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Storing unitary operators in quantum states
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We present a scheme to store unitary operators with self-inverse generators in quantum states and a general
circuit to retrieve them with definite success probability. The continuous variable of the operator is stored in a
single-qubit state and the information about the kind of the operator is stored in classical states with finite
dimension. The probability of successful retrieval is always 1/2 irrespective of the kind of the operator, which
is proved to be maximum. In case of failure, the result can be corrected with additional quantum states. The
retrieving circuit is almost as simple as that which handles only the single-qubit rotatiomsiands the basic
operations. An interactive way to transfer quantum dynamics, that is, to distribute naturally copy-protected
programs for quantum computers is also presented using this scheme.
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Quantum computers store information in quantum stateghat infinitely many resources are required to store arbitrary
and process it quantum mechanically, which make it possibleperatorg3]. The number of different kinds of generators we
to solve certain problems much faster than classical computieed to handle is finite because the combinations of basic
ers. The quantum states containing information are generallgperators, such as the single-qubit rotations and controlled-
in superposed or entangled states that have no classical an&T (CNOT), can make arbitrary unitary operators as well
log, and the quantum-mechanical processing is realized bknown [4]. Therefore, the whole point of storing a unitary
unitary operations while the processing dfeversible clas-  operator is to store a continuous variaBlan quantum states.
sical computer is limited to permutation operations. Re-Storing a real number in a digitized state requires an infi-
cently, schemes to store the processing operation itself initely large resource, whether it is a quantum or classical
guantum states have been proposed by Pregkjlin the  system. Since quantum system has both the digital and ana-
context of the fault-tolerant quantum computation and bylog characteristics, however, it is possible to store unitary
Vidal et al. [2] from the point of view of the programmable operators in finite resources as shown below, only if we al-
gate array. In other words, quantum dynamics is stored itow the possibility of failure when retrieving. A finite analog
quantum states. Storing and retrieving an operation mearsystem is, in principle, capable of storing real numbers,
that a unitary operatdd, which will be applied to a stafiel),  though there is the question of precision in the operation and
is encoded into a sta{®)), and some operatds makes the measurement in practice.
whole state evolve a§(|U)®|d))=|U")®(U|d)), where Consider an operatddg(6) of ana priori knownB. If B
|U’) is some residual state. The most distinguished differis not only Hermitian but also unitan is self-inverse or
ence between the program stored in quantum states and tBé=E where E is a unity operator. Product operatdis]
one stored in classical states is that the former is naturallincluding Pauli operators belong to this case, and any Her-
protected from copy or even reading. mitian operator can be expressed as a linear combination of

The previous works proposed a way to store only thehem. ThenUg(6) is expanded as
single-qubit rotation about axis in a quantum state and
retrieve the operation with definite success probability. It Ug(6)=cog 8/2)E—1sin(6/2)B. (2)
might be interesting to see what other operations can be
stored in quantum states and how they can be handlediere, Ug(6) is expressed as a linear combination of two
Implementation of operations would be easier when one cadifferent operatorskE andB, and the information about is
store and transfer several different kinds of operations thaimcluded in the coefficients. This expression suggests that
when one can handle only a few basic operations and th€gz(6) can be stored in a single-qubit quantum state, say an
operation of interest has to be decomposed first into a seangle statedefined by
guence of those basic operations. In this work, we generalize

the scheme to store and retrieve arbitrary unitary operators |#)=cog 0/2)|0)—1sin(6/2)|1). (3)
satisfying some conditions and present a way to transfer
them. That is, two operator& and B are mapped onto the two
An arbitrary unitary operatodg(6) can be written as stateg0) and|1), respectively, and the coefficients contain-
ing @ remain same. Note that this angle state contains only
Ug(0) =exd —1(6/2)B], (1) the information abou#, not aboutB at all. The information

about the mapping of the operators can be stored in addi-
where the generatdB is a Hermitian operator of arbitrary tional qubits, as will be discussed soon.
dimension, and is a real number. The number of distinct  The operatolUg(6) is retrieved from the angle state by
unitary operators is infinite becaugeis arbitrary and there using a gate arrag that consists of a controlleB-defined
are infinitely many different generators. Therefore, it seemdby
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FIG. 1. The general gate arrdyg that retrievesUg(6) of a FIG. 2. The gate arraf,..., for the n-bit coupling operator

fixed generatoB from the angle stat®). H is a Hadamard opera- Jio..n(6). Z; representsr, for theith data qubit.
tor and M represents a projective measurement in the basis

{10),]1)}. The short diagonal line on the bottom line represents that |t would be helpful to discuss what useful operators can

the data statgd) consists of several qubits. be stored in the angle state and present concrete circuits for
the gate arrays to retrieve these operators. Considerkdn
|0)(0|®E+|1)(1|®B, (4)  coupling operatorgiven by
Ji2. . n(0) =eXP(—1001,02; - - 0172), (6)

and a single-qubit Hadamard operaltbon the angle state as

shown in Fig. 1. Sinc® is assumed to be unitary, the con- which belongs to the kind of operators of our interest be-

trolled B is also a unitary operator and, therefore, implementcause ¢1,0,,- - - 0,,)°=E. The corresponding gate array

able. The total dynamics of the joint std@|d)=|6)®|d),  G,, .., is illustrated in Fig. 2. This circuit consists of onty

where thedata stated) is a multiqubit state ak andB have  two-qubit operators and a single-qubit Hadamard operator

arbitrary dimension in general, are described in termSg®f  because the controlled;,o,,- - - o, is equivalent to then
controllede;, (i=1,2,...n). Therefore, as can be seen in

_ e Fig. 2, there are direct interactiofgertical solid line$ only
G dy=H /2)|0)|d /2)|1)B|d
6l 6)d)=Hlcod ¢/2)|0)|d) — 1 sin(6/2)|1)B|d)] between the angle qubit and each data qubit and the data
1 qubits have no interactions among them, thoudgh..,(6)

[|0YUg(®)|d)+|1)Ug(—6)|d)]. (5) itself includes interaction among all qubits. This nice feature
V2 would be useful for the quantum computer using a special
“head qubit,” which moves to mediate interactions between

A projective measurement of the angle state in the basi§oninteracting qubits6]. _ _
{|0),|1)} will make the data state collapse into either a de- One of the important operators in quantum logic algebra
sired statéUg(6)|d) or a wrong statd)g(— 6)|d) with the 1S thecontrolled gatesuch as the Toffph gate and p_hase-shlft
equal probability. Therefore)g(6) stored in the angle state 9ate [7]. For , example, an n-bit phase-shift gate
is retrieved in a probabilistic way. In case of failure, thediad 1.1, ...,1¢'"] is used in the quantum factoring algo-
correct state may be obtained by executiBg once more fithm. Consider the operator,
with an additional angle state as discussed in Réfg]. If
we measure the angle state after the executio@gbn the ex;{ —
joint state of a new angle stai2d) and the wrong data state
Ug(—#0)|d), it will give the desired state or a new wrong
state Ug(—36)|d) with the equal probability, again. This (7)
process can be repeated with the angle sfafe) (m . o
=2,3,...)until we get the right result. The average numberWherea; denotest+ or —, andP;" are the projection opera-
of the angle states needed for success is given biors (Ei*oi;)/2 of theith qubit, respectively. In the summa-
s m(1/2)"=2. tion, the case of alk;’s being minus is excluded. This op-
The simplest kind of unitary operators is the single-qubiterator is equivalent to exp(i6o,,/2) if all the first (n—1)
rotation aboute axis that is written as Eql) with B=¢,  data qubits are in the stajd) and e™'”?E,, otherwise.
where o, is a Pauli operator. In the previous schemes, thel herefore, this is equivalent to tfle phase-shift gate up to an
angle of rotation was encoded in phase rather than amplitud@verall phase. Since P{")*=P;", P/+P; =E;, and
like ours but they are essentially equivalent for single-qubitP;” P; =P; P;" =0, the generator satisfies the self-inverse
operations. One advantage of storing the angle informatiogondition. Therefore, this operator can be stored in the angle
in amplitude is that the simple mapping in E®) and the state with the corresponding controll@dgiven by ann-bit
retrieving circuit in Fig. 1 is applicable to any operators hav-controllede,, which takes the angle qubit and { 1) data
ing self-inverse generators. In R¢R], it is proven that the qubits as control bits and applies, to the nth data qubit
maximum probability of successfully retrieving theotation ~ depending on the state of the control bits.
stored in a single-qubit state is 1/2. It is straightforward to We have described how a unitary operator with a self-
extend the proof to the general unitary operators with selfinverse generator can be stored in quantum states, and given
inverse generators in our scherisee Appendix Therefore, the corresponding gate arr&yg that retrieves the operator
there exists no scheme with higher probability of retrievalfrom the quantum states. The angle state contains the infor-
success than ours to store general unitary operators in raation about), and the information about the generaBis
single-qubit state. included in the circuiiGg as the controlled®. The informa-
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|eo) eration required by the algorithm into a sequence of basic
le) operations. The more basic operations we have, the easier to
: program. A program can be stored either in classical states or
quantum states. If a program is stored in quantum states, it
) i can neither be copied nor rgad and only probabilisticall_y re-
trievable. One way to distribute a quantum program is as
la) {2, Hx] follows. Suppose that Alice has her operator programed in
: the form of a sequence of the basic operators. TtigAlice
stores the first basic operator of the sequence in the angle and
command states, and sends them to Bab,Bob performs
FIG. 3. The general gate array handling a set of basic operatorshe gate array of Fig. 3, and tell Alice the measurement
Jij...k(6) andX;. result—whether the operation has succeeded or(iigtAl-
ice sends to Bob the new angle state in case of failure or the
tion about the generator is prerequisite for constructing th@ext operator of the sequence when succeeded(ianthey
circuit. Instead of this impractical design, we can store theepeat(ii) and (iii) until the last operator of the sequence is
information about the generator somewhere else and conransferred. Although there is possibility of failure in each
struct a general circuit that interprets that information andoperation transfer, it can always be corrected and the average
execute the correspondiiigs . Number of generators to con- number of the angle states necessary for successful operation
sider is finite for finite number of data qubits. is only two. This is an interactive distribution scheme where
One simple way of constructing the general retrieving cir-Alice and Bob have to communicate with each other during
cuit is to handle the set of the coupling operatdfs. ., (6) the transfer to guarantee the successful operation.

|cﬂ

Id) A

X,

n

defined by In conclusion, we have shown that the unitary operators
with self-inverse generators can be stored in a quantum state
Jij.. k() =exp(— 100,04, - - 0 2), (8  and retrieved exactly by encoding the continuous variable

into the probability amplitude of the state, at the cost of
where the generator includes a subseh afin operators in  possible failure. This probabilistic feature is the cost we have
general. These operators include expfo,/2) and to pay to store a real number in a quantum state of finite
Jis...n(0) in Eq. (6), and make complete set withOT gates  dimension, even which is impossible in classical systems.
to produce any unitary operators such as the phase shift gatilizing the circuits for the coupling operators and storing
in Eq. (7). There areX, _; ,C,=(2"—1) different genera- the information about the generators in classical states of
tors of this kind. They can be stored incammand state finite size, it is possible to store and retrieve arbitrary opera-
consisting of log2"=n qubits by mapping the generators tors (including such ones having non-self-inverse genera-
onto the eigenstates of the command state. Since the maf®rs), and the general retrieving circuit is very simple.
ping onto the eigenstates is equivalent to using classical bits,
one qubit for the angle state anctlassical bits for the com- This work was supported by NRL Program, electron spin
mand state are all that required to store all of these couplingcience center, and BK21 Project.
operators.

The general gate array in Fig. 3 is slightly modified from
the gate arrafs,,..., in Fig. 2 to include the command state.
For example, ifJ;,(6) is required to be stored, then the  Any scheme to store the quantum operatia(6)
corresponding controlleB- is the multiplication ofoy, and  =exd +1(6/2)B] of a fixed, self-inverse generat@& in the
o,z €ach of which is controlled by the angle state. Thereforeguantum states can be described by a unitary transformation,
the angle state contairsand the command state is the bi-
nary string |10---01), which indicates that. only the G(|U0)®|d>)=\/p7;,|7-3>®U(0)|d>+ \/1—_p§;{|)(g>,
controllede;, and controlleds,, are to be activated. To (A1
make the circuit completeX=o, (NOT gate should be

add$d_pe|r gacrr]] qubit. ﬁinc)éihs a ﬁxsd opelrat(_)r, ON€ can \yhere|U,) is the program statecontaining the information
e|a3|¥ |n|cg et _emhln the scheme Dy employing one Morey,,t the operation arjd) is the data stateS transforms the
classical bit|co) in the command state. For decoding,is 14 state into the sum of the product of some residual state

Eg?ﬁ?ﬁge%ut:ylﬁog ?;ff\z)vl?"gz‘lqz)éier:a:tli,ozr; ' .C'onn)s,ev(\ql:i::tliys ( |79) and the desired state(6)|d) with success probability
: : d : dy \n daoad o
+1) classical bits and one qubit are used to store any oper%)—" and the failed staty) with probability 1-pj. To dis

tors in the form ofJ;;.. (6) and X, which can build up mgw_sh succedss ;‘rom failure by measurement, it should be

arbitrary unitary operators. The circuit is almost as simple agatisfied that 7g|x,,)=0 for alld, d’, ¢, and¢’.

that which handles only the single-qubit rotations amebT. Suppose thald) is ann-qubit state andN=2". The data
This scheme of storing and retrieving quantum operationstate |d) is expanded by the computational basis |d}$

can be used to distribute naturally copy-protected programs: =}~ gc,/ k), wherecy is the complex coefficient that satis-

for quantum computers. A programming of an quantum alfies the normalization condition. Then, E@1) is rewritten

gorithm means the process of decomposing the unitary opas

APPENDIX
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an overall phase Therefore, we can always expafd,) by
G(E Ck|U0>|k>) =2 adVpgl THU(o)[K) the linear combination df0) and|#), which are not neces-
sarily orthonormal to each other. Again, EGALl) is ex-
+1-p5 51, (A2)  pressed as

where product sige between the program and data states isG[ a(6)|0)|d)+ B(6)|7)|d)]
omitted for simplicity. This implies thap$ and|79) do not

depend orid) because RHS's of Eq$A1) and(A2) must be = a(0)[ Vpol 7o) E[d) + V1 —po| x5)] + B(6)
same for alld). Now, p¢ and|79) will be denoted byp, and
). Now, pjy and| ) wi o X[pal m)Bld) + V1= pal 91, (A3)

|74), respectively.

The one-qubit program state can be also expanded by gl |d). Therefore, all7,), | ), and|7;) are same with
|U g =a(6)|0)+B(0)|7), wherea(d) and B(6) are com- |7) not depending od), and
plex function satisfying the normalization condition
(U,Uy=1, and|0) and| ) are the program states corre- VPoU ()= a(6)poE+ B(6)\p;B. (Ad)
sponding to the operations and B, respectively. For any
working schemes, there always exist the program states forThis means that «(6)=py/pocos@?2) and B(6)

0=0 and#= 7. These states correspondE@ndB, respec- = ./p,/p1Sin(@/2). The remaining part of the proof is same
tively, because  U(#)=exd +1(0A2)B]=cos@?2)E  with that of Ref.[2]. The maximum probability of success is

+1sin(0/2)B, U,=E for =0, andU,=B for == (up to  1/2, which is achieved by our scheme.
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