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Experimental demonstration of a programmable quantum
computer by NMR
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Abstract

A programmable quantum computer is experimentally demonstrated by nuclear magnetic resonance using one qubit for the

program and two qubits for data. A non-separable two-qubit operation is performed in a programmable way to show the successful

demonstration. Projective measurements required in the programmable quantum computer are simulated by averaging the results of

experiments just like when producing an effective pure state.
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Keywords: Quantum computer; Quantum information science; Qubit; Programmable; Quantum algorithm
1. Introduction

Quantum operations or quantum algorithms are im-

plemented by the corresponding quantum circuits or

quantum gate arrays, which consist of elementary gates

such as CNOTCNOT gates and single-qubit rotations [1].
Usually, different quantum circuits are used depending

on the computations of interest. On the other hand, a

certain fixed quantum gate array can execute various

quantum operations if it can handle a program state that

contains the information about the operations to be

performed. This is called a programmable quantum gate

array. That is, a unitary operator U , which is applied to

a data state jdi, is encoded into the program state jUi,
and the programmable gate array G makes the whole

state evolve as GðjUi � jdiÞ ¼ jU 0i � ðU jdiÞ, where jU 0i
is some residual state.

Nielsen and Chuang [2] have shown that it is not

possible to make a deterministic universal quantum gate

array, which can carry out arbitrary quantum opera-

tions in a programmable way, because there are infi-

nitely many different (up to overall phases) quantum
operations that should be represented by the program

states orthogonal to each other. However, an infinite
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size of a quantum register for the orthogonal represen-

tation of all these quantum operations is not feasible.

Recently, Preskill [3] and Vidal et al. [4] have suggested a

programmable quantum gate array that can execute a

single-qubit rotation about z-axis with an arbitrary an-

gle. This gate array is of finite size and thus feasible. But
it succeeds only probabilistically. Some of the authors

and a colleague [5] have generalized this circuit to per-

form arbitrary operations of self-inverse generators, in-

cluding single-qubit rotations about z-axis, and have

suggested a scheme for a probabilistic universal gate

array.

In this work, we have experimentally demonstrated

a programmable quantum computer by nuclear mag-
netic resonance (NMR). It is not a complete imple-

mentation of the universal quantum computer because

we have implemented only a single execution of our

circuit while it is required to repeatedly execute the

circuit to realize arbitrary operations [5]. This is mainly

due to the fact that in NMR experiments it is not

possible to realize a projective measurement, which is

necessary in the scheme [6]. However, we have em-
ployed a method to simulate the projective measure-

ment, originally suggested by Collins [7] for an

expectation value quantum search, and successfully

demonstrated the experimental feasibility of the pro-

grammable quantum computer.
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Fig. 1. A universal gate array for a two-qubit data state

jdi ¼ jdAi � jdBi. rx and rz are Pauli matrices. H is a Hadamard op-

erator and M represents a projective measurement in the basis of

fj0i; j1ig. The dashed lines, command state jci ¼ jc0i � jc1i � jc2i and
related parts, can be realized by the classical computer, and the circuit

inside the dotted box was actually realized to implement J12ðhÞ.
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2. A programmable quantum computer

As shown in [5], a programmable gate array GB per-

forms an operator UBðhÞ ¼ exp½�iðh=2ÞB� of a self-in-

verse generator B in the following way. The one-qubit

program state jhi is prepared as

jhi ¼ cosðh=2Þj0i � i sinðh=2Þj1i: ð1Þ
The data state jdi has an arbitrary dimension 2n (of n
qubits), and UBðhÞ and B are represented by 2n � 2n

matrices. The whole state is given by the direct product

of the program and data states, jhi � jdi. Then, GB

consists of sequential applications of a controlled-B and

a one-qubit Hadamard operator on the program state.

The controlled-B is defined by

j0ih0j � E þ j1ih1j � B;

where E is a unity operator, and E and B are applied on

the data state according to the program state. Since

B2 ¼ E and thus UBðhÞ ¼ cosðh=2ÞE � i sinðh=2ÞB, the

application of GB gives

GBjhijdi ¼ H ½cosðh=2Þj0ijdi � i sinðh=2Þj1iBjdi�

¼ 1ffiffiffi
2

p ½j0iUBðhÞjdi þ j1iUBð�hÞjdi�; ð2Þ

where the symbol ��� is omitted for simplicity. A pro-

jective measurement of the program state in the basis

fj0i; j1ig will make the data state collapse into either a

desired state UBðhÞjdi or wrong state UBð�hÞjdi with

equal probability. In case of failure, the wrong state can
be corrected, with a success probability of 1/2, by another

application of GB using the program state j2hi. Even if

this correction fails again, it is still possible to correct the

new wrong state in the same manner as the program state

j22hi. The corrections can be repeated until success, and

the average number of corrections is only two [3–5].

Therefore, the operator UBðhÞ is implemented in both

programmable and probabilistic ways by GB.
By extending GB, a probabilistic universal gate array

can be constructed. As is well known, arbitrary opera-

tors are implemented by sequences of elementary oper-

ators [1]. Since the elementary operators are not unique,

preferred elementary operators can be chosen. As our

preferred operators for the universal gate array using

GB, NOTNOT gates (rx), one-qubit z-rotation operators

RlzðhÞ ¼ exp½�ihIlz�, and two-qubit coupling operators

JlmðhÞ ¼ exp½�ih2IlzImz� were selected, where the sub-

scripts l and m denote the qubits (l, m ¼ A, B, � � �), and
Ilz is a z-component angular momentum operator. These

operators are implemented in the manner of the above

scheme and the corresponding circuit is illustrated in

Fig. 1 for a two-qubit data state. The information about

which operator among NOTNOT, RlzðhÞ, and JlmðhÞ will be

performed is carried by the command state jci, and h is
stored in the program state [5]. By sequentially supply-

ing jhi and jci corresponding to each elementary oper-
ators, an arbitrary operation can be performed. Note

that classical bits are sufficient for the command state,

and therefore the command state and the related parts

(dashed lines in the figure) can be realized by the clas-

sical computer.
3. NMR implementations

We have implemented the above circuit for the case of

a one-qubit program state and a two-qubit data state by

NMR. Since the classical parts of the circuit can be im-

plicitly realized by the classical computer that controls

the NMR instrument, the crucial point is to implement
the circuit inside the dotted box in Fig. 1. In the case of a

two-qubit data state jdi ¼ jdAdBi ¼ jdAi � jdBi, this cir-
cuit can perform RlzðhÞ and JABðhÞ depending on the

command state. We have chosen JABðhÞ for the demon-

stration, which is a non-separable two-qubit operation

unless h ¼ np for an integer n, while RlzðhÞ is just a one-

qubit operation. The initial data state was prepared as

jdi ¼ ðj00i þ j01i þ j10i þ j11iÞ=2 to show a non-trivial
demonstration of JABðhÞ, and h was chosen to be p=2 to

easily verify whether the execution was successful. The

successful projective measurement, after which the pro-

gram state is collapsed into j0i, will make the data state

JABðp=2Þðj00i þ j01i þ j10i þ j11iÞ=2
¼ ðj00i þ ij01i þ ij10i þ j11iÞ=2; ð3Þ

neglecting an overall phase.

The projective measurement M is not available in

NMR experiments, but can be simulated as follows.
Suppose that the data state is, for example,

jdi ¼ ðj00i þ j11iÞ=
ffiffiffi
2

p
:

A projective measurement on the qubit A in the basis

fj0i; j1ig will make the state collapse into j00i or j11i
with equal probability 1/2. Another measurement on the
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qubit B gives j0iB if the first one gives j0iA, and j1iB if
j1iA. The two measurement results are correlated.

In NMR experiments, such projective measurements

are not possible, and measured values are expectation

values or ensemble averages. Assume that the expecta-

tion value hrzi is given by h0jrzj0i ¼ 1 and h1jrzj1i ¼
�1. It is then obvious that hrziA ¼ hrziB ¼ 0 for the

above state, and two values have no correlation that

naturally arises in projective measurements.
However, the correlation between two qubits can be

obtained from their expectation values with the help of a

correlation operator [7], which is simply a CNOTCNOT gate in

this case. From the anti-commutation relation fri; rjg ¼
2dij, it holds that rxrzrx ¼ �rz and thus hrziþ
hrxrzrxi ¼ 0 for any one-qubit state. That is,

hwjrzjwi þ ðhwjrxÞrzðrxjwiÞ ¼ 0; ð4Þ
which means that the expectation values of two experi-

ments with and without applying a NOTNOT gate will cancel

each other. Utilizing this fact, the averaged hrziB over
two experiments with and without a CNOTCNOT gate, of

which the control bit is the qubit A and the target, the

qubit B, will be the very expectation value of the qubit B
only when the qubit A is in the state j0i. In other words,

the expectation value hrziB is filtered according to the

state of the qubit A [7].

Therefore, this corresponds to the simulation of the

projective measurement of the case when the qubit A is
collapsed into j0i. If one wants to simulate the other

case, the CNOTCNOT (or j0ih0jA � EB þ j1ih1jA � notB) is re-

placed by j0ih0jA � notB þ j1ih1jA � EB. In our experi-

ments, the goal of the projective measurement is to

collapse the program state into j0i, and the available

expectation values in NMR are hrxi and hryi. Thus, we
have used a controlled-rz for the correlation operator

since rzrxðyÞrz ¼ �rxðyÞ.
This filtering can be used for many-qubit cases as

originally employeed in [7]. However, we note that it is

effective when the given state is a comb state, a super-

position of eigenstates of which non-zero coefficients are

equal up to phases. If this condition is not met, the

magnitude of filtered expectation values should be

considered to determine the states of qubits. In our ex-

periment, the state before the measurement is always a
comb state in the basis of the program state, as shown in

Eq. (2), and thus the filtering was useful. Also, note that

the filtering is only a simulation of the projective mea-

surements in the sense that it gives just the same ex-

pectation values, and successive executions of GB with

different program states are not possible.
4. Experiments and results

As qubits, three 13C nuclear spins of 99% carbon-13

labeled alanine in D2O solvent were used. The experi-
ments were conducted on a Bruker DRX300 spectrom-
eter of 7.4 T magnetic field with proton decoupling. The

Hamiltonian of the system reads

H ¼
X3

i

xiIiz þ
X3

i<j

pJij2IizIjz;

where the subscripts i and j denote the spins (i, j ¼ 1, 2,

3), xi is a Larmor frequency, and Jij is the coupling
constant between spins i and j. The Larmor frequencies

were measured to be x1=2p � 5978Hz, x2=2p �
�3477Hz, and x3=2p � �6070Hz in a rotating frame

of x=2p ¼ 75:475031MHz. The coupling constants

J12, J23, and J13 were about 54.06, 34.86, and �1:30Hz,

respectively.

From this Hamiltonian and the interaction terms of

rf pulses, the rotation operators RiaðhÞ ¼ exp½�ihIia� (a is
x, y or z) and coupling operators JijðhÞ can be imple-

mented. The system was handled in a triply rotating

frame where xi ¼ 0, and the reference phase of each

qubit was traced during the experiments. RixðyÞðhÞ was

realized by spin-selective UBURP or REBURP pulses

[8] of about 2ms in length, RizðhÞ by adjusting the ref-

erence phases of the rotating frame, and JijðhÞ by time

evolution and the appropriate refocusing scheme [9–11].
To obtain results, we performed 3� 2 ¼ 6 experi-

ments: three for an effective pure state [12,13] and two

for a simulation of projective measurements. The effec-

tive pure state was obtained by three different initial

sequences [14]. One is ‘‘no operation’’ that leaves the

deviation density matrix in the thermal equilibrium state

q1 ¼ I1z þ I2z þ I3z, and the other two sequences are

R2zðp=2ÞJ 0
23ðp=2ÞR2yðp=2ÞR1xðp=2ÞJ 0

12ðp=2ÞR1yð�p=2Þ
and

R1xð�p=2ÞJ 0
12ðp=2ÞR1yðp=2ÞR2yð�p=2ÞJ 0

12ðp=2Þ
� J 0

23ðp=2ÞR2yðp=2Þ;

read from right to left. These sequences transform q1

into q2 ¼ 4I1zI2zI3z þ 2I2zI3z � I3z and q3 ¼ 2I1zI2zþ
2I1zI3z þ I3z. The effective pure state is obtained from

q1 þ q2 þ q3. J
0
ijðhÞ denotes JijðhÞRkxðpÞ and is easier to

implement than JijðhÞ in our refocusing scheme.

The controlled-rz in the circuit is implemented by the

sequence

Jijðp=2ÞIizð�p=2ÞIjzð�p=2Þ;
for the control spin i and the target j. The sequence for

Hi, Hadamard operator on spin i, is RizðpÞRiyð�p=2Þ,
and the program state in Eq. (1) is prepared by the se-
quence HiRizðhÞHi. With these sequences, the experiment

took about 95ms in the longest case. There was no

signal averaging in each experiment.

We assigned spins 1 and 3 as the data qubits A and B,
and spin 2 as the program qubit, respectively. Fig. 2A

shows the reference spectrum of spin 1. The large

splitting is due to J12 and the small one, J13. Considering



Fig. 2. The result spectra of spin 1 assigned as the data qubit A. All the

spectra are drawn in the same scale, and the horizontal lines are at zero

level of the vertical axes. The spectrum shows (A) the reference, (B) the

effective pure state j000i after a read-out pulse, and (C) the final result.

See text.
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the signs of the coupling constants, the peaks are labeled

as peaks 0, 1, 2, and 3, which are observed when spins 2
and 3 are in the states j00i23 ¼ j0i2 � j0i3, j01i23, j10i23,
and j11i23, respectively. Each peak is positive when spin

1 is jxþi ¼ ðj0i þ j1iÞ=
ffiffiffi
2

p
, and negative when jx�i ¼

ðj0i � j1iÞ=
ffiffiffi
2

p
because the measured values are hrxi.

The spectrum of the effective pure state j000i was ob-

tained by a read-out pulse on spin 1, R1yðp=2Þ, by which

the state becomes jxþi1 � j00i23 and thus the positive

peak 0 appears, as shown in Fig. 2B.It is enough to
examine only the spectrum of spin 1 to determine the

result of the experiment. Since Eq. (3) is rewritten as

½ðj0iA þ ij1iAÞ � j0iB þ ðij0iA þ j1iAÞ � j1iB�=2;
and the program state is j0i, the first term exhibits a

positive peak 0 and the second term a negative peak 1

after adjusting the overall phase of the spectrum, as

clearly shown in Fig. 2C. Therefore, the execution of

the programmable quantum computer is successfully
demonstrated.

It is considered that the main reason for experi-

mental errors is that the spin–spin couplings are not

perfectly suppressed during the applications of the

pulses. A simple rectangular pulse on a spin i along x
axis results in the rotation of spin i about a tilted axis

between Iix and Iiz axes in the Cartesian subspace

spanned by fIix; Iiy ; Iizg if the pulse is off-resonance [15].
Some shaped pulses such as BURP [8] employed here

are designed to suppress this off-resonance effect by
adjusting the strengths of successive rectangular pulses
so that the net effect of rectangular pulses is rotation

about Ix axis. Even though the pulse is on-resonance,

there would exist a spin–spin coupling term between

spins i and j, and the effect of the pulse is rotation

about a tilted axis between Iix and 2IizIjz axes in the

subspace spanned by fIix; 2IiyIjz; 2IizIjzg. The coupling

term 2IizIjz behaves exactly the same as the off-reso-

nance term except that the subspace is different.
Therefore, this spin–spin coupling is also suppressed by

the shaped pulses. However, not all the couplings are

cancel. In our case, the couplings between spins 1 and

2, and 1 and 3 during the application of a shaped pulse

on spin 1 are suppressed. But we cannot cancel the

coupling between spins 2 and 3, and this is the main

cause of the errors shown in Figs. 2B and C. Thus, an

adequate method is required to resolve this problem
[16,17].
5. Conclusion

We have experimentally demonstrated the feasibility

of a programmable quantum computer by NMR. By

preparing the program state, different operators can be
applied on the data state by the fixed circuit. A

non-separable two-qubit operation JABðp=2Þ was

demonstrated in a programmable way. The projective

measurement required in the scheme was successfully

simulated.
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