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Implementing unitary operators in quantum computation

Jaehyun Kim, Jae-Seung Lee, and Soonchil Lee
Department of Physics, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea

~Received 7 September 1999; published 16 February 2000!

We present a general method which expresses a unitary operator by the product of operators allowed by the
Hamiltonian of spin-1/2 systems. In this method, the generator of an operator is found first, and then the
generator is expanded by the base operators of the product operator formalism. Finally, the base operators
disallowed by the Hamiltonian, including more than two-body interaction operators, are replaced by allowed
ones by the axes transformation and coupling order reduction technique. This method directly provides pulse
sequences for the nuclear magnetic resonance quantum computer, and can be generally applied to other
systems.

PACS number~s!: 03.67.Lx
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I. INTRODUCTION

In 1973, Bennett@1# proposed a reversible Turing ma
chine that is as efficient as an irreversible one, and this le
the idea of using a quantum system as a computer bec
the time evolution of a quantum system is reversible. Fe
man@2# introduced the concept of a quantum computer, a
its theoretical model was given by Deutsch@3#. On the other
hand, Fredkin and Toffoli@4# proved that an arbitrary com
putation can be performed by a reversible Turing machine
showing thatAND, OR, and NOT gates can be generated b
reversible three-bit gates, among which a Toffoli gate@5# is
most frequently used nowadays. In quantum computatio
three-bit gate cannot be implemented directly because i
quires a simultaneous interaction of three particles. T
there have been efforts to find two-bit universal ga
@6–12#. In particular, Barencoet al. showed that a combina
tion of two-bit c-NOT gates and one-bit gates can replace
Toffoli gate, and proposed a method to make generaln-bit
controlled gates@13#. Therefore, it is proved that an arbitrar
computation can be performed by a quantum computer,
the implementation of these universal gates became the b
requirement for any quantum system to be a quantum c
puter.

However, the proof that an arbitrary computation can
done by a quantum computer does not necessarily mean
we know a general implementation procedure. If a unit
operatorU, equivalent to a combination of gates, is related
the Hamiltonian H of a certain quantum system byU
5exp(2ıHt/\), it can be realized by the time evolution o
the system during timet. But there are only a few operation
that can be implemented in this way by the limited Hamil
nians of nature. Therefore, it is very necessary to find a g
eral method to implement an arbitrary operation using o
the given Hamiltonians. Feynman proposed a way to c
struct an artificial Hamiltonian whenU is given byU5Uk
•••U3U2U1 and allHi ’s corresponding toUi ’s exist in na-
ture @14#, but it is impractical to construct artificial Hamilto
nians. It will be more practical to partially control a Hami
tonian by turning perturbations ‘‘on’’ and ‘‘off’’ ifU can be
expressed as a product of operators corresponding to the
turbation terms. Whether Feynman’s artificial Hamiltonia
1050-2947/2000/61~3!/032312~4!/$15.00 61 0323
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or switchable perturbations are used, an operator of inte
must be expressed as a product of the operators allowe
Hamiltonians. This is equivalent to finding the combinati
of universal gates, or a quantum network, and generally
very difficult problem having several solutions.

In this work, we propose a general method of express
a unitary operator as a product of the operators allowed
the Hamiltonian of the spin-1

2 systems, including the nuclea
magnetic resonance~NMR! quantum computer. This metho
makes use of the fact that a unitary operatorU is always
given by U5exp@2ıG#, whereG is a Hermitian operator.
Once the generator of an operator,G, is found, it is expanded
by suitable base operators. ThenU is expressed as a produ
of operators having only one base operator as a gener
and, finally, each operator in the product is replaced by
allowed ones. Compared to a previous report@15#, only the
operators of physical variables were used in each trans
mation procedure. This helps to understand the phys
meaning of operations done by a quantum computer.

II. DECOMPOSITION

The first step of implementation is to find the generator
a given operator. Since the only way to implement an ope
tor is to use the time evolution of a state under a suita
Hamiltonian, a generator, which is the product of Ham
tonian and time, gives the physical information necessary
implementation. A unitary operator is represented by a n
mal matrix and always diagonalized by unitary transform
tion. The matrixT that diagonalizesU also diagonalizesG as

U85TUT†5e2ıTGT†
5e2ıG8, ~1!

where U8 and G8 are diagonalized matrices ofU and G,
respectively. Once the operator and its generator becom
agonal,G8 is easily obtained from

Ukk8 5e2ıGkk8 , ~2!

and G is obtained by inverse transformationG5T†G8T.
SinceG is Hermitian,Gkk8 , the eigenvalues ofG, are real,
©2000 The American Physical Society12-1



is

de

r
t o

i-
th

n
e

an
m

-
-
o

in

o

ota-

ap-
ized

-

he
g to
suc-

to

tors

si-

al-
he
a
a-

-

JAEHYUN KIM, J. S. LEE, AND SOONCHIL LEE PHYSICAL REVIEW A61 032312
and Ukk8 are complex with absolute value of unity. It
worthwhile to note that the mapping fromUkk8 to Gkk8 is not
unique.

To relate the generatorG with Hamiltonians, consider the
following operators of the product operator formalism forN
spin-12 particles@16–18#:

Bs52(q21)~ I a1
^ I a2

^ •••^ I aN
!, ~3!

wheres5$a1 ,a2 , . . . ,aN% and a i is 0, x,y, or z. I 0 is E,
i.e., a 232 unity matrix, I a i

is a spin angular momentum

operator fora iÞ0, andq is the number of nonzeroa i ’s. For
example,$Bs% for N52 is given by

q50; E/2,

q51; I 1x ,I 1y ,I 1z ,I 2x ,I 2y ,I 2z , ~4!

q52; 2I 1xI 2x ,2I 1xI 2y ,2I 1xI 2z , . . . ,

which are 16 Dirac matrices except the factor of1
2 . In Eq.

~4!, unity matrices are not shown and spin indices are ad
for convenience.$Bs%, consisting of 4N elements, makes a
complete set and, therefore, an arbitrary 2N32N matrix can
be expanded by the linear combination ofBs’s. SinceG and
Bs’s are Hermitian, coefficients of the linear expansion a
real numbers and obtained by applying the inner produc
G andBs’s.

A unitary operator is now expressed asU
5exp(2ı(sbsBs), of which the generator is related to phys
cal observables. In general, there exists no Hamiltonian
corresponds to a linear combination ofBs’s. Therefore, our
next step is to expressU as a product ofsingle operators,
which have only oneBs as a generator like exp@2ıbsBs#.
Sometimes this decomposition is the most difficult step, a
it has not yet been proven whether the decomposition is g
erally possible even for spin operators. Fortunately, m
useful gates can be easily decomposed by using the com
tation relations ofBs’s. Bs’s are either commuting or anti
commuting with each other. IfG is expanded with only com
muting Bs’s, U can be easily represented by a product
single operators as

U5expF2ı(
s

bsBsG→)
s

exp@2ıbsBs#. ~5!

A swap gate and anf-controlled phase shift gate used
Grover’s search algorithm belong to this case.

Even though a generator has noncommutingBs’s, there
are cases where decomposition is straightforward. Supp
two base operatorsBs1 andBs2 satisfy the relation (\51):

@Bs1 ,Bs2#5ıBs3 ; ~6!

then Bs3 also belongs to$Bs%. This commutation relation
makes the three operatorsBs1 , Bs2, andBs3 transform like
Cartesian coordinates under rotation, meaning that

exp@2ıfBs3#Bs1~exp@2ıfBs3# !†5Bs1 cosf1Bs2 sinf
~7!
03231
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for cyclic permutations ofs1, s2, ands3. If a generator has
only these operators, it can be decomposed using Euler r
tions. For example, exp@2ıf(Bs11Bs2)# is understood to be
the rotation with the angle ofA2f about the axis 45° off the
‘‘ Bs1 axis’’ on the plane ofBs1 andBs2 axes. Therefore, this
operation is equivalent to the successive rotations aboutBs1
andBs3 axes as follows:

e2ıf(Bs11Bs2)5e2ı(p/4)Bs3e2ıA2fBs1eı(p/4)Bs3. ~8!

This decomposition technique by Euler rotations is also
plicable when an operator has a generator in the factor
form as follows:

U5expF2ı)
i 51

N S (
a i

f ia i
I ia i D G , ~9!

wheref ia i
are real numbers. SinceI 1x , I 1y , andI 1z satisfy

the commutation relation in Eq.~6!, and commute with any
other spin operators withiÞ1, spin-1 components are de
composed as

U1 expF2ı~f10E1f1I 1a1
!)
i 52

N S (
a i

f ia i
I ia i D GU1

† ,

~10!

whereU1 is the product of the single operators of which t
generators have only spin-1 components, correspondin
Euler rotations. Repeated applications of this process to
cessive spins give

U5UN•••U1e2ıGU1
†
•••UN

† , ~11!

where

G5)
i 51

N

~f i0E1f i I ia i
!. ~12!

Then decomposition is finished because all terms in Eq.~12!
commute with each other. All the controlled gates belong
this case. If none of the above methods are applicable,U can
be approximately expanded as a product of single opera
to any desired accuracy@19#.

III. REDUCTION

AlthoughBs is a product of spin operators that are phy
cal quantities, not allBs’s exist in Hamiltonians that nature
allows. The next step of implementation is to replace dis
lowed single operators in the product by allowed ones. T
Hamiltonian of a spin-12 system used for implementation of
quantum computer allows only the following single oper
tors in general:

Ria~f!5e2ıfI ia,
~13!

Ji j a~f!5e2ıf2I iaI j a.

The first term is a rotation operator that rotates spini about
the a axis by the angle off, and the second one is a spin
2-2
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spin interaction operator between spinsi and j. The anglef
in the second term is proportional to the spin-spin coupl
constant and evolution time, but we denote it as a rota
angle because the effect of spin-spin interaction can be
derstood as a rotation of one spin due to the magnetic fiel
the other. Before going further, we assume the follow
more restricted set of operators as allowed ones in this st

Ria~f!5e2ıfI ia ~a5x or y!,
~14!

Ji j ~f!5Ji jz~f!5e2ıf2I izI jz.

In this set, onlyx and y axes are used for single-spin rot
tions, and a spin-spin interaction is limited to the Ising typ
Needless to say, the greater the number of single opera
allowed, the easier it is to implement an algorithm. Howev
Eq. ~14! is a sufficient set to realize any unitary operators
shown below, and in fact these are the only operators
lowed by an NMR quantum computer. Single-spin rotatio
are implemented by selective rf pulses and spin-spin inte
tions by Hamiltonian evolution with intermediate refocusi
pulses@20#. These two rotation operators can generate
single bit operation and the interaction operator can mak
c-NOT gate in combination with rotation operators@20,21#.
Therefore, these three operators consist of the minimum
to implement universal gates.

Now, we are to show that the minimum set in Eq.~14! can
generate all the other single operators. First, the single
operation excluded in Eq.~14!, Riz(f), can be transformed
from Rix(f) as

Riz~f!5RiyS 2
p

2 DRix~f!RiyS p

2 D . ~15!

This is the composite pulse technique well-known in t
NMR experiments@17#. Any rotation about one axis can b
replaced by the composite of rotations about the other t
All the second-order operators, where thenth-order operator
means the single operator that has a generatorBs with q
5n, can be transformed into the Ising-type operator in E
~14! by this technique@22,23#. For example, exp@2ıf2IixI jz#
is transformed as

exp@2ıf2I ixI jz#5RiyS p

2 Dexp@2ıf2I izI jz#RiyS 2
p

2 D .

~16!

In the same way, anynth-order operator can be transforme
into the product of single operators and thenth-order cou-
pling operator that is defined as thenth-order operator with
all a i5z.

After all the spin coordinates are changed toz using this
technique, the operators with more than two-body interac
can be reduced to an Ising type two-body interaction ope
tor as discussed below. The key idea of the coupling or
reduction is that thenth-order coupling operator can b
thought as the (n21)th-order one controlled by one sp
state. For example, the third-order coupling operator@24#,
exp@2ıf4IizI jzIkz# is represented by
03231
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exp@2ıf4I izI jzI kz#

5expF2ıfS 2~ I z^ I z! 0

0 22~ I z^ I z!
D G

5S exp@2ıf2~ I z^ I z!# 0

0 exp@ ıf2~ I z^ I z!#
D

5S Jjk~f! 0

0 Jjk~2f!
D ~17!

in the subspace of spini. The final form of Eq.~17! implies
that the third-order coupling operator can be understood
second order one with coupling between spinj andk, but its
rotation direction depends on the state of spini. We note that
if one spin is flipped during the evolution of the spin-sp
interaction, then the sign of the interaction changes and
has the effect of time reversal. This means that the rota
direction changes@17,20# and, therefore, we can implemen
Eq. ~17! with the second-order coupling operator by flippin
spin j or k depending on the state of spini. It is a well-known
CNOT~XOR! gate that flips one spin depending on the state
the other spin. ACNOT gate is given by

UCNOT5RizS p

2 DRjxS p

2 DRjyS p

2 D Ji j S 2
p

2 DRjyS 2
p

2 D
~18!

up to an overall phase, and this is the product of allow
operators in Eq.~14!.

In the same way, annth-order coupling operator can b
reduced to an (n21)th-order one by conditionally flipping
odd number of spins except the spini. Repeated application
of this process obviously reduce annth-order coupling op-
erator to a second-order one. Figure 1 shows the quan
networks of thenth-order coupling operator and its equiv
lent combination of the allowed operators. In Fig. 1~b!, the
CNOT gates after the second-order coupling operator are
serted to flip spins to their original states. Instead of
CNOT gates before and after the second-order coupling
erator, a pseudo-CNOT gate Ui j 5Rjx~p/2!Ji j ~p/2!Rjy~p/2!
andUi j

† can be used, respectively.
As an example, we apply this general implementat

procedure to a Toffoli gate@25#. The generator of a Toffoli

FIG. 1. Quantum network for thenth-order coupling operator
~a! and its equivalent network consisting of allowed operators~b!.
2-3



to

e
du
rs
s
fi

hat

ers.
uter
imi-
rs
us
ith
al-

tion
il-

ud-

or
ins
ially,
it is
ny
le-

JAEHYUN KIM, J. S. LEE, AND SOONCHIL LEE PHYSICAL REVIEW A61 032312
gate obtained after the processes of diagonalization and
verse unitary transformation is expanded by base opera
as

G5pS 2
1

8
E1

1

4
I 1z1

1

4
I 2z2

1

4
2I 1zI 2z1

1

4
I 3x2

1

4
2I 1zI 3x

2
1

4
2I 2zI 3x1

1

4
4I 1zI 2zI 3xD . ~19!

Since all terms in this generator commute with each oth
the corresponding operator is easily expressed by the pro
of single operators. After replacing disallowed operato
I 1zI 3x and I 1zI 2zI 3x in this case, by allowed ones by axe
transformation and coupling order reduction, the gate is
nally expressed as

R1zS p

4 DR2zS p

4 D J12S 2
p

4 DR3xS p

4 DR3yS p

2 D
3J13S 2

p

4 D J23S 2
p

4 DU12J23S p

4 DU12
† R3yS 2

p

2 D ~20!

up to an overall phase.
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IV. CONCLUSION

Our method is applicable to any quantum computers t
use spin-12 states as qubits, because the operators of Eq.~14!
make the minimum set required to those quantum comput
This method can be generalized for other quantum comp
systems that should provide a complete set of operators s
lar to those of Eq.~14!. Since our method uses generato
that are closely related to Hamiltonians, this method helps
to see the physical meaning of an operation. Operators w
generators disallowed by Hamiltonians are replaced by
lowed ones using axes transformation and order reduc
techniques. Therefore, it is possible to simulate an Ham
tonian that does not exist in nature using this method, incl
ing more than two-body interactions.

This method does not necessarily give either optimal
unique solutions to implementation. As the number of sp
increases, the number of base operators grows exponent
and a generator could have too many terms. Therefore,
impractical to apply this method to a system with ma
spins, but our method still provides a good guide to imp
ment an operator of interest.
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