #j i #h j � dj i dh j: [9]

In this mixture of two states, information about

the state of the N-qubit system (is it jui or jdi) is

stored in the state of the control qubit. It is possible

to use this information for producing a dynamic evo-

lution, conditioned by the state of the control qubit,

which will bring the N-qubit system to a desired pure

state, as an example, the alive state jui.
Alternatively, the density matrix [9] can be

viewed as resulting from projective measurement,

where the control qubit is used as a ‘‘measuring de-

vice.’’ The initial superposition state of the N-qubit
system, ajui þ bjdi, is collapsed into one of the two

definite states jui or jdi, while the remaining uncer-

tainty is compensated by the measurement result,

stored in the state of the control qubit.

Creation of the pseodopure state j:ijui for our 7-
spin system is the first part (step A) of the experi-

mental scheme in Fig. 13. 1H linear-response spectra

of the four pseudopure states are shown in Fig. 14.

The states j:ijdi, j;ijui, and j;ijdi are obtained from

the state j:ijui by applying ‘‘hard’’ 1808 carbon and

proton pulses. The left column in Fig. 14 displays the
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spectra with decoupled 13C spin. Each of the

decoupled spectra (left column) consists of a single

peak. The 13C-coupled spectra for the states j:ijui
[Fig. 14(b0)] and j;ijdi [Fig. 14(e0)] have two peaks,

and there are one large and two smaller peaks in the

spectra for the states j:ijdi [Fig. 14(c0)] and j;ijui
[Fig. 14(d0)]. For comparison, the thermal equilib-

rium spectra are shown in Figs. 14(a,a0).
Step B of the experiment (Fig. 13) creates the six-

spin cat state for the proton subsystem and, therefore,

the total state becomes that of Eq. [7] (at a ¼ b ¼
2�1/2), which is the starting point of our ‘‘resur-

rection’’ scheme. The next step C (Fig. 13) is

designed to convert the protons’ 6-spin cat state of

Eq. [7] into the 7-spin cat state of the entire system,

described by Eq. [8]. This step includes 908 13C

pulse, 13C–proton evolution delay, and protons MQ

evolution period. The 13C-decoupled and 13C-

coupled spectra of this 7-spin cat state are shown in

Figs. 15(a,a0), respectively.
The variable-length step D is a delay when deco-

herence takes place and converts the pure state [8]

into the mixed state [9]. Before proceeding to the

next step, we measured the decay times of the off- di-

agonal, i.e. the 7Q coherence, and the diagonal ele-

ments of the 7-spin cat state density matrix to see

how decoherence transforms a superposition state

into a mixture. Decays of both the off-diagonal and

the diagonal elements of the cat state are well

described by single-exponential curves with the aver-

age lifetimes of 29 and 490 ms, respectively.

The last step E of the experiment (Fig. 13) imple-

ments the ‘‘controlled-not’’ operation: when the state

of the control qubit is j:i, it does not change the state
of the proton subsystem; when the state of the qubit

is j;i, it flips the protons state jdi into the state jui
and vice versa. As a result, a mixture of the two

states j:ijui and j;ijdi after step D is converted into

a new mixture of the states j:ijui and j;ijui. In both

of these states the proton subsystem is in the target

alive state jui. This is supported by the 13C-

decoupled spectra in Figs. 15(c,d) for 100 and 200

ms delays in step D. The spectra are the same as the

spectrum of the pseudopure state jui in Figs. 14(b,d).

One can see that even after 200 ms delay time, which

is much longer than the 7-spin cat state decoherence

time (29 ms) or the protons 6-spin cat state decoher-

ence time (42 ms), the target state jui is well recov-
ered. At the same time, the 13C spin is found in the

mixture of the two states j:i and j;i, which can be

clearly seen in the 13C-coupled spectra in Figs.

15(c0,d0). These spectra are the sums of the spectra

for the two pseudopure states j:ijui and j;ijui in

Figs. 14(b0,d0). Therefore, the excess entropy kB ln 2

produced by decoherence is transferred to the 13C

spin. As it was mentioned above, this step resembles

a projective measurement, where the 13C spin plays a

role of ‘‘measuring device.’’

Our purification scheme resembles an active quan-

tum error-correcting algorithm (47). In both cases,

additional resources are used to bring the system

back to the target pure state after decoherence or

errors. Simple quantum error-correcting schemes

have been experimentally realized for small quantum

systems (48–50). Compared with these experiments,

demonstrating protection from artificial errors and

engineered decoherence effects, our experiment

implements a state purification after uncontrollable

natural decoherence.

POSSIBLE OUTCOMES OF
QUANTUM MEASUREMENT

In this section, we show that NMR experiments using

pseudopure spin states can give possible outcomes of

projective quantum measurement and probabilities of

such outcomes (51). For the cluster of six dipolar-

coupled nuclear spins of benzene in a liquid-crystal-

line matrix, a system with the maximum total spin S
¼ 3, the results of measuring SX are presented for the

cases when the state of the system is one of the

eigenstates of SZ.

Figure 13 NMR pulse sequence used to resurrect the

Schrodinger cat: (Step A) six proton spins and a carbon

spin are initialized in the pseudopure state (m ¼ 0, 1 and

t ¼ 201 ms); (step B) the proton’s cat state is prepared;

(step C) the 13C spin is entangled with the proton spins;

(step D) decoherence brings the whole system into a

mixed state; (step E) the ‘‘controlled-not’’ operation, con-

ditioned on the 13C spin state, creates the target state of

the proton subsystem.
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Interesting quantum algorithms, like teleportation

(26) or factorization of numbers (29), in their original

formulation, rely on projective measurement and

collapse of wave function. Possibility to retrieve the

results of projective measurements from NMR

experiments enhances capabilities of NMR as an

Figure 14 Linear-response 1H NMR spectra at thermal equilibrium (a,a0) and for four pseudo-

pure states (b–e and b0–e0). The left column shows 13C-decoupled spectra.
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inexpensive tool for testing quantum algorithms. The

experiment we describe here has been performed on

clusters of six dipolar-coupled proton spins of ben-

zene in liquid crystal ZLI-1167 at 258C using Varian

Unity/Inova 500 MHz NMR spectrometer. The spin

Hamiltonian is

H ¼ �o0

X6
k¼1

SkS þ
X6
k¼1

bjk SkZSjZ � 1
2
SkXSjX

�

� 1
2
SkYSjY

�
; [10]

where o0 is the Larmor frequency, SkX, SkY, and SkZ
are the components of kth spin, and bjk are the

constants of residual dipole–dipole interaction. J-

couplings between the proton spins are small, with

the largest one J12/2p ¼ 7.5 Hz (19), and can be

neglected.

The eigenfunctions of the system’s Hamiltonian

[10] are simultaneously eigenfunctions of SZ, the pro-
jection of the total spin on the direction of external

magnetic field. We start with one of the eigen-

functions of the Hamiltonian [10] and measure SX,

Figure 15 Linear-response 1H NMR spectra for the seven-spin cat state (a,a0), and the restored

6-spin alive state jui. The delay times are (b,b0) 0 ms, (c,c0) 100 ms, and (d,d0) 200 ms. The left

column shows 13C-decoupled spectra.
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the x-component of the total spin of the cluster, in

the rotating frame. Since SX does not commute with

SZ, the measurement cannot give a definite value.

The amplitudes of probabilities of possible outcomes

are projections of the initial state on the eigenstates

of SX. To project the state of the system on the SX
eigenstates, we instantly turn on a strong field along

x-axis of the rotating frame, as it is shown on the ex-

perimental scheme in Fig. 16. This strong field not

only locks the total magnetization (52) but also pre-

serves populations of individual eigenstates of SX
corresponding to different values of the magnetic

quantum number MX (transitions changing MX are

forbidden by the energy conservation). Then, the fre-

quency of the RF pulse gradually changes so that the

direction of the effective field adiabatically rotates

towards z-axis. When the frequency offset becomes

much greater than the dipole–dipole interactions in

the cluster, the amplitude of the RF pulse is adiabati-

cally decreased to zero. As a result, each of the SX
eigenstates is adiabatically converted into one of the

eigenstates of the system’s Hamiltonian with the

same value of the magnetic quantum number (53).
Populations of these states, obtained from linear-

response NMR spectra, give probabilities of different

values of MX for the initial state.

The Hamiltonian [10] does not commute with S2.
However, its eigenstates with MZ ¼ 63 and MZ ¼
62 are also the eigenstates of S2. Two states with all

spins up (MZ ¼ þ3) or down (MZ ¼ �3) are S ¼ 3

states. Twelve states with MZ ¼ 62 are spin waves

(54). Two states with the wave number k ¼ 0 are S ¼
3 states. Ten other spin waves with k = 0 are S ¼ 2

states.

The first experiment starts with the (S ¼ 3, MZ ¼
3) pseudopure state. Linear-response spectrum of this

state, shown in Fig. 17(b), has only one peak corre-

sponding to a SQ transition to the (S ¼ 3, MZ ¼ 2)

state. Since the initial state is an eigenstate of S2 with
S ¼ 3, it projects on only seven of the SX eigenstates,

which belong to the S ¼ 3 subspace and can be

described by a single quantum number MX ranging

from �3 to þ3. Adiabatic pulse converts each of

these seven states into one of the seven high-spin

eigenstates of the Hamiltonian [10] with the same

magnetic quantum number. The high-spin eigenstates

with MZ ¼ 63 and MZ ¼ 62 are S ¼ 3 states. The

states MZ ¼ 61 and MZ ¼ 0 are, respectively, the

states with effective spins S ¼ 2.78 and S ¼ 2.59,

calculated as S(S þ 1) ¼ hS2i. At the same time,

each of these high-spin states is the state with the

lowest energy among the states with the same value

of MZ (55). Six SQ transitions between seven high-

Figure 16 NMR pulse sequence for projective measure-

ment: preparation of pseudopure state is followed by a

frequency-sweeping lock pulse of 25 ms duration, initial

amplitude gB1/2p ¼ 19 kHz, and 20 kHz sweeping during

the first 20 ms; a linear-response spectrum is acquired

using a small-angle reading pulse.

Figure 17 (a) Thermal equilibrium 1H NMR spectrum,

the peaks marked by asterisks are the transitions between

seven high-spin states; (b) linear-response spectra of the

(S ¼ 3, MZ ¼ 3) state; (c) linear-response spectrum for the

(S ¼ 3, MZ ¼ 3) state projected onto SX by a lock pulse; (d)

linear-response spectrum for the (S ¼ 3, MZ ¼ 3) state after

908 hard pulse and gradient dephasing; (e) linear-response

spectrum of the (S ¼ 3, MZ ¼ 2) state; (f) linear-response

spectrum for the (S ¼ 3, MZ ¼ 2) state projected onto SX by

a lock pulse; (g) linear-response spectrum for the (S ¼ 3,

MZ ¼ 2) state after 908 hard pulse and gradient dephasing.
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spin eigenstates are marked with asterisks in the ther-

mal-equilibrium spectrum in Fig. 17(a). At thermal

equilibrium, all differences of populations for pairs

of states with DMZ ¼ 1 are equal and, therefore, the

intensities of the peaks in Fig. 17(a) are proportional

to the transition probabilities (squares of the transi-

tion matrix elements).

The result of experiment for the initial (S ¼ 3, MZ

¼ 3) state is shown in Fig. 17(c). Analysis of this lin-

ear-response spectrum confirms that only seven high-

spin eigenstates of the Hamiltonian [10] are popu-

lated. Six differences of populations for these seven

states are obtained from intensities of six major peaks

in Fig. 17(c), normalized by the transition probabil-

ities. The integration constant is obtained from the

condition that the sum of populations equals to the

population of the pseudopure state in Fig. 17(b). Ex-

perimental populations of the seven states, which

represent probabilities of seven different outcomes of

the MX measurement are shown in Fig. 18(a). The

theoretical probabilities: 1/64, 6/64, 15/64, 20/64, 15/

64, 6/64, 1/64 for MX ranging from �3 to þ3 are also

shown in Fig. 18(a) for comparison. The theoretical

value of S2X
� �

for the (S ¼ 3, MZ ¼ 3) state is

S2X
� � ¼ S2Y

� � ¼ 1
2
SðSþ 1Þ �M2

Z

	 
 ¼ 3
2
. The value cal-

culated with the experimental probability distribution

in Fig. 18(a) is S2X
� � ¼ 1:57.

Another way to obtain the results of projective

measurement is to rotate eigenfunctions of the mea-

sured operator to the measurement basis. This

method has been used in experiments with trapped

ions (56) and photons (57). Linear-response spectrum
after applying a 908 hard pulse to the (S ¼ 3, MZ ¼ 3)

state and dephasing with magnetic field gradient is

shown in Fig. 17(d). Gradient dephasing has been

used before to imitate the effect of projective mea-

surement in NMR (58). Although the spectra 17(c)

and 17(d) look similar, they are not the same. Since

there are no S ¼ 3 eigenstates of the system’s Hamil-

tonian with MZ ¼ 61 and MZ ¼ 0, many MZ ¼ 61

and MZ ¼ 0 states become populated in the experi-

ment using 908 pulse, which results in additional

small peaks in Fig. 17(d).

The second experiment starts with the pseudopure

eigenstate of the Hamiltonian [10] with S ¼ 3 and

MZ ¼ 2, which was obtained from the (S ¼ 3, MZ ¼
3) state by applying a 1808 Gaussian selective pulse

of 30-ms duration and maximum amplitude gB1/2p
¼ 15 Hz at the frequency of the peak in Fig. 17(b).

The linear-response spectrum for this state is shown

in Fig. 17(e). It consists of one negative peak, which

is the transition to the (S ¼ 3, MZ ¼ 3) state, one

large positive peak, which is the transition to the

high-spin MZ ¼ 1 state, and two small positive peaks,

which are the transitions to two other MZ ¼ 1 states

(20) and are barely seen in Fig. 17(e). For the initial

(S ¼ 3, MZ ¼ 2) state, experimental populations of

the seven states, which represent probabilities of

seven different outcomes of the MX measurement,

are shown in Fig. 18(b). The theoretical probabilities:

3/32, 8/32, 5/32, 0, 5/32, 8/32, 3/32 for MX ranging

from �3 to þ3 are also shown in Fig. 18(b). The the-

oretical value of S2X
� �

for the state with S ¼ 3 MZ ¼
2 is S2X

� � ¼ S2Y
� � ¼ 1

2
SðSþ 1Þ �M2

Z

	 
 ¼ 4. The value

calculated with the experimental probability distribu-

tion in Fig. 18(b) is S2X
� � ¼ 3:66.

In general terms, the described technique is based

on turning on instantly the Hamiltonian representing

the measured quantity and then, adiabatically chang-

ing it to another Hamiltonian with spectroscopically

distinguishable eigenstates.

ADIABATIC TRANSFER OF COHERENCES

Here we demonstrate that quantum coherences can

be efficiently transferred using adiabatic energy-level

crossing (55).
The quantum adiabatic theorem (53) tells that,

when external parameters change very slowly, a

quantum system prepared in an eigenstate of the ini-

tial Hamiltonian evolves into one of the eigenstates

of the final Hamiltonian if the rates of nonadiabatic

transitions between different instantaneous eigen-

states are negligible during the evolution (59). Popu-
lation of a quantum state can be transferred to

another state by adiabatic energy-level crossing, as

Figure 18 Probabilities of different values of MX for

the initial (a) (S ¼ 3, MZ ¼ 3) and (b) (S ¼ 3, MZ ¼ 2)

states are shown with wide bars; narrow bars are the theo-

retical values.
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schematically shown in Fig. 19. It is a well-known

phenomenon, extensively studied both theoretically

and experimentally for various quantum systems.

Adiabaticity, i.e. conservation of entropy, and linear-

ity of quantum mechanics suggest that superpositions

of states should not be destroyed by such adiabatic

switches. As an example, if a system is prepared in

the superposition state 2�1=2 0j i þ 1j ið Þ and then, the

population of state j1i is adiabatically transferred

into the population of state j2i, we would expect that

the final state of the system will be the superposition

state 2�1=2 0j i þ 2j ið Þ.
Adiabatic transfer of superposition states has been

studied for small atomic systems (60), and recent de-

velopment of QC attracted some attention to using

adiabatic evolution for implementing quantum logic

gates (61).
According to the quantum adiabatic theorem, the

state gains some dynamical phase factor, which is

not detectable since the state is an eigenstate at all

times. A general quantum state is a superposition of

eigenstates, where a relative phase between individ-

ual eigenfunctions can be measured. Interesting ques-

tions are whether the coherences can be transferred

by adiabatic energy-level crossing and what happens

to the relative phases. As it is shown below, when

populations of the states are adiabatically transferred

via multiple energy-level crossings, not only the co-

herence is transferred but the relative phase between

eigenstates can be preserved. The relative phase

between two quantum states is observed as a phase

of NMR signal in our experiment.

The experiment has been performed with a Varian

Unity/Inova 500 MHz NMR spectrometer. The sam-

ple contained 6% of benzene dissolved in liquid-crys-

talline solvent MLC-6815. Under RF irradiation, the

Hamiltonian of the proton spins is

H ¼ �o0

X6
k¼1

SkZ � 2o1

X6
k¼1

SkX cosot

þ
X6
k>j>0

bjk SkZSjZ � 1
2
SkXSjX � 1

2
SkYSjY

� �
; [11]

where o1 and o are the amplitude and the frequency

of the RF field, respectively. In the rotating frame,

the Hamiltonian transforms into

Hrot ¼ �DoH

X6
k¼1

SkZ � o1

X6
k¼1

SkX

þ
X6
k>j>0

bjk SkZSjZ � 1
2
SkXSjX � 1

2
SkYSjY

� �
; [12]

where DoH ¼ (o0�o) (62, 63). The adiabatic proc-

ess has been implemented by slowly sweeping the

frequency o of the RF field. The amplitude o1 was

sufficiently small to avoid undesired transitions

between states.

Figure 20(a) shows the energy spectrum of a clus-

ter of six dipolar-coupled proton spins of benzene as

Figure 19 Switching quantum states with adiabatic

energy-level crossing.

Figure 20 (a) Energy diagram of benzene and (b) ther-

mal equilibrium 1H NMR spectrum.
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a function of the offset field DoH in the rotating

frame. Each eigenstate is characterized by its mag-

netic quantum number m, the z component of the

total spin angular momentum, which determines the

slope of each line in Fig. 20(a). Crossings of pairs of

energy levels with jDmj ¼ 1 correspond to allowed

SQ transitions (20). The thermal equilibrium 1H

NMR spectrum displayed in Fig. 20(b) shows the fre-

quency positions of allowed SQ transitions. The peak

intensities are proportional to the transition probabil-

ities in the high-field approximation (jo0 >> bjkj).
The peaks marked by asterisks in Fig. 20(b) were

identified as transitions between the states of the sub-

space of maximum total spin (S ¼ 3) by applying RF

pulses to the pseudopure ground state with all spins

up (11). Strong RF pulse conserves the total spin of

the system and when applied, as an example, to the

pseudopure ground state, excites the transitions only

in the S ¼ 3 subspace.

Suppose that the system is in one of its eigenstates

and the RF field is turned on at some frequency far

from any crossings. As the frequency changes, the

system stays in the same state until it encounters an

energy-level crossing. At the crossing, the RF field

removes degeneracy and ‘‘switches’’ the populations

of the levels as shown in Fig. 19. If the frequency

changes further, one finds that the system stays in the

second state. In this way, RF field with sweeping fre-

quency causes a sequence of transitions from one

state to another. As an example, suppose that the sys-

tem is in the ground state and the RF field is turned

on at the frequency �1100 Hz [Fig. 20(a)]. If the fre-

quency increases adiabatically, the system stays in

the ground state (m ¼ 3) until it encounters the cross-

ing 1 in Fig. 20(a) where it switches to the other

state, the first excited state with m ¼ 2. After that, it

stays in this state until it meets the crossing 2 where

it switches to the third state with m ¼ 1, and so on.

Figure 21 shows the pulse sequence used in the

experiment. A single 908 Gaussian pulse P1 excites

the initial coherence between the ground (m ¼ 3) and

the first excited (m ¼ 2) states. The duration of this

pulse was set to 50 ms to achieve selectivity. This

SQ coherence (superposition of m ¼ 3 and m ¼ 2

states) is directly observable. To discriminate

between decoherence and nonadiabatic losses we

introduced 80-ms delay, which is equal to the total

duration of the two adiabatic pulses used to transfer

the coherence. As a result of decoherence, the signal

intensity after 80-ms delay decreased to 46% of its

initial value. The signal is shown in Fig. 22(a) The

pulse P2 (Fig. 21) with adiabatic frequency sweep

transfers population of the m ¼ 2 state to the state m
¼ �3 following the path 2–3–4–5–6 in Fig. 20(a). As

a result, a superposition of the state m ¼ 3, which

has not been affected by the pulse P2, and the state m
¼ �3 is created. This 6Q coherence does not produce

any NMR signal. We applied the pulse sequence used

in (11) and independently verified that the 6Q coher-

ence has been excited.

The pulse P3 (Fig. 21) transfers population of the

m ¼ 3 state to the state m ¼ �2 following the path

1–2–3–4–5 in Fig. 20(a). The resulting state, which

contains a SQ coherence between the states m ¼ �2

and m ¼ �3, produces the NMR signal presented in

Fig. 22(b). The intensity of the signal in Fig. 22(b) is

88% of that in Fig. 22(a).

Each of the two adiabatic pulses, P2 and P3, has

linear sweeping range of 2200 Hz and 40 ms

duration. They are shaped pulses with constant RF

Figure 21 NMR pulse sequence for adiabatic transfer of

coherences: 908 Gaussian pulse P1 excites the initial co-

herence between the ground (m ¼ 3) and the first excited

(m ¼ 2) states. Adiabatic pulses P2 and P3 transfer popu-

lation of the state with m ¼ 2 to the state with m ¼ �3

and population of the state with m ¼ 3 to the state with

m ¼ �2, respectively.

Figure 22 Experimental results: (a) SQ coherence

excited by a Gaussian pulse; (b) coherence transferred by

two adiabatic demagnetization pulses via ten energy-level

crossings.
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amplitude and 20 K steps of phase increment. The

first of them starts at the frequency in the middle

between the transitions 1 and 2 in Fig. 20(a), passes

the frequencies of the transitions 2, 3, 4, 5, and 6,

and ends at the frequency higher than that of the tran-

sition 6. The second adiabatic pulse starts at the fre-

quency lower than the transition 1, passes the fre-

quencies of the transitions 1, 2, 3, 4, and 5 and ends

at the frequency midway between the transitions 5

and 6 in Fig. 20(a). The transitions caused by the adi-

abatic pulses are indicated by arrows on the simpli-

fied energy diagram in Fig. 22(b).

Recently, adiabatic evolution has been investi-

gated as a potential method for quantum computation

(64–66). Adiabatic evolution may offer an efficient

way of simulating other quantum systems with a

quantum computer (67). The adiabatic quantum com-

putation has an inherent robustness against unitary

control errors, decoherence and relaxation (65, 67).
In the experiment described above, we have demon-

strated that coherences can be successfully trans-

ferred by adiabatic evolution. In the system of six

dipolar-coupled nuclear spins, quantum coherence

has survived after 10 consecutive adiabatic switches

between states.

CONCLUSION

As one could see from the presented examples, clus-

ters of dipolar-coupled nuclear spins, manipulated

with NMR techniques, can be used to demonstrate

various quantum phenomena. Such systems are, at

present, the most complex composite quantum sys-

tems, manipulated precisely at the level of individual

quantum states. They will be useful in future studies,

in implementing new quantum algorithms, and ex-

ploring new phenomena in collective quantum dy-

namics.
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25. Laloë F. 2001. Do we really understand quantum

mechanics? Strange correlations, paradoxes, and theo-

rems. Am J Phys 69:655–701.

26. Bennett CH, Brassard G, Crépeau C, Jozsa R, Peres
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