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Implementing unitary operators in quantum computation
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We present a general method which expresses a unitary operator by the product of operators allowed by the
Hamiltonian of spin-1/2 systems. In this method, the generator of an operator is found first, and then the
generator is expanded by the base operators of the product operator formalism. Finally, the base operators
disallowed by the Hamiltonian, including more than two-body interaction operators, are replaced by allowed
ones by the axes transformation and coupling order reduction technique. This method directly provides pulse
sequences for the nuclear magnetic resonance quantum computer, and can be generally applied to other
systems.

PACS numbd(s): 03.67.Lx

I. INTRODUCTION or switchable perturbations are used, an operator of interest
must be expressed as a product of the operators allowed by
In 1973, Bennet{1] proposed a reversible Turing ma- Hamiltonians. This is equivalent to finding the combination
chine that is as efficient as an irreversible one, and this led tef universal gates, or a quantum network, and generally is a
the idea of using a quantum system as a computer becauery difficult problem having several solutions.
the time evolution of a quantum system is reversible. Feyn- In this work, we propose a general method of expressing
man[2] introduced the concept of a quantum computer, and unitary operator as a product of the operators allowed by
its theoretical model was given by Deutd@j. On the other the Hamiltonian of the spig-systems, including the nuclear
hand, Fredkin and Toffoli4] proved that an arbitrary com- magnetic resonand®MR) quantum computer. This method
putation can be performed by a reversible Turing machine bynakes use of the fact that a unitary operatbiis always
showing thatanp, OR, and NOT gates can be generated by given by U=exd —1G], whereG is a Hermitian operator.
reversible three-bit gates, among which a Toffoli giligis ~ Once the generator of an operat@y,is found, it is expanded
most frequently used nowadays. In quantum computation, By suitable base operators. Theris expressed as a product
three-bit gate cannot be implemented directly because it redf operators having only one base operator as a generator,
quires a simultaneous interaction of three particles. Thugnd, finally, each operator in the product is replaced by the
there have been efforts to find two-bit universal gatesallowed ones. Compared to a previous repaf], only the
[6—12. In particular, Barencet al. showed that a combina- operators of physical variables were used in each transfor-
tion of two-bit c-NOT gates and one-bit gates can replace anation procedure. This helps to understand the physical
Toffoli gate, and proposed a method to make geneshit ~ meaning of operations done by a quantum computer.
controlled gate§13]. Therefore, it is proved that an arbitrary
computation can be performed by a quantum computer, and Il. DECOMPOSITION
the implementation of these universal gates became the basic
requirement for any quantum system to be a quantum com- The first step of implementation is to find the generator of
puter. a given operator. Since the only way to implement an opera-
However, the proof that an arbitrary computation can beor is to use the time evolution of a state under a suitable
done by a quantum computer does not necessarily mean theamiltonian, a generator, which is the product of Hamil-
we know a general implementation procedure. If a unitarytonian and time, gives the physical information necessary for
operatorJ, equivalent to a combination of gates, is related toimplementation. A unitary operator is represented by a nor-
the Hamiltonian’®# of a certain quantum system by mal matrix and always diagonalized by unitary transforma-
=exp(—IHt/4), it can be realized by the time evolution of tion. The matrixT that diagonalize$) also diagonalize& as
the system during time But there are only a few operations
that can be implemented in this way by the limited Hamilto- U':TUTT:e*ITGTT:e*IG’, (1)
nians of nature. Therefore, it is very necessary to find a gen-

eral method to implement an arbitrary operation using onlYyhere U’ and G’ are diagonalized matrices &f and G

the given Hamiltonians. Feynman proposed a way 10 CONgespectively. Once the operator and its generator become di-
struct an artificial Hamiltonian whebl is given byU=U, agonal,G’ is easily obtained from

---UzU,U, and all’H;’'s corresponding tdJ;’s exist in na-
ture[14], but it is impractical to construct artificial Hamilto-
nians. It will be more practical to partially control a Hamil-
tonian by turning perturbations “on” and “off” ifU can be
expressed as a product of operators corresponding to the perd G is obtained by inverse transformaticB=T'G'T.
turbation terms. Whether Feynman'’s artificial HamiltoniansSince G is Hermitian, Gy, the eigenvalues o6, are real,

Upge=e ™', ?)
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and Uy, are complex with absolute value of unity. It is for cyclic permutations 081, s2, ands3. If a generator has
worthwhile to note that the mapping frobi, to Gy, is not  only these operators, it can be decomposed using Euler rota-
unique. tions. For example, exp-16(By+By)] is understood to be

To relate the generat@ with Hamiltonians, consider the the rotation with the angle of2¢ about the axis 45° off the
following operators of the product operator formalism for  “ Bg; axis” on the plane oBg; andBg, axes. Therefore, this
spin+4 particles[16—18: operation is equivalent to the successive rotations aBgut

andBg; axes as follows:
Be=200"(1,,®1,®---®l,), 3
e 16(Bs1+Bsp) — g~ 1(m4)Bszg—1V2¢Bg1 o (7/4)Bs3 ®)
wheres={ay,a,, ...,ay} andg; is 0, x,y, or z Iy is E, . N _ . .
i.e., a 22 unity matrix, |, is a spin angular momentum This decomposition technique by Euler rotations is also ap-
i : . |

operator fore;#0, andq is the number of nonzera,’s. For plicable when an operator has a generator in the factorized

example{Bg} for N=2 is given by form as follows:

q=0; E/2, U=exr{—lﬁl<§ ¢mi|iai”, 9

q=1; |1x1|1y1|12a|2x’|2ya|221 (4) . .
whereqbiai are real numbers. Sinde,, |,,, andl,, satisfy
q=2; 2o, 20505y, 21040 575 -1 - the commutation relation in E¢6), and commute with any

. ) ] L other spin operators with+# 1, spin-1 components are de-
which are 16 Dirac matrices except the factorzofin Eq.  composed as

(4), unity matrices are not shown and spin indices are added
for convenience{B,}, consisting of 4 elements, makes a N ;
complete set and, therefore, an arbitraf2N matrix can Uy ex —1(haE+ ¢l ia) 1 (2 ¢iai|iai) Us,
be expanded by the linear combinationBys. SinceG and =2 e

, o " . . (10)
BJ's are Hermitian, coefficients of the linear expansion are

real numbers and obtained by applying the inner product ojyhereU, is the product of the single operators of which the

G andBy's. generators have only spin-1 components, corresponding to
A unitary operator is now expressed asJ  Euyler rotations. Repeated applications of this process to suc-

=exp(—1Z¢bsBy), of which the generator is related to physi- cessive spins give

cal observables. In general, there exists no Hamiltonian that

corresponds to a linear combination Bf's. Therefore, our U=Uy-- ~U1e*'GUJ{~ . -UL, (12

next step is to expredd as a product okingle operators

which have only oneBg as a generator like ekpibB.  Where

Sometimes this decomposition is the most difficult step, and N

it has not yet been proven whether the decomposition is gen- GZH (hioE+ il )

erally possible even for spin operators. Fortunately, many iy o Hlag/e

useful gates can be easily decomposed by using the commu-

tation relations ofBg’'s. Bg's are either commuting or anti- Then decomposition is finished because all terms in(E2).

commuting with each other. [& is expanded with only com- commute with each other. All the controlled gates belong to

muting B's, U can be easily represented by a product ofthis case. If none of the above methods are applicablegn

single operators as be approximately expanded as a product of single operators

to any desired accuradyt9].
U=ex;{—|2 bBs
S

A swap gate and aficontrolled phase shift gate used in  AlthoughBg is a product of spin operators that are physi-

Grover's search algorithm belong to this case. cal quantities, not alBg's exist in Hamiltonians that nature
Even though a generator has noncommutByg, there  allows. The next step of implementation is to replace disal-

are cases where decomposition is straightforward. Suppod@wed single operators in the product by allowed ones. The

(12

exd —1bB.]. 5
Hl_s[ XHL 1035 ] © l1l. REDUCTION

two base operatorB,; and By, satisfy the relation=1): Hamiltonian of a spirg system used for implementation of a
quantum computer allows only the following single opera-
[Bs1,Bsy]=1Bg3; (6) tors in general:
then Bg; also belongs tdBg}. This commutation relation Ri (¢p)=e '?ia,
makes the three operatoBs;, Bg,, andBgs transform like (13)
Cartesian coordinates under rotation, meaning that Jija(P)=e"'idja,

exd — 16Bg]Bg (exd —14Bg]) =By cos¢g+Bg, sing The first term is a rotation operator that rotates spaout
(7)  the a axis by the angle of, and the second one is a spin-
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spin interaction operator between spirendj. The angle¢
in the second term is proportional to the spin-spin coupling

constant and evolution time, but we denote it as a rotation — & T
angle because the effect of spin-spin interaction can be un- Slal: : :
derstood as a rotation of one spin due to the magnetic field of 1 — _GI;_ _gl;_
the other. Before going further, we assume the following J
more restricted set of operators as allowed ones in this study: I
b
Ra(d)=e e (a=x or y), @ ®
(14 FIG. 1. Quantum network for thath-order coupling operator
Jij(#)=Jjj ()=~ P?izliz, (a) and its equivalent network consisting of allowed operatbys
In this set, onlyx andy axes are used for single-spin rota-
tions, and a spin-spin interaction is limited to the Ising type. _ .
. eXF[ |¢4||zljz|kz]
Needless to say, the greater the number of single operators
allowed, the easier it is to implement an algorithm. However, 2(1,21,) 0
Eq. (14) is a sufficient set to realize any unitary operators as ~ =€Xg —1¢ 0 —2(1,@1,)
z z

shown below, and in fact these are the only operators al-
lowed by an NMR quantum computer. Single-spin rotations exd —1¢2(1,®1,)] 0
are implemented by selective rf pulses and spin-spin interac- =< 0 ex162(1,@1,)]
tions by Hamiltonian evolution with intermediate refocusing zez
pulses[20]. These two rotation operators can generate any Jik( ) 0
single bit operation and the interaction operator can make a =< 0 Ji(— ¢)>
C-NOT gate in combination with rotation operatdr0,21]. ik
Therefore, these three operators consist of the minimum set
to implement universal gates. in the subspace of spin The final form of Eq.(17) implies
Now, we are to show that the minimum set in Etd) can  that the third-order coupling operator can be understood as a
generate all the other single operators. First, the single-b&econd order one with coupling between spandk, but its
operation excluded in Eq14), R;,(¢#), can be transformed rotation direction depends on the state of spWe note that
from R, () as if one spin is flipped during the evolution of the spin-spin
interaction, then the sign of the interaction changes and this
T T has the effect of time reversal. This means that the rotation
Riz(¢):Riy( - E) Rix(@Riy(E)' 15 direction changef§l7,20 and, therefore, we can implement
Eq. (17) with the second-order coupling operator by flipping
This is the composite pulse technique well-known in thespinj or k depending on the state of spint is a well-known
NMR experiment§17]. Any rotation about one axis can be CNOT(XOR) gate that flips one spin depending on the state of
replaced by the composite of rotations about the other twothe other spin. ACNOT gate is given by
All the second-order operators, where titb-order operator
means the single operator that has a generBtowith g - - - - -
=n, can pe transformed into the Ising-type operator in Eq.  Ucnot= Riz(E) ij(E) Rjy(E)Jij( - E) Rjy< - E)
(14) by this techniqué22,23. For example, eXp-142l;l,]
is transformed as

17

(18

T T up to an overall phase, and this is the product of allowed
exq_'¢2|ix|jz]=Riy(§) exfi_'d’z'izliz]Riy( Yk operators in Eq(14).
(16) In the same way, anth-order coupling operator can be
reduced to anr{—1)th-order one by conditionally flipping
In the same way, angith-order operator can be transformed odd number of spins except the spirRepeated applications
into the product of single operators and thi-order cou- of this process obviously reduce ath-order coupling op-
pling operator that is defined as théh-order operator with  erator to a second-order one. Figure 1 shows the quantum
all a;=z. networks of thenth-order coupling operator and its equiva-
After all the spin coordinates are changedztosing this  lent combination of the allowed operators. In Figb)l the
technique, the operators with more than two-body interactiol©NOT gates after the second-order coupling operator are in-
can be reduced to an Ising type two-body interaction operaserted to flip spins to their original states. Instead of the
tor as discussed below. The key idea of the coupling ordegNOT gates before and after the second-order coupling op-
reduction is that thenth-order coupling operator can be erator, a pseudoNOT gate U;; =R (7/2)J;; (m/2)R;,(7/2)
thought as the {—1)th-order one controlled by one spin andUiTj can be used, respectively.
state. For example, the third-order coupling operaff], As an example, we apply this general implementation
exd — 14,1, li,] is represented by procedure to a Toffoli gatg25]. The generator of a Toffoli
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gate obtained after the processes of diagonalization and in- V. CONCLUSION

verse unitary transformation is expanded by base operators
as Our method is applicable to any quantum computers that

use spins states as qubits, because the operators of E).
G=x — EEJF 1| 1t E| yy— £2| 1oyt E| ax— 32| 1ol 3 make the minimum set required to those quantum computers.
8 4 4 4 4 4 This method can be generalized for other quantum computer
1 1 systems that should provide a complete set of operators simi-

~ 7212 axt 78112l 2l 5 |- (19 Jar to those of Eq(14). Since our method uses generators

that are closely related to Hamiltonians, this method helps us
Since all terms in this generator commute with each otherto see the physical meaning of an operation. Operators with
the corresponding operator is easily expressed by the produgenerators disallowed by Hamiltonians are replaced by al-
of single operators. After replacing disallowed operatorsjowed ones using axes transformation and order reduction
I 1713« @and I1,15,13, in this case, by allowed ones by axes techniques. Therefore, it is possible to simulate an Hamil-
transformation and coupling order reduction, the gate is fitonian that does not exist in nature using this method, includ-

nally expressed as ing more than two-body interactions.
This method does not necessarily give either optimal or
RIZ(Z> Rzz( Z)le — Z) R3X(Z) R3y(5) unique solutions to implementation. As the number of spins
increases, the number of base operators grows exponentially,
T T\t T and a generator could have too many terms. Therefore, it is
XJ13 T4 J23 4 U122 4 U12Rsy ) (20) impractical to apply this method to a system with many
spins, but our method still provides a good guide to imple-
up to an overall phase. ment an operator of interest.
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