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Implementation of the refined Deutsch-Jozsa algorithm
on a three-bit NMR quantum computer
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We implemented the refined Deutsch-Jozsa algorithm on a three-bit nuclear magnetic resonance quantum
computer. All of the balanced and constant functions were realized exactly. The results agree well with
theoretical predictions and clearly distinguish the balanced functions from constant functions. Efficient refo-
cusing schemes were proposed for the gqiftilse and] coupling, and it is shown that the thermal equilibrium
state gives the same answer as the pure state for this algorithm.

PACS numbsd(s): 03.67.Lx

A quantum computer, which was just a theoretical con- 10y—|1) 10y—|1)
cept, has been realized recently by nuclear magnetic reso- U|x><—) =(—1)f(x)|x>(—) (3
nance(NMR). Several methods have been proposed such as V2 V2
ion trap[1,2], quantum dof3,4], cavity quantum electrody- . ) ) )
namics[5,6], and Si-based nuclear spifi# to realize quan- carries |nforn_1at|on about the fgnctlon encodeo_l in the ove.rall
tum computers, but NMR8] has given the most successful phas_e. If x) is also prepared in the superposition of _aII its
results. Several quantum algorithms have been implementdPssible states|@)+|1)+ - - - +[2"—1))/2", by applying
by NMR quantum computer§9—13 among which the an n-bit Hadamard operatoH to |x)=|0), the relative
Deutsch-JozsdDJ) algorithm [14] has been studied most Phases of the 2states change depending brif f is a con-
because it is the simplest quantum algorithm that shows thétant function, then the relative phases are all the same and
power of a quantum computer over a classical one. Mosgdditional application oH restoregx) to |0). If fis a bal-
quantum algorithms, including the DJ algorithm, have beerinced function|x) cannot be restored t®) by this opera-
implemented only for functions of one and two bits. Thetion. It is obvious thatly), being in the superposed state,
successful implementation of a quantum algorithm dependé0)—|1))v2, plays a central role in the algorithm but it is
heavily on the number of basic operations that increases witfedundant in the sense that its state does not change.
the number of qubits due to finite coherence time. Moreover, This redundancy is removed in the refined DJ algorithm
more than two-bit operations require more than two-body[16], where the following unitary operator is used:
interactions that do not exist in nature. It is possible, though
not easy, to avoid such interactions but it increases again the Us|x)=(—1)"™x). 4
number of total basic gates, and coherence may break down ) .
during the computation. There have been few works thalt has been shown thad; is always reduced to a direct

have performed real three-bit operatidi§] so far. product of sin_gle—bit operators fan<2. In this case, the'
The DJ algorithm determines whether arbit binary quantum algorithm solves the Deutsch problem in a classical
function way in the sense that qubits are never entangled as discussed

in Ref.[16]. Therefore, meaningful tests of the DJ algorithm
(1) can occur if and only ih>2. Recently, a realization of the

DJ algorithm forn=4 has been reportefd.7], but in that

work, only one balanced function was evaluated and the cor-

is a constant function that always gives the same output or gsspondingJ; is reducible to a direct product of four single-
balanced function that gives 0 for half the inputs and 1 foryit gperators. In this study, we investigated the refined DJ
the remaining half. The DJ algorithm gives the answer W'thalgorithm with three-bit arguments to find out the pulse se-

qnly one gvaluati_oln of the func_tion _While a classical algo—quences ofJ;’s and implemented the algorithm on an NMR
rithm requires (2~ *+1) evaluations in the worst case. The quantum computer for all the functions.

funqtion is realized in quantum computation by unitary op- = There aregC,=70 balanced and two constant functions
eration among all three-bit binary functions. We indexed the func-
tions with their output$(0)- - - f(7), expressed as hexadeci-
Ux)lyy=x)ly®f(x)), (20 mal numbers. For example,;z denotes the function of
which the outputs are given b§(0)---f(7)=00011110.
wherex is ann-bit argument of the function anglis one bit. ~ Note thatU; =—Uy¢__ , wherex is a hexadecimal number
If |y) is in the superposed statel0f—|1))/+2, then the equal to or less than FfFF is a hexadecimal number equal
result of the operation, to 256. The difference of overall phase cannot be distin-
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TABLE |. Sequences of realizable operators 1d¢’'s corre-
sponding to 35 balanced functions.

Type-I|
for I,()
fas S,(m)
fss R.(m)
fac 1 () S,()
fes S(m)R( )
fsa R ()1 ,()
feo 1 () S,(m)R()
Type-II
f1 1 () S,(— 7/ 2)R,(— 7/ 2)d55( 7/2)
foo 1 () S (7 2)R(— 7/ 2)Jp5(7/2)
fap 1 () S(— 7 2)Ry(7/2)d oo 7/ 2)
f2g 1 () Sl 2)R(7/2)Ip5(7/2)
fae Sy(m),(— w2)R(— 7/2)d1o( 7/ 2)
fao Sm) 7/ 2)Ry(— w/2)d15( 7/ 2)
fes Sm) =7 2)R(7/2)d15(7/2)
foc Sm) 7/ 2)Ry(7/2)J15(7/2)
fse R ()1 (= 7/2)S,(—7/2)d1(7/2)
fso R ()1 (2)S/(— mI2)d1( 7/ 2)
fes Ro(m)1 (= 7/2)S,(m/2)d1( 7/ 2)
fen RAm)1(12)S,(m!2)J1(7/2)
Type-lll
fae | (7/2)S,(— 1 2)J (11 2)d 15/ 2)
f13 | (712)S,(7/2)dpa(— 7/2)J15(7/2)
far | (712)Sy(712) 395 7/ 2)I15( — 7/ 2)
f72 | (= 12)S,(712)dp5( 7/ 2) Iy 7/ 2)
fan SAmI2)Ry(— 1 2)I1 7/ 2)I 15/ 2)
fss SAmI2)R(712) 1 — 7/ 2)J15(7/2)
fas SAmI2)R(712)d1(712) 1o — 7/ 2)
fsc S,(= m2)R(wI2)d1(7/2)d15(7/2)
for | (712)Ry(— 112) 31 712)d oo 71 2)
f4 1, (71 2)Ry(77/2)d 1 — 712) I 71 2)
fio | (712)Ry(7712) Iy 712) o — 71 2)
foa 1 (— 7 2)R(1/2)d 1 712) I 71 2)
Type-IV
f17 SUm) Iy 7/ 2) (11 2)315( — 7/ 2)
fig S(m) 1A 7 2)doo — 7/ 2)d15(7/2)
fap S(m) 1A 7/2) (7wl 2)d15( 7/ 2)
f71 Sy(m) 1 — 7/ 2) 5 7/ 2)315( 7/ 2)
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in the rotating frame, wherg, is the z component of the
angular momentum operator of sginThe first term repre-
sents the precession of spinabout thez axis due to the
chemical shiftA w; and the second term, the spin-spin inter-
action between spinandj with coupling constand;; . This
Hamiltonian provides six unitary operators];,(6)
=exd —16l;,] and J;;(0) =exd —162l;,l;,]. In combination
with 1;,(6), two other operators;, (#) andl;,(¢) produced

by rf pulses can perform any single-bit operations. The cou-
pling operatorJ;;(¢) can be used to make a controllgdT
operation. The combination of single-bit operations and
controlledNOT operations can generate any unitary opera-
tions[18].

Table | shows the sequences of the realizable operators
for all the 35 nontrivial distincU;’s. In the table, the nota-
tionslq, I,, andl ; were replaced by, S andR, respectively,
for convenience. Some dfl;’'s are not representable as a
direct product of one- or two-qubit gates and require three-
body interaction. The sequences of realizable operators in the
table were obtained by following a general implementation
procedure using generator expansfdd]. This method in-
cludes the coupling order reduction technique that replaces
ann-body interaction operator far>2 by two-body ones. It
is noticed that allU;’s consist of the operators of the single-
spin rotations about the axis and spin-spin interactions
only. From now on, we call pulses corresponding to these
operators the soft pulse andl coupling, respectively.

The balanced functions are classified into four types de-
pending on the number af;(#)’s included in their opera-
tion sequences. It is easy to see that no qubits are entangled
in type-I functions and therefore, obviously they are not the
cases of meaningful tests. In type-Il functions, only two qu-
bits out of three are entangled. So, type-Il functions can be
said to be the stepping stones to meaningful tests. In type-IlI
and -1V functions, all three qubits are entangled and the
functions of these types can be tested only by a three-bit
guantum computer. Therefore, the realization of type-Ill and
-IV functions demonstrates the true quantum parallelism. It
is worthwhile to note, however, that the realization of these
functions by NMR does not demonstrate the true quantum
parallelism because small NMR systems cannot produce en-
tangled state§20]. Each sequence in Table | is not unique
for a given function but we believe that the sequences are
optimal ones for implementation of the refined DJ algorithm.

The whole operation sequence for implementation of the
refined DJ algorithm is given by-U;—H-D to be read
from left to right. The first and secortd’s were realized by

guished in the experimental implementations. Thereforehard /2 and — w/2 pulses about thg axis, respectively.
there are 35 distinct unitary operators corresponding to thgince the readout operatidhcan be realized by a hara/2

balanced functions and one operator corresponding to thﬁulse about thg axis, the secon#ll andD cancel each other
constant functions. Since the unitary operator correspondingy make the sequendg-Uy .

to the constant functlontslf is just the unity matrix, there
are 35 nontrivial and dlstdeJf s to be implemented.

The superposed input state is generated by the Hadamard
operation on the pure stat@). Therefore, it is usually nec-

The NMR Hamiltonian of the weakly interacting three- essary to convert the thermally equilibrated spin state into

spin system is given by

H= 2 Awl|,z+2 73211, 5, (5)

the effective pure state. In the case of the refined DJ algo-
rithm, however, the thermal equilibrium state gives the same
results with the pure state except signal intensity. The devia-
tion density matrix of the thermal equilibrium stapg, is
approximated by

022312-2



IMPLEMENTATION OF THE REFINED DEUTSCH-JOZSA . .. PHYSICAL REVIEW A2 022312

T/8 Tj4 , T/A | T/A T/8 T/8 T/a, T/a | T/4 T/8

spin 1 A A
spin 2 » i (a’)foo __l_L__ J_LLL__

spin 3 -+ l —= i
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(a) (b) (b)f
69 U v ' ” '
FIG. 1. Refocusing schemes f@a) 1,(6) and(b) J;5(6). Short w v

and long bars represent soft and hardoulses, respectively. The
angled can be changed by adjusting the length of evolution fime

pth=l1,t12,+13, (6) (C)f56 ‘-TK—JL— ﬂTu_ —W'

for the Hamiltonian of Eq. 5, and the density matrix|6},

Pp, IS given by (d)f47 I I} l

Pp— 1zt 1o 13 21150 5+ 20550 3,4 21 15l 3,14l 4, 55l 5,

=pmntAp. (7

The hardn/2 pulse forH transforms terms gby, into single- )/ .__\LJ[__ “LWJ“‘ ‘jur“

guantum coherence and terms/p into multiple-quantum
coherencg21]. Since the sequences for’s consist of only
the softz pulsds) andJ couplings) that are dependent only
on thez components of spin angular momenturhg,s do FIG. 2. The spectra ofa) the initial superposed state and the
not change the order of quantum coherence. As singléfinal states for(b) fgg, (C) fsg, (d) f47, and(e) f4p. Thex axis
quantum coherence is only observable, the required answespresents frequency increasing from right to left. All the spectra
can be read off from the thermal equilibrium input as well asare drawn in the same horizontal and vertical scales.

from a pure-state input. In general, the thermal-equilibrium

state gives the same answers with the pure state if the opergaussian-shaped soft pulses were about 2 ms in length.
tion sequence after the first Hadamard operator does nathe length of the total pulse sequence was about 450 ms in
change the order of quantum coherence. the worst case.

The softz pulse and coupling were implemented by the  \we implemented all the 35 balanced and one constant
time evolution under the Hamiltonian of E¢p) with refo-  functions exactly. Figure 2 shows the initial superposed state
cusing 7 pulses applied at suitable times during the evolu-and the results for the four functions belonging to different
tion period. Since the refocusing pulse has the effect of types shown in Table I. All the spectra are drawn in the same
time reversal, it can be used to make one term in the Hamilhorizontal and vertical scales. The lines of the spectra for the
tonian evolve while the other terms “freezd22-24. We  remaining functions also indicate as clearly as ones in the
optimized theseefocusing schemess illustrated in Fig. 1.  figure whether they are positive or negative. The balanced
Figure Xa) shows the refocusing scheme for the sofiulse  functions are distinguished from the constant function be-
on spin 1, andb) that for theJ coupling between spin 1 and cause some of the lines are negative. The peaks of spin 1 and
2 as examples. The evolution tifieis /A w; for the softz 3 show up as doublets in Figs(t®, 2(c), and Zd), while that
pulse and6/(wJ;;) for the J coupling. Previous schemes of spin 2 is quartet because; is very small compared td;,
divide the evolution period into eight periods and require sixanszg_ Figure Ze) shows, however, that the peaks of spin
pulses, or suffer from the two-spin effe@SETSHE [25,26 1 and 3 are in fact quartet also. They look like dispersive
because soft pulses exciting more than one but not all spingoublets because the neighboring lines split a littleJgy

were used. Since the difficulty of the experiment increasefave different signs. These results agree well with the theo-
exponentially with an increasing number of pulses, esperetical predictions obtained from

cially soft pulses, our scheme greatly enhances the possibil-
ity of successful implementation. Axes of successive
pulses were chosen in the way to cancel imperfections of
pulses. For example, four pulses in Fig. a) were applied
along they, —y, —vy, andy axes, respectively. wherep is the density matrix transformed by the operation
In our experiment,’*C nuclear spins of 99% carbon-13 sequenceéd-U; from py, andl  =I,+1l,.
labeled alanine in BO solvent were used as qubits. NMR  Our refocusing schemes decrease the length of the total
signals were measured by using a Bruker DRX300 spectronpulse sequence and, therefore, reduce signal decay due to
eter. The chemical shifts of three different carbon spins arelecoherence. Imperfection of soft pulses and off-resonance
about 5670,- 3780, and—6380 Hz, and coupling constants effects of hard pulses are thought to be the main sources of
J1o, Jo3, andJ s are 54.06, 34.86, and 1.30 Hz, respectively.the phase error and the decay of signal amplitude of some
Protons were decoupled during the whole experimentdines. These imperfections are more serious indtkeupling

spin 1 spin 2 spin 3

Tr(I +e7|Ht/hpe|Ht/ﬁ)' (8)
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than in the softz pulse because out-of-phase multiplets areunder Hamiltonian with refocusing pulses. The operation

produced in the former while in-phase multiplets are pro-sequences best for our implementation were found using

duced in the latter. Therefore, it is very important to calibrategenerator expansion. Experimental pulse sequences were

soft pulses exactly, especially for long sequences. made as simple as possible by using the thermal equilibrium
In summary, we implemented the complete refined DXtate and the new refocusing schemes.

algorithm with three-bit arguments, which involves entangle-

ment. All the operations were realized by the time evolution This work was supported by the Brain Korea 21 project.
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