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Implementation of phase estimation and quantum counting algorithms
on an NMR quantum-information processor

Jae-Seung Lee, Jaehyun Kim, Yongwook Cheong, and Soonchil Lee
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
(Received 6 December 2001; published 23 October 002

The quantum Fourier transform is a key factor in achieving exponential speedup relative to classical algo-
rithms. We implemented the phase estimation algorithm, which is the very basic application example of the
quantum Fourier transform, on a three-bit nuclear magnetic resonance quantum-information processor. The
algorithm was applied to one-bit Grover operators to estimate eigenvalues. We also demonstrated the counting
algorithm with the same operators to obtain the number of the marked states. The results of projective
measurements required by the algorithms were obtained from the split peak positions in the spectra.
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Quantum computation has been the subject of intensestimation algorithm since only numbers are required at the
study during the last decade because quantum computers cand of computation. It is even possible to read an answer
solve certain problems that classical computers can hardlyith certainty from the spectrum when projective measure-
do. Much effort has been made to realize a quantum comment can give only a probabilistic answer, theoretically.
puter, but at present only the liquid state nuclear magnetic One of the peculiar phenomena of quantum computation
resonancéNMR) has the capability of implementing quan- js that a controlled operation can change the state of a control
tum algorithms. Although the liquid state NMR is believed pit | et U be any unitary operator acting dy) of dimension
not to be a candidate for a future practical quantum comy; gng T'w(U) an operator that mags)|y)(=|x)®|y)) to

puter, the experience of implementing quantum algorithm YU : ; ; ;
) ; . y), whereM is the dimension of the control register
by the NMR has been useful in understanding the basics J ). If | W) is an eigenvector of the operatbr with its ei-

guantum computation and in expecting problems encoun- PN
tered in more scalable devices. The quantum algorithm%’e/r:/vﬁlue,\,,?1 ,\Pthen Fu(V)  wransforms  the  state
implemented by NMR include Deutsch-JoZ422], Grover’s IWM)Z,Z6 1) [W) to

search[3-5], order finding[6], and Shor’s quantum factor-

ing [7] algorithms. 1 M1 1 M1
The quantum algorithms achieving exponential speedup — D XU W)= — e2mXx) W), (1)
relative to classical algorithms have two features in common, M x=o VM =0

the evaluation of a function on superposed input states and

the polynomial-time quantum discrete Fourier transform

(QFT) [8]. The phase estimation algorithm, which estimatesThis final state can be interpreted as meaning that the target
eigenvalues of a unitary operator, is one of the most basigtate remains the same while the relative phase of the control
examples of such quantum algorithms and it has been studigégister changes. Now the eigenvaluean be estimated by

as a way to find eigenvalues and eigenvectors of a locahe QFT of the control register. The operaOpe(M) is
Hamiltonian[9—11]. In this work, we estimated the eigenval- defined on the vector space of dimensMras a transform of
ues of on_e-bit_ Grover qperato[&Z] by implementing the a statgj) to a state (1N)2)'§":’Ole2”'(j”‘")x|x). Application
phase estimation algorithm on a three-bit NMR quantum-f the inverse QFT to the control register gives

information processor. In a quantum search problem, the

number of iterations of Grover operators necessary to find a M_1

target item depends on the number of marked states, which is _ L, 1 2 ox

reflected in the eigenvalues of those operaf@®. We also |0)=0qrr(M) \/_M ;0 € %)

performed an experiment counting the number of marked
M

states using the same Grover operators. In an NMR 1 ! , sifm(Mw—j)]
guantum-information processor, the results of projective =M < em(M_l)(w_J/M)sir{w[w—(j/M)]]|J>'
measurements required by the original algorithm can be ob- 1=0

tained in two ways. One way is to use the spectral imple- 2

mentation where computational states are assigned to indi-

vidual spectral resonance linfs4] and the other way is to

dephase the density operator as the projective measureméfitw=j/M, |w)=|j). Otherwise, the probability of measur-

by pulsed magnetic-field gradient$5]. The former is ad- ing|j) in the final state is

vantageous when just numbers are required as measurement

results, while the latter is effective in simulating measure- . . 2

ment process and obtaining coherences after projecti - i sif7(Mo—])] ’
jective mea Py ()= s i ]

surements. We used spectral implementation for the phase ' Msin[ 7 w— (j/M)]]]
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TABLE |. One-bit Grover operators and their eigenvectors and TABLE Il. Parameters for pulse sequenceslQ{G).
eigenvalues.

Marked state ¢ a B Y
Marked state G Eigenvector Eigenvalue
a a
1 None y iy iy 0
0 1 \/§(|O>+|l>) ! 0 X -z 0 -
None ( ) 2
1 0 ™
T<|0> 1)) -1 1 X 32 m m
a aw
L 0, 1 y - E 7 0
0 1 \/— |0>+||1>) | - - -
0 (—1 0) are the control qubits. In the first stade,(G) consists of
—(|0y=1]1)) - controlledG and controlleds? operations. The controlled-
\/_ G operations were decomposed by using the method in Ref.
[16] to get the NMR pulse sequence in temporal order,
1
S [ (10)+1[1)) . _ _ _
1 (1 0) l1g _E)_Ilz(a)_IZZ(B)_\]M E)"m E)’ ()
T (10)—1]1)) '
where the subscripts indicate the indices of spins and the
1 axes of rotations. A pulsel;,(6) is given by
—(|0)+]1)) -1 exd—1(02)o; 4], where j=12, ¢=X,y,z, and J;5(0)=
0,1 ( 0 _1) V2 exd —1(0/2)g1,07,]. Smcer’s are proportional ta- |, the
-1 0 1 controlledG? operation can be realized by a single rotation
E(|O>_|l>) L l3,(y). Table Il summarizes the parametess a, 3, andy

for four differentT",(G)’s. In the second stage, the inverse

|22

QFT [17] is decomposed into two Hadamard gates and a
If the measurement result js the eigenvalue is estimated to conditional phase gat®=diad1,1,1¢~'("?]. The Had-
be e2™i/M  Since Prob|(|'_ Mo|<k)=1—[1/2(k—1)] for amard gate on thgth qubit, H;, can be realized by either
k>1, the correct eigenvalue is close to the estimated valu jy(—m/2)=1j,(m) or Jz(77) liy(w/2). We chose
with high probability. 3y( l2)—14,(7) for Hz andl () — Izy(w_/_Z) for H, to
In implementation, we used two qubits as control bits anors%mp“fy the total pglse sequence. The conditional phase gate
one qubit as a target bit and chose Grover operators as t is decomposed into
unitary operators acting on the target bit. A Grover operator
G consists of an oracle and tlieversion about averagep- B E) .y ( _ Z) _3 (Z) (4)
eration which is given by- HS,H. Here,H is the Hadamard 4] 32 4] YH 4
gate andS,=1—2|0)(0|, wherel is an identity matri12].
In the one qubit vector space, there are four different Groveby using the same method as the control&dperation.
operators corresponding to the cases where the marked statherefore, the pulse sequence for the inverse QFT is given
is 0, 1, both, and absent. Table | lists one-bit Grover operaby
tors and their eigenvectors with corresponding eigenvalues.
The quantum circuit for the phase estimation algorithm is o 3 3 T .
shown in Fig. 1. Spin 1 is the target qubit, and spins 2 and 3 |3y( - E) —|3Z(Z7T) _IZZ(ZW) _‘]23(Z) _IZy(E)-
)
Since this implementation of the inverse QFT swaps the
output states of spins 2 and 3, the least significant digit of the
control register at input becomes the most significant one at
output. The algorithm requires eigenvectorsfas input
____________________________________________ [see Eq(1)]. The eigenvectors of the one-bit Grover opera-
QFT_I tors are equally weighted superpositiong@f and|1) states
(Table ). Therefore, each state can be prepared by a single
FIG. 1. The quantum circuit for the phase estimation algorithm. 90° pulse. In experiments, this single pulse and the following
The numbers at the left side are the indices of carbon spins. Thrst pulse of the controlle operation are canceled or
spins 2 and 3 are initialized to the st4@|0) and the spin 1 to one added to a single 180° pulse. At the end of the pulse se-

of the two eigenstates of a one-bit Grover oper&oH andR are
the Hadamard and conditional phase gates, respectively.

quence, the original algorithm requires the measuring of the
state of the control register, which consists of spins 2 and 3.
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(a) ® I

T

FIG. 2. (a) The spectrum of the spin 1 when
the spins are in thermal equilibrium. Four split
peaks are observed due to spin-spin couplihgs
and J,53. The labels of the peaks represent the
states of the control register. The most and least
significant bits represent the state of the spins 2
and 3, respectivelyb) The same spectrum when
the spins are in the effective pure stiag|0)|0).
L\,.q.. Only the absorptive and positive peak labeled 00
is present, as expected.

I T T T T T T T T T T T T T T
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Instead, the spectrum (_)f the spin 1 is used to get informatiopagent thd0) state and a negatiya) state. In thermal equi-
on the states of the spins 2 and 3 as explained later. librium, four split peaks are observed due to the spin-spin
As the qubits, threé>C nuclear spins of 99% carbon-13 couplings with spins 2 and 3. The four peaks in Figg)2

labeled alaning C'O, -C®H(C®H3)-NH3 ] in D,O solvent  represen000), |001), [010), and|011) states. This means
were used. With proton decoupling, the dynamics of threghat we can read the final state of the control register in the

carbon spins are described by the Hamiltonian spectrum of the target register. In spectr(opn all the peaks
disappear except the one corresponding|@060), as ex-
H=wil1,+ wal 2+ w3l 3,1+ mI 1221 151 o+ 71321451 3, pected.

We performed eight experiments with four different
Grover operators and two eigenvectors as input states for
each operator. Figure 3 shows the spectra of the spin 1 ac-
guired after the execution of the algorithm. The intensity

Bruker DRX300 spectrometer with the resonance frequencgatios of the final signal to the initial one, which is a measure

of 75.475 MHz. The chemical shifts of three carbon spinso:;pé)e(ciasrim;rr:ti?rgfﬁﬁn;ﬁt?:égz agr(GUtc?r?gg?:ﬁ’edfoﬁﬁnsiﬂ?
relative to the carrier frequency are about 6019.8 P ’ » Ony P

. lines is observed, meaning that the control register is not in a
—3437.4, and-6032.2 Hz, and the coupling constadts, d X ; :
. tate, that is, th th M.
Jo3, andJq; are 54.06, 34.86, and-1.3 Hz, respectively. superposed state, that is, these are the cases wihg

On-resonance excitations of three carbon spins Wer%herefqre, the state of the control registbj*r.), is clearly
achieved by phase-ramping techniqiié8]. All pulses were eterm|rLed and from it, the eigenvalue |s_ est_lmated as
spin selective and the duration of the pulses was about 2 m§XH271(i/4)]. For example, the spectrum in Fig(a2
UBURP (universal 90° band-selective, uniform response ShOWs a peak corresponding to {40 state giving a con-

pure-phaseand REBURP(refocusing 180° BURPpulses trol register value of 2. Therefore, the eigenvalue is

[19] were used for 90° and 180° single-qubit rotations, re-&Xd2m(2/4)]=—1, as expected from the second eigenstate
spectively. By adjusting the phases of the subsequent pulsed the Grover operator for the case of no marked state in
rotations about the axis were implemented and the transient 12PIe |. 1t is easy to check whether the other spectra also

Bloch-Siegert effect§20] were compensated for. No phase 91V€ COrTect eigenvalues. . _
cycling was used in all experiments. The eigenvalues of a Grover operator contain information

An effective pure initial state was obtained by temporal©" the nqmber of marked states in a search problem. Ir} fact,
averaging21] in a way introduced in Ref6]. For a homo- the algorithm counting the number of marked states differs
nuclear three-spin system, the deviation density matrix of thdOm the phase estimation of a Grover operator only in the

thermal equilibrium state is the sum of three product operalnitial state preparation of the target regisféB]. The same
tors: pyy=11,+l,,+15,. From this mixed density matrix phase estimation procedure enables us to count the number
: z z z: !

four density matricesp; =21 1,1 s,+ | oy+ 135, po=—211,15 of the marked statesif the target state is initially set to be

VARV A z VAl z' 27 .
Flotlsg, ps=liz—2lpl gyt 5z, ANdpy=lip+dlglply,  (AN2)(0)+]1). This state can be expressed as
+13,, were created by short pulse sequences. The deviatidh®™ “/V2)|¥ ;) +(e”™“/2)|W_) using the eigenvectors
density matrix of the effective pure sta@00) can be ob- | ) as bases. After the execution of the algorithm, the state
tained by py,+ p1— po— pa+ pa. Figure 2 shows the spec- becomes
trum of spin 1 when the spins are in the thermal equilibrium
state(a) and that after temporal averagifly. When reading R
a spectrum, a positive absorptive peak is interpreted to rep- V2

+ 7TJ232| 22| 3z (6)

wherel; = 0;/2 are rescaled Pauli matrices ahg are scalar
coupling constants. The experiments were carried out on

)W)+ | )W), @)

V2

mlw
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(@1) " n (@-2) |

FIG. 3. Spectra of the spin 1
b-2) I n after the execution of the phase
estimation algorithm. The posi-
tions of four peaks in the spectrum
of the thermal equilibrium state
are indicated with short barga)
“No marked state” case: the input
states are (1/2)(/0)+|1)) for
e S S ——— (@) and (142)(|0)~ (1)) for
(a2. These states remain same
T T T T T T T T T T T T T through the experiment and ap-
(1) c2) " M pear in the spectrum as positive
and negative peaks, respectively.
The peak positions represent that
the states of the control register
are 0 for(al) and 2 for(a2. (b)
“Marked state 0” case: the states
of the control register are 1 for
vr«hﬂ ,M.M,\M — (b1 and 3 for(b2). (c) “Marked
state 1" case: the states of the con-
trol register are 3 forcl) and 1
for (c2). (d) “All marked states”

(d-2) case: the states of the control reg-
ister are 2 for(d1) and 0 for(d2).

{

T T T T T T T T T T T T
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where|w) is defined in Eq(2). If a projective measurement be the eigenvector of the corresponding Grover operators.

on the control register gives some numberit should be ~ Therefore, the.result of counting can .be read from Fi¢gs1)3
close toMw or M(1— w) with high probability. Thert is  and(dl) that givet=0 and 2, respectively. The same results

estimated to be 2 skmj/M), which is independent of the have been obtained by Jones and Moz in a different
sign of the measured vaIlTe way, in whicht is estimated by modulating signal intensities

Figure 4 shows the spectra of spin 1 after the execution Oﬁaf the one qubit control rggister with successive applications
the counting algorithm when the marked state i@0and 1 ©f the controlleds operation. _
(b). Each spectrum looks like a superposition of two spectra_ N OUr experiments, the results expected after the projec-
in Fig. 3 that were obtained with the initial target state con-tive measurement of the control register were read from the
sisting of only one eigenvector. The control register is in theSPectrum of the target register. Only one of the four split
mixture of|01) and|11) states in both spectra, giving 1 or 3 lines was observed in the phase estimation of a Grover op-
as possible measurement values. From these values, we @sgtor because the final state of the control register is not
t=2 sirf(w/4)=2 sirt(3/4m)=1. In the “no marked state” superposed. If the eigenvalue of some operator other than
and “all marked states” cases, the results are the same dsrover operators is unequal @M, however, the control
those of the phase estimation experiments since the initiakgister is in the superposed final state and the algorithm
superposed target state in the counting algorithm happens gives an eigenvalue that is close to the correct value with
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(a) (b) I

FIG. 4. Results of the quantum counting algo-
rithm. The input state is (1/2)(|0)+|1)). (a)
“Marked state 0" case: the spectrum looks like
the superposition of spectra Figgb®) and(b2).
_‘,,.J (b) “Marked state 1" case: the spectrum looks
like the superposition of spectra Figgc® and
(c2). Asymmetry in peaks is caused by imperfect
pulses.

] 0
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high probability. In this case, several peaks are expected iare opposite to each other. In spite of this averaging effect,
the NMR spectrum and the label of the highest peak giveshere is practically no problem in estimating because

the same value as the projective measurement because thg, . (j) decay so fast from their peak positions that their
area of each peak in the spectrum is proportion&®yo,(j).  values are ignorable at each other’s peak positions.

This also indicates that the result of a calculation in an en- |n summary, phase estimation and counting algorithms
semble quantum computer can be obtained from the knowkyere demonstrated for one-bit Grover operators on a three-
edge of a part of the density matrix of the output state rathepjt NMR quantum-information processor. The final state of
than the full matrix. The algorithms using the QFT such ashe control register was read from the spectrum of the target
the phase estimation or a period-finding probl@8] belong  register. The label of the highest peak gives the same answer

to this case. _ _ as the projective measurement of the control register.
In the case of the counting experiment, the areas are pro-
portional to Py ,(j)—Pm -o(j), where Py ,(j) and We thank the Korea Basic Science Institute for use of the

Pu.—o(j) are the probabilities of measurifjgin |w) and  spectrometer. This work was partially supported by the
| - w) states, respectively. This is because the spectrum coBK21 Project, NRL Program, and KOSEF via eSSC at
tains both of the orthogonal target stat#s. ), whose phases POSTECH.
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