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Storing unitary operators in quantum states

Jaehyun Kim, Yongwook Cheong, Jae-Seung Lee, and Soonchil Lee
Department of Physics, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea

~Received 28 June 2001; published 5 December 2001!

We present a scheme to store unitary operators with self-inverse generators in quantum states and a general
circuit to retrieve them with definite success probability. The continuous variable of the operator is stored in a
single-qubit state and the information about the kind of the operator is stored in classical states with finite
dimension. The probability of successful retrieval is always 1/2 irrespective of the kind of the operator, which
is proved to be maximum. In case of failure, the result can be corrected with additional quantum states. The
retrieving circuit is almost as simple as that which handles only the single-qubit rotations andCNOT as the basic
operations. An interactive way to transfer quantum dynamics, that is, to distribute naturally copy-protected
programs for quantum computers is also presented using this scheme.

DOI: 10.1103/PhysRevA.65.012302 PACS number~s!: 03.67.Lx
te
ib
pu
ra
a

e
lf

b
e

a

fe
d
al

th
d

I
b

le
ca
ha
t
s
li
to
sf

y
ct

m

ary
e

asic
led-
ell
ry
.
nfi-
ical
ana-
ary
al-
g
rs,
and

er-
n of

o

that
an

n-
nly

ddi-

y

Quantum computers store information in quantum sta
and process it quantum mechanically, which make it poss
to solve certain problems much faster than classical com
ers. The quantum states containing information are gene
in superposed or entangled states that have no classical
log, and the quantum-mechanical processing is realized
unitary operations while the processing of a~reversible! clas-
sical computer is limited to permutation operations. R
cently, schemes to store the processing operation itse
quantum states have been proposed by Preskill@1# in the
context of the fault-tolerant quantum computation and
Vidal et al. @2# from the point of view of the programmabl
gate array. In other words, quantum dynamics is stored
quantum states. Storing and retrieving an operation me
that a unitary operatorU, which will be applied to a stateud&,
is encoded into a stateuU&, and some operatorG makes the
whole state evolve asG(uU& ^ ud&)5uU8& ^ (Uud&), where
uU8& is some residual state. The most distinguished dif
ence between the program stored in quantum states an
one stored in classical states is that the former is natur
protected from copy or even reading.

The previous works proposed a way to store only
single-qubit rotation aboutz axis in a quantum state an
retrieve the operation with definite success probability.
might be interesting to see what other operations can
stored in quantum states and how they can be hand
Implementation of operations would be easier when one
store and transfer several different kinds of operations t
when one can handle only a few basic operations and
operation of interest has to be decomposed first into a
quence of those basic operations. In this work, we genera
the scheme to store and retrieve arbitrary unitary opera
satisfying some conditions and present a way to tran
them.

An arbitrary unitary operatorUB(u) can be written as

UB~u!5exp@2ı~u/2!B#, ~1!

where the generatorB is a Hermitian operator of arbitrar
dimension, andu is a real number. The number of distin
unitary operators is infinite becauseu is arbitrary and there
are infinitely many different generators. Therefore, it see
1050-2947/2001/65~1!/012302~4!/$20.00 65 0123
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that infinitely many resources are required to store arbitr
operators@3#. The number of different kinds of generators w
need to handle is finite because the combinations of b
operators, such as the single-qubit rotations and control
NOT ~CNOT!, can make arbitrary unitary operators as w
known @4#. Therefore, the whole point of storing a unita
operator is to store a continuous variableu in quantum states
Storing a real number in a digitized state requires an i
nitely large resource, whether it is a quantum or class
system. Since quantum system has both the digital and
log characteristics, however, it is possible to store unit
operators in finite resources as shown below, only if we
low the possibility of failure when retrieving. A finite analo
system is, in principle, capable of storing real numbe
though there is the question of precision in the operation
measurement in practice.

Consider an operatorUB(u) of ana priori knownB. If B
is not only Hermitian but also unitary,B is self-inverse or
B25E where E is a unity operator. Product operators@5#
including Pauli operators belong to this case, and any H
mitian operator can be expressed as a linear combinatio
them. Then,UB(u) is expanded as

UB~u!5cos~u/2!E2ı sin~u/2!B. ~2!

Here, UB(u) is expressed as a linear combination of tw
different operators,E andB, and the information aboutu is
included in the coefficients. This expression suggests
UB(u) can be stored in a single-qubit quantum state, say
angle state, defined by

uu&[cos~u/2!u0&2ı sin~u/2!u1&. ~3!

That is, two operatorsE and B are mapped onto the two
statesu0& and u1&, respectively, and the coefficients contai
ing u remain same. Note that this angle state contains o
the information aboutu, not aboutB at all. The information
about the mapping of the operators can be stored in a
tional qubits, as will be discussed soon.

The operatorUB(u) is retrieved from the angle state b
using a gate arrayGB that consists of a controlled-B defined
by
©2001 The American Physical Society02-1
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u0&^0u ^ E1u1&^1u ^ B, ~4!

and a single-qubit Hadamard operatorH on the angle state a
shown in Fig. 1. SinceB is assumed to be unitary, the co
trolled B is also a unitary operator and, therefore, impleme
able. The total dynamics of the joint stateuu&ud&[uu& ^ ud&,
where thedata stateud& is a multiqubit state asE andB have
arbitrary dimension in general, are described in terms ofGB ,

GBuu&ud&5H@cos~u/2!u0&ud&2ı sin~u/2!u1&Bud&]

5
1

A2
@ u0&UB~u!ud&1u1&UB~2u!ud&]. ~5!

A projective measurement of the angle state in the b
$u0&,u1&% will make the data state collapse into either a d
sired stateUB(u)ud& or a wrong stateUB(2u)ud& with the
equal probability. Therefore,UB(u) stored in the angle stat
is retrieved in a probabilistic way. In case of failure, t
correct state may be obtained by executingGB once more
with an additional angle state as discussed in Refs.@1,2#. If
we measure the angle state after the execution ofGB on the
joint state of a new angle stateu2u& and the wrong data stat
UB(2u)ud&, it will give the desired state or a new wron
state UB(23u)ud& with the equal probability, again. Thi
process can be repeated with the angle stateu2mu& (m
52,3, . . . )until we get the right result. The average numb
of the angle states needed for success is given
(m51

` m(1/2)m52.
The simplest kind of unitary operators is the single-qu

rotation abouta axis that is written as Eq.~1! with B5sa
wheresa is a Pauli operator. In the previous schemes,
angle of rotation was encoded in phase rather than ampli
like ours but they are essentially equivalent for single-qu
operations. One advantage of storing the angle informa
in amplitude is that the simple mapping in Eq.~3! and the
retrieving circuit in Fig. 1 is applicable to any operators ha
ing self-inverse generators. In Ref.@2#, it is proven that the
maximum probability of successfully retrieving thez rotation
stored in a single-qubit state is 1/2. It is straightforward
extend the proof to the general unitary operators with s
inverse generators in our scheme~see Appendix!. Therefore,
there exists no scheme with higher probability of retrie
success than ours to store general unitary operators
single-qubit state.

FIG. 1. The general gate arrayGB that retrievesUB(u) of a
fixed generatorB from the angle stateuu&. H is a Hadamard opera
tor and M represents a projective measurement in the b
$u0&,u1&%. The short diagonal line on the bottom line represents t
the data stateud& consists of several qubits.
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It would be helpful to discuss what useful operators c
be stored in the angle state and present concrete circuit
the gate arrays to retrieve these operators. Consider ann-bit
coupling operatorgiven by

J12•••n~u!5exp~2ıus1zs2z•••snz/2!, ~6!

which belongs to the kind of operators of our interest b
cause (s1zs2z•••snz)

25E. The corresponding gate arra
G12•••n is illustrated in Fig. 2. This circuit consists of onlyn
two-qubit operators and a single-qubit Hadamard opera
because the controlled-s1zs2z•••snz is equivalent to then
controlled-s iz ( i 51,2, . . . ,n). Therefore, as can be seen
Fig. 2, there are direct interactions~vertical solid lines! only
between the angle qubit and each data qubit and the
qubits have no interactions among them, thoughJ12•••n(u)
itself includes interaction among all qubits. This nice featu
would be useful for the quantum computer using a spe
‘‘head qubit,’’ which moves to mediate interactions betwe
noninteracting qubits@6#.

One of the important operators in quantum logic alge
is thecontrolled gatesuch as the Toffoli gate and phase-sh
gate @7#. For example, an n-bit phase-shift gate
diag@1,1, . . . ,1,eıu# is used in the quantum factoring algo
rithm. Consider the operator,

expF2ı
u

2 S P1
2
•••Pn21

2 snz1 (
a1•••an21

P1
a1
•••Pn21

an21EnD G ,
~7!

wherea i denotes1 or 2, andPi
6 are the projection opera

tors (Ei6s iz)/2 of thei th qubit, respectively. In the summa
tion, the case of alla i ’s being minus is excluded. This op
erator is equivalent to exp(2ıusnz/2) if all the first (n21)
data qubits are in the stateu1& and e2ıu/2En , otherwise.
Therefore, this is equivalent to the phase-shift gate up to
overall phase. Since (Pi

6)25Pi
6 , Pi

11Pi
25Ei , and

Pi
1Pi

25Pi
2Pi

150, the generator satisfies the self-inver
condition. Therefore, this operator can be stored in the an
state with the corresponding controlled-B given by ann-bit
controlled-snz which takes the angle qubit and (n21) data
qubits as control bits and appliessz to the nth data qubit
depending on the state of the control bits.

We have described how a unitary operator with a se
inverse generator can be stored in quantum states, and g
the corresponding gate arrayGB that retrieves the operato
from the quantum states. The angle state contains the in
mation aboutu, and the information about the generatorB is
included in the circuitGB as the controlled-B. The informa-

is
t

FIG. 2. The gate arrayG12•••n for the n-bit coupling operator
J12•••n(u). Zi representssz for the ith data qubit.
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tion about the generator is prerequisite for constructing
circuit. Instead of this impractical design, we can store
information about the generator somewhere else and
struct a general circuit that interprets that information a
execute the correspondingGB . Number of generators to con
sider is finite for finite number of data qubits.

One simple way of constructing the general retrieving c
cuit is to handle the set of the coupling operatorsJi j •••k(u)
defined by

Ji j •••k~u!5exp~2ıus izs jz•••skz/2!, ~8!

where the generator includes a subset ofn spin operators in
general. These operators include exp(2ıusiz/2) and
J12•••n(u) in Eq. ~6!, and make complete set withNOT gates
to produce any unitary operators such as the phase shift
in Eq. ~7!. There are(m51

n
nCm5(2n21) different genera-

tors of this kind. They can be stored in acommand state
consisting of log22

n5n qubits by mapping the generato
onto the eigenstates of the command state. Since the m
ping onto the eigenstates is equivalent to using classical
one qubit for the angle state andn classical bits for the com
mand state are all that required to store all of these coup
operators.

The general gate array in Fig. 3 is slightly modified fro
the gate arrayG12•••n in Fig. 2 to include the command stat
For example, ifJ1n(u) is required to be stored, then th
corresponding controlled-B is the multiplication ofs1z and
snz each of which is controlled by the angle state. Therefo
the angle state containsu and the command state is the b
nary string u10•••01&, which indicates that only the
controlled-s1z and controlled-snz are to be activated. To
make the circuit complete,X5sx ~NOT gate! should be
added per each qubit. SinceX is a fixed operator, one ca
easily include them in the scheme by employing one m
classical bituc0& in the command state. For decoding,Xi is
controlled byuc0& as well asuci& ( i 51,2, . . . ,n), which is
nothing but the Toffoli gate operation. Consequently,n
11) classical bits and one qubit are used to store any op
tors in the form ofJi j •••k(u) and Xi which can build up
arbitrary unitary operators. The circuit is almost as simple
that which handles only the single-qubit rotations andCNOT.

This scheme of storing and retrieving quantum operati
can be used to distribute naturally copy-protected progra
for quantum computers. A programming of an quantum
gorithm means the process of decomposing the unitary

FIG. 3. The general gate array handling a set of basic opera
Ji j •••k(u) andXi .
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eration required by the algorithm into a sequence of ba
operations. The more basic operations we have, the easi
program. A program can be stored either in classical state
quantum states. If a program is stored in quantum state
can neither be copied nor read and only probabilistically
trievable. One way to distribute a quantum program is
follows. Suppose that Alice has her operator programed
the form of a sequence of the basic operators. Then,~i! Alice
stores the first basic operator of the sequence in the angle
command states, and sends them to Bob,~ii ! Bob performs
the gate array of Fig. 3, and tell Alice the measurem
result—whether the operation has succeeded or not,~iii ! Al-
ice sends to Bob the new angle state in case of failure or
next operator of the sequence when succeeded, and~iv! they
repeat~ii ! and ~iii ! until the last operator of the sequence
transferred. Although there is possibility of failure in ea
operation transfer, it can always be corrected and the ave
number of the angle states necessary for successful oper
is only two. This is an interactive distribution scheme whe
Alice and Bob have to communicate with each other dur
the transfer to guarantee the successful operation.

In conclusion, we have shown that the unitary operat
with self-inverse generators can be stored in a quantum s
and retrieved exactly by encoding the continuous varia
into the probability amplitude of the state, at the cost
possible failure. This probabilistic feature is the cost we ha
to pay to store a real number in a quantum state of fin
dimension, even which is impossible in classical syste
Utilizing the circuits for the coupling operators and storin
the information about the generators in classical states
finite size, it is possible to store and retrieve arbitrary ope
tors ~including such ones having non-self-inverse gene
tors!, and the general retrieving circuit is very simple.

This work was supported by NRL Program, electron sp
science center, and BK21 Project.

APPENDIX

Any scheme to store the quantum operationU(u)
5exp@1ı(u/2)B# of a fixed, self-inverse generatorB in the
quantum states can be described by a unitary transforma

G~ uUu& ^ ud&)5Apu
dutu

d& ^ U~u!ud&1A12pu
duxu

d&,
~A1!

whereuUu& is theprogram statecontaining the information
about the operation andud& is the data state.G transforms the
total state into the sum of the product of some residual s
utu

d& and the desired stateU(u)ud& with success probability
pu

d and the failed stateuxu
d& with probability 12pu

d . To dis-
tinguish success from failure by measurement, it should

satisfied that̂ tu
duxu8

d8&50 for all d, d8, u, andu8.
Suppose thatud& is ann-qubit state andN52n. The data

state ud& is expanded by the computational basis asud&
5(k50

N21ckuk&, whereck is the complex coefficient that satis
fies the normalization condition. Then, Eq.~A1! is rewritten
as

rs,
2-3
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GS ( ckuUu&uk& D5( ck@Apu
kutu

k&U~u!uk&

1A12pu
kuxu

k&], ~A2!

where product sign̂ between the program and data states
omitted for simplicity. This implies thatpu

d and utu
d& do not

depend onud& because RHS’s of Eqs.~A1! and~A2! must be
same for allud&. Now, pu

d andutu
d& will be denoted bypu and

utu&, respectively.
The one-qubit program state can be also expanded

uUu&5a(u)u0&1b(u)up&, wherea(u) and b(u) are com-
plex function satisfying the normalization conditio
^UuuUu&51, andu0& and up& are the program states corr
sponding to the operationsE and B, respectively. For any
working schemeG, there always exist the program states
u50 andu5p. These states correspond toE andB, respec-
tively, because U(u)5exp@1ı(u/2)B#5cos(u/2)E
1ı sin(u/2)B, Uu5E for u50, andUu5B for u5p ~up to
37

nd
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an overall phase!. Therefore, we can always expanduUu& by
the linear combination ofu0& and up&, which are not neces
sarily orthonormal to each other. Again, Eq.~A1! is ex-
pressed as

G@a~u!u0&ud&1b~u!up&ud&]

5a~u!@Ap0ut0&Eud&1A12p0ux0
d&] 1b~u!

3@Ap1ut1&Bud&1A12p1ux1
d&], ~A3!

for all ud&. Therefore, allutu&, ut0&, and ut1& are same with
ut& not depending onud&, and

ApuU~u!5a~u!Ap0E1b~u!Ap1B. ~A4!

This means that a(u)5Apu /p0cos(u/2) and b(u)
5Apu /p1sin(u/2). The remaining part of the proof is sam
with that of Ref.@2#. The maximum probability of success
1/2, which is achieved by our scheme.
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