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Implementation of phase estimation and quantum counting algorithms
on an NMR quantum-information processor

Jae-Seung Lee, Jaehyun Kim, Yongwook Cheong, and Soonchil Lee
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea

~Received 6 December 2001; published 23 October 2002!

The quantum Fourier transform is a key factor in achieving exponential speedup relative to classical algo-
rithms. We implemented the phase estimation algorithm, which is the very basic application example of the
quantum Fourier transform, on a three-bit nuclear magnetic resonance quantum-information processor. The
algorithm was applied to one-bit Grover operators to estimate eigenvalues. We also demonstrated the counting
algorithm with the same operators to obtain the number of the marked states. The results of projective
measurements required by the algorithms were obtained from the split peak positions in the spectra.
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Quantum computation has been the subject of inte
study during the last decade because quantum computer
solve certain problems that classical computers can ha
do. Much effort has been made to realize a quantum c
puter, but at present only the liquid state nuclear magn
resonance~NMR! has the capability of implementing quan
tum algorithms. Although the liquid state NMR is believe
not to be a candidate for a future practical quantum co
puter, the experience of implementing quantum algorith
by the NMR has been useful in understanding the basic
quantum computation and in expecting problems enco
tered in more scalable devices. The quantum algorith
implemented by NMR include Deutsch-Jozsa@1,2#, Grover’s
search@3–5#, order finding@6#, and Shor’s quantum factor
ing @7# algorithms.

The quantum algorithms achieving exponential spee
relative to classical algorithms have two features in comm
the evaluation of a function on superposed input states
the polynomial-time quantum discrete Fourier transfo
~QFT! @8#. The phase estimation algorithm, which estima
eigenvalues of a unitary operator, is one of the most ba
examples of such quantum algorithms and it has been stu
as a way to find eigenvalues and eigenvectors of a lo
Hamiltonian@9–11#. In this work, we estimated the eigenva
ues of one-bit Grover operators@12# by implementing the
phase estimation algorithm on a three-bit NMR quantu
information processor. In a quantum search problem,
number of iterations of Grover operators necessary to fin
target item depends on the number of marked states, whi
reflected in the eigenvalues of those operators@13#. We also
performed an experiment counting the number of mar
states using the same Grover operators. In an N
quantum-information processor, the results of project
measurements required by the original algorithm can be
tained in two ways. One way is to use the spectral imp
mentation where computational states are assigned to
vidual spectral resonance lines@14# and the other way is to
dephase the density operator as the projective measure
by pulsed magnetic-field gradients@15#. The former is ad-
vantageous when just numbers are required as measure
results, while the latter is effective in simulating measu
ment process and obtaining coherences after projective m
surements. We used spectral implementation for the ph
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estimation algorithm since only numbers are required at
end of computation. It is even possible to read an ans
with certainty from the spectrum when projective measu
ment can give only a probabilistic answer, theoretically.

One of the peculiar phenomena of quantum computa
is that a controlled operation can change the state of a con
bit. Let U be any unitary operator acting onuy& of dimension
N and GM(U) an operator that mapsux&uy&(5ux& ^ uy&) to
ux&Uxuy&, whereM is the dimension of the control registe
ux&. If uC& is an eigenvector of the operatorU with its ei-
genvalue e2pıv, then GM(U) transforms the state
(1/AM )(x50

M21ux&uuC& to

1

AM
(
x50

M21

ux&UxuC&5
1

AM
(
x50

M21

e2pıvxux&uC&. ~1!

This final state can be interpreted as meaning that the ta
state remains the same while the relative phase of the co
register changes. Now the eigenvaluev can be estimated by
the QFT of the control register. The operatorOQFT(M ) is
defined on the vector space of dimensionM as a transform of
a stateu j & to a state (1/AM )(x50

M21e2pı( j /M )xux&. Application
of the inverse QFT to the control register gives

uv&[OQFT~M !21
1

AM
(
x50

M21

e2pıvxux&

5
1

M (
j 50

M21

epı(M21)(v2 j /M )
sin@p~Mv2 j !#

sin†p@v2 ~ j /M !#‡
u j &.

~2!

If v5 j /M , uv&5u j &. Otherwise, the probability of measu
ing u j & in the final state is

PM ,v~ j !5U sin@p~Mv2 j !#

Msin†p@v2 ~ j /M !#‡
U2

.
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If the measurement result isj̄ , the eigenvalue is estimated t
be e2pı jW/M. Since Prob(u j̄ 2Mvu<k)>12@1/2(k21)# for
k.1, the correct eigenvalue is close to the estimated va
with high probability.

In implementation, we used two qubits as control bits a
one qubit as a target bit and chose Grover operators as
unitary operators acting on the target bit. A Grover opera
G consists of an oracle and theinversion about averageop-
eration which is given by2HS0H. Here,H is the Hadamard
gate andS05I 22u0&^0u, whereI is an identity matrix@12#.
In the one qubit vector space, there are four different Gro
operators corresponding to the cases where the marked
is 0, 1, both, and absent. Table I lists one-bit Grover ope
tors and their eigenvectors with corresponding eigenvalu

The quantum circuit for the phase estimation algorithm
shown in Fig. 1. Spin 1 is the target qubit, and spins 2 an

TABLE I. One-bit Grover operators and their eigenvectors a
eigenvalues.

Marked state G Eigenvector Eigenvalue

None S0 1

1 0D
1

A2
~ u0&1u1&)

1

A2
~ u0&2u1&)

1

21

0 S 0 1

21 0D
1

A2
~ u0&1ıu1&)

1

A2
~ u0&2ıu1&)

ı

2ı

1 S 0 21

1 0 D
1

A2
~ u0&1ıu1&)

1

A2
~ u0&2ıu1&)

2ı

ı

0, 1 S 0 21

21 0 D
1

A2
~ u0&1u1&)

1

A2
~ u0&2u1&)

21

1

FIG. 1. The quantum circuit for the phase estimation algorith
The numbers at the left side are the indices of carbon spins.
spins 2 and 3 are initialized to the stateu0&u0& and the spin 1 to one
of the two eigenstates of a one-bit Grover operatorG. H andR are
the Hadamard and conditional phase gates, respectively.
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are the control qubits. In the first stage,G4(G) consists of
controlled-G and controlled-G2 operations. The controlled
G operations were decomposed by using the method in R
@16# to get the NMR pulse sequence in temporal order,

I 1fS 2
p

2 D2I 1z~a!2I 2z~b!2J12S p

2 D2I 1fS p

2 D , ~3!

where the subscripts indicate the indices of spins and
axes of rotations. A pulse I j f(u) is given by
exp@2ı(u/2)s j f#, where j 51,2, f5x,y,z, and J12(u)5
exp@2ı(u/2)s1zs2z#. SinceG2’s are proportional to6I , the
controlled-G2 operation can be realized by a single rotati
I 3z(g). Table II summarizes the parametersf, a, b, andg
for four different G4(G)’s. In the second stage, the invers
QFT @17# is decomposed into two Hadamard gates and
conditional phase gateR5diag@1,1,1,e2ı(p/2)#. The Had-
amard gate on thej th qubit, H j , can be realized by eithe
I jy(2p/2)2I jz(p) or I jz(p)2I jy(p/2). We chose
I 3y(2p/2)2I 3z(p) for H3 and I 2z(p)2I 2y(p/2) for H2 to
simplify the total pulse sequence. The conditional phase g
R is decomposed into

I 2zS 2
p

4 D2I 3zS 2
p

4 D2J23S p

4 D ~4!

by using the same method as the controlled-G operation.
Therefore, the pulse sequence for the inverse QFT is gi
by

I 3yS 2
p

2 D2I 3zS 3

4
p D2I 2zS 3

4
p D2J23S p

4 D2I 2yS p

2 D .

~5!
Since this implementation of the inverse QFT swaps

output states of spins 2 and 3, the least significant digit of
control register at input becomes the most significant on
output. The algorithm requires eigenvectors ofU as input
@see Eq.~1!#. The eigenvectors of the one-bit Grover oper
tors are equally weighted superpositions ofu0& andu1& states
~Table I!. Therefore, each state can be prepared by a sin
90° pulse. In experiments, this single pulse and the follow
first pulse of the controlled-G operation are canceled o
added to a single 180° pulse. At the end of the pulse
quence, the original algorithm requires the measuring of
state of the control register, which consists of spins 2 and

d

.
he

TABLE II. Parameters for pulse sequences ofG4(G).

Marked state f a b g

None y 2
p

2
2

p

2
0

0 x 2
p

2
0 p

1 x 2
p

2
p p

0, 1 y 2
p

2
p

2
0
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FIG. 2. ~a! The spectrum of the spin 1 whe
the spins are in thermal equilibrium. Four sp
peaks are observed due to spin-spin couplingsJ12

and J13. The labels of the peaks represent t
states of the control register. The most and le
significant bits represent the state of the spins
and 3, respectively.~b! The same spectrum whe
the spins are in the effective pure stateu0&u0&u0&.
Only the absorptive and positive peak labeled
is present, as expected.
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Instead, the spectrum of the spin 1 is used to get informa
on the states of the spins 2 and 3 as explained later.

As the qubits, three13C nuclear spins of 99% carbon-1
labeled alanine@C1O2

2-C2H(C3H3)-NH3
1# in D2O solvent

were used. With proton decoupling, the dynamics of th
carbon spins are described by the Hamiltonian

H5v1I 1z1v2I 2z1v3I 3z1pJ122I 1zI 2z1pJ132I 1zI 3z

1pJ232I 2zI 3z , ~6!

whereI i5s i /2 are rescaled Pauli matrices andJi j are scalar
coupling constants. The experiments were carried out o
Bruker DRX300 spectrometer with the resonance freque
of 75.475 MHz. The chemical shifts of three carbon sp
relative to the carrier frequency are about 6019
23437.4, and26032.2 Hz, and the coupling constantsJ12,
J23, and J13 are 54.06, 34.86, and21.3 Hz, respectively.
On-resonance excitations of three carbon spins w
achieved by phase-ramping techniques@18#. All pulses were
spin selective and the duration of the pulses was about 2
UBURP ~universal 90° band-selective, uniform respon
pure-phase! and REBURP~refocusing 180° BURP! pulses
@19# were used for 90° and 180° single-qubit rotations,
spectively. By adjusting the phases of the subsequent pu
rotations about thez axis were implemented and the transie
Bloch-Siegert effects@20# were compensated for. No phas
cycling was used in all experiments.

An effective pure initial state was obtained by tempo
averaging@21# in a way introduced in Ref.@6#. For a homo-
nuclear three-spin system, the deviation density matrix of
thermal equilibrium state is the sum of three product ope
tors: r th5I 1z1I 2z1I 3z . From this mixed density matrix
four density matrices,r152I 1zI 3z1I 2z1I 3z , r2522I 1zI 2z
1I 2z1I 3z , r35I 1z22I 2zI 3z1I 3z , and r45I 1z14I 1zI 2zI 3z
1I 3z , were created by short pulse sequences. The devia
density matrix of the effective pure stateu000& can be ob-
tained byr th1r12r22r31r4. Figure 2 shows the spec
trum of spin 1 when the spins are in the thermal equilibriu
state~a! and that after temporal averaging~b!. When reading
a spectrum, a positive absorptive peak is interpreted to
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resent theu0& state and a negativeu1& state. In thermal equi-
librium, four split peaks are observed due to the spin-s
couplings with spins 2 and 3. The four peaks in Fig. 2~a!
representu000&, u001&, u010&, and u011& states. This means
that we can read the final state of the control register in
spectrum of the target register. In spectrum~b!, all the peaks
disappear except the one corresponding tou000&, as ex-
pected.

We performed eight experiments with four differe
Grover operators and two eigenvectors as input states
each operator. Figure 3 shows the spectra of the spin 1
quired after the execution of the algorithm. The intens
ratios of the final signal to the initial one, which is a measu
of precision in implementation, is about 60–80 % depend
on experiment time. In all cases, only one of the four sp
lines is observed, meaning that the control register is not
superposed state, that is, these are the cases whenv5 j /M .
Therefore, the state of the control register,u jW&, is clearly
determined and from it, the eigenvalue is estimated
exp@2pı( jW/4)#. For example, the spectrum in Fig. 3~a2!
shows a peak corresponding to theu010& state giving a con-
trol register value of 2. Therefore, the eigenvalue
exp@2pı(2/4)#521, as expected from the second eigenst
of the Grover operator for the case of no marked state
Table I. It is easy to check whether the other spectra a
give correct eigenvalues.

The eigenvalues of a Grover operator contain informat
on the number of marked states in a search problem. In f
the algorithm counting the number of marked states diff
from the phase estimation of a Grover operator only in
initial state preparation of the target register@13#. The same
phase estimation procedure enables us to count the num
of the marked statest if the target state is initially set to be
(1/A2)(u0&1u1&). This state can be expressed
(epıv/A2)uC1&1(e2pıv/A2)uC2& using the eigenvectors
uC6& as bases. After the execution of the algorithm, the s
becomes

epıv

A2
uv&uC1&1

e2pıv

A2
u2v&uC2&, ~7!
6-3
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FIG. 3. Spectra of the spin 1
after the execution of the phas
estimation algorithm. The posi
tions of four peaks in the spectrum
of the thermal equilibrium state
are indicated with short bars.~a!
‘‘No marked state’’ case: the inpu
states are (1/A2)(u0&1u1&) for
~a1! and (1/A2)(u0&2u1&) for
~a2!. These states remain sam
through the experiment and ap
pear in the spectrum as positiv
and negative peaks, respectivel
The peak positions represent th
the states of the control registe
are 0 for ~a1! and 2 for ~a2!. ~b!
‘‘Marked state 0’’ case: the state
of the control register are 1 fo
~b1! and 3 for ~b2!. ~c! ‘‘Marked
state 1’’ case: the states of the co
trol register are 3 for~c1! and 1
for ~c2!. ~d! ‘‘All marked states’’
case: the states of the control re
ister are 2 for~d1! and 0 for~d2!.
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whereuv& is defined in Eq.~2!. If a projective measuremen
on the control register gives some numberj̄ , it should be
close toMv or M (12v) with high probability. Thent is
estimated to be 2 sin2(p j̄ /M), which is independent of the
sign of the measured valuej̄ .

Figure 4 shows the spectra of spin 1 after the executio
the counting algorithm when the marked state is 0~a! and 1
~b!. Each spectrum looks like a superposition of two spec
in Fig. 3 that were obtained with the initial target state co
sisting of only one eigenvector. The control register is in
mixture of u01& andu11& states in both spectra, giving 1 or
as possible measurement values. From these values, w
t52 sin2(p/4)52 sin2(3/4p)51. In the ‘‘no marked state’’
and ‘‘all marked states’’ cases, the results are the sam
those of the phase estimation experiments since the in
superposed target state in the counting algorithm happen
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be the eigenvector of the corresponding Grover operat
Therefore, the result of counting can be read from Figs. 3~a1!
and~d1! that givet50 and 2, respectively. The same resu
have been obtained by Jones and Mosca@22# in a different
way, in whicht is estimated by modulating signal intensitie
of the one qubit control register with successive applicatio
of the controlled-G operation.

In our experiments, the results expected after the pro
tive measurement of the control register were read from
spectrum of the target register. Only one of the four sp
lines was observed in the phase estimation of a Grover
erator because the final state of the control register is
superposed. If the eigenvalue of some operator other t
Grover operators is unequal toj /M , however, the control
register is in the superposed final state and the algori
gives an eigenvalue that is close to the correct value w
6-4
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IMPLEMENTATION OF PHASE ESTIMATION AND . . . PHYSICAL REVIEW A 66, 042316 ~2002!
FIG. 4. Results of the quantum counting alg
rithm. The input state is (1/A2)(u0&1u1&). ~a!
‘‘Marked state 0’’ case: the spectrum looks lik
the superposition of spectra Figs. 3~b1! and~b2!.
~b! ‘‘Marked state 1’’ case: the spectrum look
like the superposition of spectra Figs. 3~c1! and
~c2!. Asymmetry in peaks is caused by imperfe
pulses.
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high probability. In this case, several peaks are expecte
the NMR spectrum and the label of the highest peak gi
the same value as the projective measurement becaus
area of each peak in the spectrum is proportional toPM ,v( j ).
This also indicates that the result of a calculation in an
semble quantum computer can be obtained from the kno
edge of a part of the density matrix of the output state rat
than the full matrix. The algorithms using the QFT such
the phase estimation or a period-finding problem@23# belong
to this case.

In the case of the counting experiment, the areas are
portional to PM ,v( j )2PM ,2v( j ), where PM ,v( j ) and
PM ,2v( j ) are the probabilities of measuringj in uv& and
u2v& states, respectively. This is because the spectrum
tains both of the orthogonal target statesuC6&, whose phases
d
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are opposite to each other. In spite of this averaging eff
there is practically no problem in estimatingt because
PM ,6v( j ) decay so fast from their peak positions that th
values are ignorable at each other’s peak positions.

In summary, phase estimation and counting algorith
were demonstrated for one-bit Grover operators on a th
bit NMR quantum-information processor. The final state
the control register was read from the spectrum of the ta
register. The label of the highest peak gives the same ans
as the projective measurement of the control register.
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