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Implementation of the refined Deutsch-Jozsa algorithm
on a three-bit NMR quantum computer
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We implemented the refined Deutsch-Jozsa algorithm on a three-bit nuclear magnetic resonance quantum
computer. All of the balanced and constant functions were realized exactly. The results agree well with
theoretical predictions and clearly distinguish the balanced functions from constant functions. Efficient refo-
cusing schemes were proposed for the softz pulse andJ coupling, and it is shown that the thermal equilibrium
state gives the same answer as the pure state for this algorithm.

PACS number~s!: 03.67.Lx
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A quantum computer, which was just a theoretical co
cept, has been realized recently by nuclear magnetic r
nance~NMR!. Several methods have been proposed suc
ion trap @1,2#, quantum dot@3,4#, cavity quantum electrody
namics@5,6#, and Si-based nuclear spins@7# to realize quan-
tum computers, but NMR@8# has given the most successf
results. Several quantum algorithms have been impleme
by NMR quantum computers@9–13# among which the
Deutsch-Jozsa~DJ! algorithm @14# has been studied mos
because it is the simplest quantum algorithm that shows
power of a quantum computer over a classical one. M
quantum algorithms, including the DJ algorithm, have be
implemented only for functions of one and two bits. T
successful implementation of a quantum algorithm depe
heavily on the number of basic operations that increases
the number of qubits due to finite coherence time. Moreov
more than two-bit operations require more than two-bo
interactions that do not exist in nature. It is possible, thou
not easy, to avoid such interactions but it increases again
number of total basic gates, and coherence may break d
during the computation. There have been few works t
have performed real three-bit operations@15# so far.

The DJ algorithm determines whether ann-bit binary
function

f :$0,1%n°$0,1% ~1!

is a constant function that always gives the same output
balanced function that gives 0 for half the inputs and 1
the remaining half. The DJ algorithm gives the answer w
only one evaluation of the function while a classical alg
rithm requires (2n2111) evaluations in the worst case. Th
function is realized in quantum computation by unitary o
eration

Uux&uy&5ux&uy% f ~x!&, ~2!

wherex is ann-bit argument of the function andy is one bit.
If uy& is in the superposed state, (u0&2u1&)/A2, then the
result of the operation,
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Uux&S u0&2u1&

A2
D 5~21! f (x)ux&S u0&2u1&

A2
D ~3!

carries information about the function encoded in the ove
phase. Ifux& is also prepared in the superposition of all
possible states, (u0&1u1&1•••1u2n21&)/A2n, by applying
an n-bit Hadamard operatorH to ux&5u0&, the relative
phases of the 2n states change depending onf. If f is a con-
stant function, then the relative phases are all the same
additional application ofH restoresux& to u0&. If f is a bal-
anced function,ux& cannot be restored tou0& by this opera-
tion. It is obvious thatuy&, being in the superposed stat
(u0&2u1&)A2, plays a central role in the algorithm but it
redundant in the sense that its state does not change.

This redundancy is removed in the refined DJ algorith
@16#, where the following unitary operator is used:

U f ux&5~21! f (x)ux&. ~4!

It has been shown thatU f is always reduced to a direc
product of single-bit operators forn<2. In this case, the
quantum algorithm solves the Deutsch problem in a class
way in the sense that qubits are never entangled as discu
in Ref. @16#. Therefore, meaningful tests of the DJ algorith
can occur if and only ifn.2. Recently, a realization of the
DJ algorithm forn54 has been reported@17#, but in that
work, only one balanced function was evaluated and the c
respondingU f is reducible to a direct product of four single
bit operators. In this study, we investigated the refined
algorithm with three-bit arguments to find out the pulse
quences ofU f ’s and implemented the algorithm on an NM
quantum computer for all the functions.

There are8C4570 balanced and two constant functio
among all three-bit binary functions. We indexed the fun
tions with their outputsf (0)••• f (7), expressed as hexadec
mal numbers. For example,f 1E denotes the function o
which the outputs are given byf (0)••• f (7)500 011 110.
Note thatU f x

52U f FF2x
, wherex is a hexadecimal numbe

equal to or less than FF~FF is a hexadecimal number equ
to 256!. The difference of overall phase cannot be dist
©2000 The American Physical Society12-1
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guished in the experimental implementations. Therefo
there are 35 distinct unitary operators corresponding to
balanced functions and one operator corresponding to
constant functions. Since the unitary operator correspond
to the constant functionsU f 00

is just the unity matrix, there

are 35 nontrivial and distinctU f ’s to be implemented.
The NMR Hamiltonian of the weakly interacting thre

spin system is given by

H5(
i

3

Dv i I iz1(
i , j

3

pJi j 2I izI jz ~5!

TABLE I. Sequences of realizable operators forU f ’s corre-
sponding to 35 balanced functions.

Type-I
f 0F I z(p)
f 33 Sz(p)
f 55 Rz(p)
f 3C I z(p)Sz(p)
f 66 Sz(p)Rz(p)
f 5A Rz(p)I z(p)
f 69 I z(p)Sz(p)Rz(p)

Type-II
f 1 I z(p)Sz(2p/2)Rz(2p/2)J23(p/2)
f 2D I z(p)Sz(p/2)Rz(2p/2)J23(p/2)
f 3B I z(p)Sz(2p/2)Rz(p/2)J23(p/2)
f 78 I z(p)Sz(p/2)Rz(p/2)J23(p/2)
f 36 Sz(p)I z(2p/2)Rz(2p/2)J13(p/2)
f 39 Sz(p)I z(p/2)Rz(2p/2)J13(p/2)
f 63 Sz(p)I z(2p/2)Rz(p/2)J13(p/2)
f 6C Sz(p)I z(p/2)Rz(p/2)J13(p/2)
f 56 Rz(p)I z(2p/2)Sz(2p/2)J12(p/2)
f 59 Rz(p)I z(p/2)Sz(2p/2)J12(p/2)
f 65 Rz(p)I z(2p/2)Sz(p/2)J12(p/2)
f 6A Rz(p)I z(p/2)Sz(p/2)J12(p/2)

Type-III
f 4E I z(p/2)Sz(2p/2)J23(p/2)J13(p/2)
f 13 I z(p/2)Sz(p/2)J23(2p/2)J13(p/2)
f 27 I z(p/2)Sz(p/2)J23(p/2)J13(2p/2)
f 72 I z(2p/2)Sz(p/2)J23(p/2)J13(p/2)
f 3A Sz(p/2)Rz(2p/2)J12(p/2)J13(p/2)
f 53 Sz(p/2)Rz(p/2)J12(2p/2)J13(p/2)
f 35 Sz(p/2)Rz(p/2)J12(p/2)J13(2p/2)
f 5C Sz(2p/2)Rz(p/2)J12(p/2)J13(p/2)
f 2E I z(p/2)Rz(2p/2)J12(p/2)J23(p/2)
f 47 I z(p/2)Rz(p/2)J12(2p/2)J23(p/2)
f 1D I z(p/2)Rz(p/2)J12(p/2)J23(2p/2)
f 74 I z(2p/2)Rz(p/2)J12(p/2)J23(p/2)

Type-IV
f 17 Sz(p)J12(p/2)J23(p/2)J13(2p/2)
f 1B Sz(p)J12(p/2)J23(2p/2)J13(p/2)
f 4D Sz(p)J12(p/2)J23(p/2)J13(p/2)
f 71 Sz(p)J12(2p/2)J23(p/2)J13(p/2)
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in the rotating frame, whereI iz is the z component of the
angular momentum operator of spini. The first term repre-
sents the precession of spini about thez axis due to the
chemical shiftDv i and the second term, the spin-spin inte
action between spini and j with coupling constantJi j . This
Hamiltonian provides six unitary operators,I iz(u)
5exp@2ıuIiz# and Ji j (u)5exp@2ıu2IizI jz#. In combination
with I iz(u), two other operatorsI ix(u) and I iy(u) produced
by rf pulses can perform any single-bit operations. The c
pling operatorJi j (u) can be used to make a controlled-NOT

operation. The combination of single-bit operations a
controlled-NOT operations can generate any unitary ope
tions @18#.

Table I shows the sequences of the realizable opera
for all the 35 nontrivial distinctU f ’s. In the table, the nota-
tions I 1 , I 2, andI 3 were replaced byI, S, andR, respectively,
for convenience. Some ofU f ’s are not representable as
direct product of one- or two-qubit gates and require thr
body interaction. The sequences of realizable operators in
table were obtained by following a general implementat
procedure using generator expansion@19#. This method in-
cludes the coupling order reduction technique that repla
ann-body interaction operator forn.2 by two-body ones. It
is noticed that allU f ’s consist of the operators of the single
spin rotations about thez axis and spin-spin interaction
only. From now on, we call pulses corresponding to the
operators the softz pulse andJ coupling, respectively.

The balanced functions are classified into four types
pending on the number ofJi j (u)’s included in their opera-
tion sequences. It is easy to see that no qubits are entan
in type-I functions and therefore, obviously they are not t
cases of meaningful tests. In type-II functions, only two q
bits out of three are entangled. So, type-II functions can
said to be the stepping stones to meaningful tests. In type
and -IV functions, all three qubits are entangled and
functions of these types can be tested only by a three
quantum computer. Therefore, the realization of type-III a
-IV functions demonstrates the true quantum parallelism
is worthwhile to note, however, that the realization of the
functions by NMR does not demonstrate the true quant
parallelism because small NMR systems cannot produce
tangled states@20#. Each sequence in Table I is not uniqu
for a given function but we believe that the sequences
optimal ones for implementation of the refined DJ algorith

The whole operation sequence for implementation of
refined DJ algorithm is given byH-U f2H-D to be read
from left to right. The first and secondH ’s were realized by
hard p/2 and 2p/2 pulses about they axis, respectively.
Since the readout operationD can be realized by a hardp/2
pulse about they axis, the secondH andD cancel each othe
to make the sequenceH-U f .

The superposed input state is generated by the Hadam
operation on the pure stateu0&. Therefore, it is usually nec
essary to convert the thermally equilibrated spin state i
the effective pure state. In the case of the refined DJ a
rithm, however, the thermal equilibrium state gives the sa
results with the pure state except signal intensity. The de
tion density matrix of the thermal equilibrium stater th is
approximated by
2-2
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r th5I 1z1I 2z1I 3z ~6!

for the Hamiltonian of Eq. 5, and the density matrix ofu0&,
rp , is given by

rp5I 1z1I 2z1I 3z12I 1zI 2z12I 2zI 3z12I 1zI 3z14I 1zI 2zI 3z

5r th1Dr. ~7!

The hardp/2 pulse forH transforms terms ofr th into single-
quantum coherence and terms ofDr into multiple-quantum
coherence@21#. Since the sequences forU f ’s consist of only
the softz pulse~s! andJ coupling~s! that are dependent onl
on thez components of spin angular momentums,U f ’s do
not change the order of quantum coherence. As sin
quantum coherence is only observable, the required ans
can be read off from the thermal equilibrium input as well
from a pure-state input. In general, the thermal-equilibri
state gives the same answers with the pure state if the op
tion sequence after the first Hadamard operator does
change the order of quantum coherence.

The softz pulse andJ coupling were implemented by th
time evolution under the Hamiltonian of Eq.~5! with refo-
cusingp pulses applied at suitable times during the evo
tion period. Since the refocusingp pulse has the effect o
time reversal, it can be used to make one term in the Ha
tonian evolve while the other terms ‘‘freeze’’@22–24#. We
optimized theserefocusing schemesas illustrated in Fig. 1.
Figure 1~a! shows the refocusing scheme for the softz pulse
on spin 1, and~b! that for theJ coupling between spin 1 an
2 as examples. The evolution timeT, is u/Dv i for the softz
pulse andu/(pJi j ) for the J coupling. Previous scheme
divide the evolution period into eight periods and require
pulses, or suffer from the two-spin effect~TSETSE! @25,26#
because soft pulses exciting more than one but not all s
were used. Since the difficulty of the experiment increa
exponentially with an increasing number of pulses, es
cially soft pulses, our scheme greatly enhances the poss
ity of successful implementation. Axes of successivep
pulses were chosen in the way to cancel imperfections
pulses. For example, fourp pulses in Fig. 1~a! were applied
along they, 2y, 2y, andy axes, respectively.

In our experiment,13C nuclear spins of 99% carbon-1
labeled alanine in D2O solvent were used as qubits. NM
signals were measured by using a Bruker DRX300 spectr
eter. The chemical shifts of three different carbon spins
about 5670,23780, and26380 Hz, and coupling constan
J12, J23, andJ13 are 54.06, 34.86, and 1.30 Hz, respective
Protons were decoupled during the whole experime

FIG. 1. Refocusing schemes for~a! I z(u) and ~b! J12(u). Short
and long bars represent soft and hardp pulses, respectively. The
angleu can be changed by adjusting the length of evolution timeT.
02231
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Gaussian-shaped softp pulses were about 2 ms in length
The length of the total pulse sequence was about 450 m
the worst case.

We implemented all the 35 balanced and one cons
functions exactly. Figure 2 shows the initial superposed s
and the results for the four functions belonging to differe
types shown in Table I. All the spectra are drawn in the sa
horizontal and vertical scales. The lines of the spectra for
remaining functions also indicate as clearly as ones in
figure whether they are positive or negative. The balan
functions are distinguished from the constant function
cause some of the lines are negative. The peaks of spin 1
3 show up as doublets in Figs. 2~b!, 2~c!, and 2~d!, while that
of spin 2 is quartet becauseJ13 is very small compared toJ12
andJ23. Figure 2~e! shows, however, that the peaks of sp
1 and 3 are in fact quartet also. They look like dispers
doublets because the neighboring lines split a little byJ13
have different signs. These results agree well with the th
retical predictions obtained from

Tr~ I 1e2ıHt/\reıHt/\!, ~8!

wherer is the density matrix transformed by the operati
sequenceH-U f from r th and I 15I x1ıI y .

Our refocusing schemes decrease the length of the
pulse sequence and, therefore, reduce signal decay du
decoherence. Imperfection of soft pulses and off-resona
effects of hard pulses are thought to be the main source
the phase error and the decay of signal amplitude of so
lines. These imperfections are more serious in theJ coupling

FIG. 2. The spectra of~a! the initial superposed state and th
final states for~b! f 69, ~c! f 56, ~d! f 47, and ~e! f 4D . The x axis
represents frequency increasing from right to left. All the spec
are drawn in the same horizontal and vertical scales.
2-3
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than in the softz pulse because out-of-phase multiplets a
produced in the former while in-phase multiplets are p
duced in the latter. Therefore, it is very important to calibr
soft pulses exactly, especially for long sequences.

In summary, we implemented the complete refined
algorithm with three-bit arguments, which involves entang
ment. All the operations were realized by the time evolut
.

e

.J

hy

d

ev
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under Hamiltonian with refocusingp pulses. The operation
sequences best for our implementation were found us
generator expansion. Experimental pulse sequences
made as simple as possible by using the thermal equilibr
state and the new refocusing schemes.
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