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The feasibility of satellite-based monitoring of phytoplankton chlorophyll a concentrations in Lake Erie is
assessed by applying globally calibrated, ocean-derived color algorithms to spatially and temporally
collocated measurements of SeaWiFS remote sensing reflectance. Satellite-based chlorophyll a retrievals
were compared with fluorescence-based measurements of chlorophyll a from 68 field samples collected
across the lake between 1998 and 2002. Twelve ocean-derived color algorithms, one regional algorithm
derived for the Baltic Sea's Case 2 waters, and a set of regional algorithms developed for the western, central
and eastern basins of Lake Erie were considered. While none of the ocean-derived algorithms performed
adequately, the outlook for the success of regionally calibrated and validated algorithms, with forms similar
to the ocean-derived algorithms, is promising over the eastern basin and possibly the central basin of the
lake. In the western basin, each of the regional algorithms considered performed poorly, indicating that
alternative approaches to algorithm development, or to satellite data screening and analysis procedures will
be needed.
© 2009 Elsevier Inc. All rights reserved.
Introduction

Many of the environmental challenges faced by Lake Erie and the
populations that depend on its resources could be better addressed if
conditions within the lake were more consistently monitored
throughout the year and across the basin. These challenges include
understanding the impacts of eutrophication, monitoring the severity
and extent of seasonal hypoxia, assessing the effects of exotic species
on lake ecosystems, detecting and preventing toxic algal blooms and
tracking chemically contaminated sediments (Beeton, 2001; Ohio
Lake Erie Commission, 2004). Field-based monitoring of ecosystem
and physical properties within the lake has greatly enhanced under-
standing of these and other issues, but, for practical reasons, field
sampling programs are generally restricted to a small number of
observations in space and time. Satellite remote sensing provides an
opportunity to conduct longer-term and more consistent monitoring
of color-producing agents (CPAs) within the lake, but this approach
must be pursued carefully to ensure that inferences based on satellite
data provide an accurate depiction of conditions near the surface of
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the lake. We seek to better understand the degree to which remotely
sensed observations of lake color can be used as part of a longer-term
strategy for monitoring near-surface algal biomass within Lake Erie at
the spatial and temporal scales resolved by these remote sensing
observations. We specifically consider the degree to which empirical,
ocean-derived algorithms can be used to estimate phytoplankton
chlorophyll a concentrations in the three sub-basins of the lake.

Lake Erie is an optically complex environment due to the diversity
and inhomogeneous distribution of CPAs within the lake. The lake is
divided into three basins with the separation between the western
and central basins marked by the Lake Erie Islands at approximately
82°49′W, and the separation between the central and eastern basins
marked by the Long Point-Erie Ridge located at approximately 80°25′
W (Fig. 1). Stratification regimes vary along the lake, particularly in
the summer, when strong stratification has been observed only in the
eastern basin (Barbiero and Tuchman, 2001b). These variations in
depth and stratification, as well as variations in nutrient loading,
resulted in the shallow western basin being the most biologically
productive part of the lake prior to the introduction of the zebra
mussel Dresissena polymorpha (Makarewicz, 1993). Since then,
biological productivity has decreased in the western basin and
seasonal variations in the relative productivity of the three basins
have been observed (Frost and Culver, 2001; Makarewiczl et al., 1999),
though near-surface chlorophyll a concentrations continue to be
highest in the western basin (Ostrom et al., 2005; Smith et al., 2005).
Toxic algal blooms, which contribute to variations in CPAs, have been
documentedmost commonly in thewestern basin of the lake (Budd et
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Fig. 1. Locations of field stations used in this analysis (symbols). Note that not all
locations are sampled in each year. EPA data (squares) from 1998 to 2002 and WRRI
data (triangles) from 1998 and 2002 were used in this analysis. Dashed lines delineate
the boundaries used in this study for the western, central and eastern basins of the lake,
with bathymetry shown using shading. Bathymetry provided by the National
Geophysical Data Center (1998).
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al., 2001; Vincent et al., 2004), and are expected to become more
wide-spread in the future (Conroy et al., 2007). In addition to these
variations in biological properties, most of the major rivers draining
into Lake Erie empty into the western basin, where they deposit much
of their accumulated sediment load (Kemp et al., 1977). This flux, and
the resuspension of bottom sediments (Dusini et al., 2009; Marvin et
al., 2007), contribute to the higher levels of turbidity observed in the
shallow western basin as compared with other basins of the lake
(Markarewiczl et al., 1999). Suspended sediments are a particular
concern as they can be carriers of chemical contaminants (Marvin et
al., 2002, 2004, 2007; Painter et al., 2001).

As a result of variations in the loading of suspended sediments and
biological materials within the euphotic zone, Lake Erie represents a
significant challenge to the interpretation of satellite-based water
color observations. Ocean color sensors have however been success-
fully used in North American Great Lakes. For example, Shuchman et
al. (2006) derived a 7-year time series of chlorophyll a for Lake
Michigan using observations from the Sea-viewing Wide Field-of-
view Sensor (SeaWiFS). Kerfoot et al. (2008) used both SeaWiFS and
the MOderate-Resolution Imaging Spectroradiometer (MODIS) to
detect intra-seasonal variations in near-surface chlorophyll a in
southern Lake Michigan. Budd (2004) used SeaWiFS to track the
biological signal of a sediment plume in the Keweena Region of Lake
Superior. Binding et al. (2007) used Coastal Zone Color Scanner
observations spanning the period 1979–1985 and SeaWiFS observa-
tions spanning the period 1998–2006 to monitor changes in the
clarity of the lower Great Lakes. This analysis revealed significant
changes in the clarity of Lakes Erie and Ontario associated with the
long-term impact of the zebra mussel invasion.

In ocean settings, estimates of chlorophyll a concentration are
obtained by applying empirical or semi-analytic algorithms to water
properties measured by satellite-mounted visible and infrared
sensors. The most straightforward application of ocean color
algorithms to the problem of estimating biological productivity
occurs in Case 1 waters, where optical properties are dominated by
phytoplankton and their covarying degradation products (Morel and
Prieur, 1977). Case 2 waters represent more complex optical settings,
which may include phytoplankton, suspended sediments and other
water-borne materials (see Mobley et al. (2004) and Morel and
Prieur (1977)). Within the relatively confined setting of Lake Erie,
biological and sedimentological conditions can vary significantly
(Kemp et al., 1977; Makarewicz, 1993; Marvin et al., 2007), resulting
in potentially diverse optical conditions. While some regions of the
lake may satisfy conditions for Case 1 waters, other regions may
represent an extreme end member of Case 2 waters.

In this study we explore the feasibility of monitoring near-surface
phytoplankton chlorophyll a concentrations in the three basins of
Lake Erie using observations from the SeaWiFS satellite ocean color
sensor. Values of chlorophyll a concentration measured from samples
collected in the field are compared with estimates computed by
applying ocean-derived color algorithms to spatially and temporally
collocated measurements of remote sensing reflectance from Sea-
WiFS. The next sections of this paper describe the field-collected and
satellite datasets and the methodology used in this study. Then results
from the analysis, including a statistically based interpretation of
differences between the field-collected and satellite results are
presented. Lastly, we discuss prospects for long-term monitoring of
phytoplankton in Lake Erie using ocean color satellite sensors.

Data

Field samples

The approach in this study is based on statistical comparisons of
spatially and temporally collocated chlorophyll a concentrations
measured from field samples and estimated from remote sensing
reflectances observed by the SeaWiFS satellite ocean color sensor.
Chlorophyll a concentrations were measured from bottle samples
collected in the field by the U.S. Environmental Protection Agency
(EPA) and made available through the Great Lakes Environmental
Database. The EPA data used in this study were collected on cruises
that occurred during spring (March or April) and summer (August) of
each year from 1998 through 2002. Additional samples were collected
by Kent State University's Water Resources Research Institute (WRRI)
during a separate series of five cruises within the western and central
basins of the lake during June, July and August of 1998 and during July
and August of 2002. The chlorophyll a concentrations in both sets of
bottle samples were measured based on chlorophyll fluorescence.
Data collection procedures used by the EPA are described by Barbiero
and Tuchman (2001a). Samples collected by Kent State University
were analyzed using the US EPA Fluorometric method 445.0 (Arar and
Collins, 1997).

Sampling stations were distributed throughout the three basins of
the lake (Fig. 1), with highest station density in the western basin.
Each data record consists of the measured value of chlorophyll a
concentration, the depth from which the sample was collected, the
time and date of collection, and the latitude and longitude of the
sample location. Secchi depthwas reported for 46% of casts, and 95% of
casts included samples collected from three or more depths. While
this dataset is relatively comprehensive in terms of spatial coverage of
the lake and the number of years sampled during the SeaWiFS period,
these data were collected for the purpose of field-based biological
sampling, rather than a full bio-optical evaluation. Thus observations
of optical properties of the water column, such as the diffuse
attenuation coefficient (Kd), the concentration of chromophoric
dissolved organic material (CDOM), and the upwelling and down-
welling irradiance (Eu and Ed), are not available.

The field-collected dataset was screened to eliminate observations
with chlorophyll a concentrations greater than 20 μg/L and observa-
tions where the shallowest sample depth was greater than 10 m. This
eliminated two observations from the highly eutrophic and turbid
Sandusky Bay (latitude=41.48°N, longitude=82.75°W), where the
chlorophyll a concentration was measured as 66.0 and 81.1 μg/L, and
where chlorophyll a concentrations are known from prior work to
exceed 20 μg/L (Ostrom et al., 2005). This also eliminated one
observation from the central basin in which the depth of the
shallowest sample was recorded as 43.8 m, which is deeper than the
maximum depth of this basin. The data were then screened to
eliminate observations within 2 km of land to reduce the possible
impact of land contamination within the satellite footprint. Potential
outliers, which had relatively high chlorophyll a, were then carefully
examined. Each of these was found to be consistent with elevated
chlorophyll a measured at other stations in the same basin on the
same cruise or measured at slightly deeper depths at the same station
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and time. These observations were thus retained in the collocated
dataset. After applying all of these screening procedures, the field-
collected dataset contained observations from 224 casts, including 69
in the western basin, 112 in the central basin and 43 in the eastern
basin.

SeaWiFS observations

Remotely sensed observations of lake color were obtained using
the SeaWiFS optical scanner. The SeaWiFS datasets used in this study
were processed at Michigan Technological University (MTU) from
SeaWiFS level 1A data using the SeaWiFSMAP 4.1a software package
(Stumpf et al., 2000). SeaWiFSMAP was developed by modifying the
commonly used SEADAS software package to better suit optical
conditions of coastal and inland waters. Unlike SEADAS, SeaWiFSMAP
uses a USGS map for georectification. The Stumpf et al. (2003)
atmospheric correction algorithm, derived for inland water bodies,
including the Great Lakes, was applied to the data in SeaWiFSMAP
(see Budd (2004) and Budd and Warrington (2004)). Values of
remote sensing reflectance (Rrs) at 443 nm, 490 nm, 512 nm, and
555 nmwere downloaded from the MTU Great Lakes Imagery Archive
and converted to estimates of chlorophyll concentration using twelve
previously published empirical ocean color algorithms (Table 1). For
algorithms that used normalized water-leaving radiance (Lwn) as
input, Rrs values were converted to Lwn using values of mean solar
irradiance (F0) at each wavelength (Thuillier et al., 2003).

Methodology

To assess the degree to which twelve ocean-derived satellite
chlorophyll concentration algorithms accurately estimate Lake Erie
chlorophyll a concentrations, chlorophyll a concentrations measured
from samples collected in the field were compared with collocated
SeaWiFS-derived estimates. For each field observation, SeaWiFS Rrs
values that were measured within 1 day of field sampling were
Table 1
Algorithms used to estimate chlorophyll a concentration (C) or chlorophyll a+phaeophytic
normalized water-leaving radiance (Lwnnnn) at wavelengths nnn nm.

Algorithm Algorithm equation

Morel-1 C=10^(0.2492–1.768R)
R=log(Rrs443/Rrs555)

Morel-3 C=10^(0.20766–1.82878R+0.75885R2–0.
R=log(Rrs443/Rrs555)
Cse=10^(−2.5R), where R=log(Rrs490/Rrs

Coastal If Cse≥0.5 then C=Cse
If 0.1bCseb0.5 then C=10^(log(Cse)⁎ [log(
+log(COc2v4)⁎ [log(0.5)− log(Cse)]/[log(0.5
If Cse≤0.1 then C=COc2v4

Aiken-P C22=exp(0.696–2.085 ln(R))
C24=(R−5.29)/(0.592–3.48R) where R=
[C+P]=C22; if [C+P]b2.0 μg/L then [C+

Aiken-C C21=exp(0.464–1.989 ln(R))
C23=(R−5.29)/(0.719–4.23R) where R=
C=C21; if Cb2.0 μg/L then C=C23

CalCOFI two-band linear C=10^(0.444–2.431R) where R=log(Rrs49
Morel-2 C=exp(1.077835–2.542605R)

R=ln(Rrs490/Rrs555)
CalCOFI three-band C=exp(1.025–1.622R1–1.238R2)

R1=ln(Rrs490/Rrs555)
R2=ln(Rrs510/Rrs555)

Oc2v4 C=10^(0.319–2.336R+0.879R2–0.135R3)−
R=log(Rrs490/Rrs555)

Morel-4 C=10^(1.03117–2.40134R+0.3219897R2–0
R=log(Rrs490/Rrs555)

CalCOFI two-band cubic C=10^(0.450–2.860R+0.996R2–0.367R3)
Oc4v4 C=10^(0.366–3.067R+1.930R2+0.649R3–

R=log(max[Rrs443, Rrs490, Rrs510]/Rrs555)
Baltic C=10^(0.1520–3.0558R) where R=log(m

Note that where the maximum operator (max) appears, the largest of the quantities in the
extracted from the pixel that coincided with the field-based sampling
location. To reduce the impacts of atmospheric contamination,
screening procedures similar to those used by Budd and Warrington
(2004) were then applied. The percentage of masked pixels over the
lakewas calculated for each satellite image and cases where lake-wide
masking exceeded 20% of the total lake pixels were deleted. Field-
satellite observation pairs that were locatedwithin 5 km of the nearest
masked pixel were also eliminated. As there is no general consensus
regarding the criteria for cloud, haze and aerosol masking for the
Great Lakes, choices of the lake-wide percent masking criterion and
the threshold for proximity to the nearest masked pixel are somewhat
arbitrary. Alternative values were considered and are discussed below.

Most of the field casts included samples collected at several depths.
A number of methods for including depth-dependent information
were considered, including averaging data over the upper part of the
water column and integrating the chlorophyll a measurements down
to various percentages of the Secchi depth. Because the vertical
sampling varied within the dataset, with some casts having relatively
high vertical resolution and others having coarser vertical resolution,
and because many records lacked observations of the Secchi depth,
none of these alternative methods provided statistical comparisons
which improved on those available by using only the uppermost
sample from each cast. Thus this analysis uses only the uppermost
chlorophyll a concentration measurement from each cast.

The resulting spatially and temporally collocated dataset included
68 field-satellite observation pairs at 20 unique station locations that
were sampled on 9 separate cruises. Of these, 18 were in the western
basin (6 station locations, 6 cruises), 30 were in the central basin (10
station locations, 5 cruises), and 20 were in the eastern basin (4
station locations, 6 cruises). Statistics of the full field-collected and of
the collocated datasets are summarized in Table 2. In both datasets,
the mean and standard deviation of the chlorophyll a concentrations
decreased from west to east, in agreement with trends observed in
previous studies of chlorophyll a (Makarewiczl et al., 1999; Ostrom
et al., 2005; Smith et al., 2005).
concentration [C+P] in μg/L from observations of remote sensing reflectance (Rrsnnn) or

Reference

O'Reilly et al. (1998)

73979R3) O'Reilly et al. (1998)

555)
Stumpf et al. (2000)

Cse)− log(0.1)]/[log(0.5) log(0.1)]
)− log(0.1])

Aiken et al. (1995)
Lwn490/Lwn555

P]=C24
Aiken et al. (1995)

Lwn490/Lwn555

0/Rrs555) Michell and Kahru (1998)
O'Reilly et al. (1998)

Michell and Kahru (1998)

0.071 O'Reilly et al. (2000)

.291066R3) O'Reilly et al. (1998)

where R=log(Rrs490/Rrs555) Michell and Kahru (1998)
1.532R4) O'Reilly et al. (2000)

ax[Lwn443/Lwn551, Lwn488/Lwn551]) Darecki and Stramski (2004)

square brackets is used.



Table 2
Statistics of the field observations used in this analysis.

Region Number of
observations

ztop (average depth of
shallowest field-collected
sample, m)

Standard deviation
of ztop (m)

Average chlorophyll a
concentration of shallowest
field-collected sample [μg/L]

Standard deviation of chlorophyll a
concentration from the shallowest
field-collected samples [μg/L]

Western Basin 69 (18) 1.1 (1.2) 0.3 (0.3) 3.7 (3.8) 2.7 (3.0)
Central Basin 112 (30) 1.3 (1.2) 0.7 (0.3) 2.2 (2.1) 1.8 (1.8)
Eastern Basin 43 (20) 1.3 (1.2) 0.5 (0.3) 1.4 (1.4) 1.4 (1.2)
Whole Lake 224 (68) 1.2 (1.2) 0.5 (0.3) 2.5 (2.3) 2.2 (2.2)

Values in parentheses show statistics of observations from the subset of field observations which could be collocated with a satellite observation with a search window of ±1 day
while meeting the screening criteria described in the Methodology section.
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F-tests for the equality of variance (see Davis, 2002) were applied
to the field-collected chlorophyll a data from each basin of the lake to
assess whether the differences in the distribution of measured values
were statistically different between the full dataset and the smaller
collocated dataset. Results indicated that the chlorophyll a variances
were not statistically different at α=0.05, allowing a comparison of
the equality of the mean chlorophyll a concentrations from the two
datasets in each basin of the lake. Results from t-tests of the equality
of sample means (see Davis, 2002) demonstrated that the mean
chlorophyll a concentrations were not statistically different at
α=0.05 for the full dataset versus the collocated data. These
comparisons indicate that, while the collocated dataset is relatively
small, it is representative of more extensive variations within each
basin of the lake.

The twelve ocean-derived algorithms selected for the comparison
are the Aiken-C, Aiken-P, CalCOFI two-band linear, CalCOFI two-band
cubic, CalCOFI three-band, Coastal, Morel-1, Morel-2, Morel-3, Morel-
4, Oc2v4, and Oc4v4. All of these algorithms are based on various
ratios of Rrs or Lwn measured in 20 nmwide optical bands centered at
443 nm, 490 nm, 510 nm, and 555 nm. Table 1 shows the
mathematical form of each algorithm, with algorithms ordered
based on the specific band ratios used. As shown in Fig. 2, these
bands generally span the maximum and minimum absorption of
visible radiation for phytoplankton, as measured based on diffuse
spectral reflectance from a water sample collected from Lake Erie
during July 2003 and filtered onto a Watman™ GF/F filter with an
effective pore size of ∼0.7 μm. The 443 nm band, occurring in the
visible blue, is strongly absorbed by phytoplankton, while the 555 nm
Fig. 2. Fractional absorption of visible and near-infrared radiation as measured for a GF/
F-filtered Lake Erie water sample from the western Basin. The spectrum is a blank-
corrected average of ten ensemble replicates using an Analytical Spectral Devices (ASD)
Labspec Pro FR UV/VIS/nIR spectrometer (2 nm VIS resolution; 4–10 nm nIR resolution)
equipped with an ASD High Intensity Contact Probe. Each individual ensemble replicate
represents an integration of 200 individual spectra. Absorption values have been blank-
corrected using an ensemble-averaged blank spectrum generated in the same fashion to
remove the optical properties of the GF/F filter. SeaWiFS spectral bands at visible
wavelengths are shown as shaded regions.
band, in the visible yellow-green, has stronger reflectance. Standard
statistical techniques were used to evaluate the satellite-based
chlorophyll concentration estimates. Least-square regression was
applied to find the best linear relationship between the field
observations and the satellite-based estimates. The correlation
coefficient (r) and root mean square error (RMSE) were also
calculated for each of the comparisons.

Results

Oceanic algorithms

When considered for the lake as a whole (Fig. 3), all of the oceanic
algorithms had one or more undesirable features in statistical
comparisons with the field data. Correlations between chlorophyll a
concentrations measured from the field-collected samples and
estimated using the satellite observations varied from 0.61 to 0.73.
For nine of the twelve algorithms, the slope of the best fit line was less
than 0.7 and the intercept of the best fit line was greater than 2.0 μg/L,
with no algorithm producing a slope greater than 0.88 or an intercept
less than 1.0 μg/L. Particularly problematic was estimation of low
chlorophyll a concentrations, which tended to be overestimated by
most algorithms. With the exception of the Aiken-C and Coastal
algorithms, which produced the smallest dynamic ranges in the
satellite estimates, chlorophyll concentration estimates from the
ocean-derived algorithms were biased high at low chlorophyll
concentrations. A second problem occurred at higher chlorophyll a
concentrations (N5–8 μg/L), where about half of the algorithms
underestimated chlorophyll concentration.

When the analysis was restricted to thewestern basin, correlations
between the field and satellite chlorophyll estimates were lower than
values obtained from the entire lake. Correlation coefficients calcu-
lated from only western basin data ranged from 0.53 to 0.63, and
intercepts for the best linear fit ranged from to 1.69 to 5.30 μg/L, with
nine algorithms producing intercepts greater than 3.0 μg/L. The slope
of the best fit line varied significantly among the algorithms, with the
lowest slope of 0.16 produced by the Coastal algorithm and the highest
slope of 0.71 produced by the Morel-3 algorithm. If the western basin
is eliminated from the analysis, the correlation coefficients and
intercepts improve, but overly flat slopes are still obtained.

Sensitivity tests indicate that the misfits evident in Fig. 3 cannot be
explained by the choice of the temporal collocation window or the
data screening criteria. The average RMSE from the 12 ocean-derived
algorithms was nearly identical (2.419 μg/L versus 2.421 μg/L) for
comparisons restricted to same-day satellite and field sampling and
for comparisons based on a broader temporal collocationwindow that
also included samples within Δt=±1 day. Somewhat better correla-
tions (r=0.70 versus r=0.61) were actually obtained with the larger
dataset available for the broader temporal window. When statistics
from the 12 ocean-derived algorithms were compared for: (1) a
dataset that eliminated collocated observations from days with
greater than 20% of lake pixels masked and (2) a dataset that did
not include this criterion, higher correlations were obtained for each
of the 12 algorithms when the 20% lake-wide masking criteria was



Fig. 3. Comparison of spatially and temporally collocated chlorophyll a concentrations measured from water samples with estimated concentrations from twelve ocean-derived
algorithms applied to SeaWiFS observations (see Table 1). The equation of the best fit line through the data, the root mean squared error (RMSE), and the correlation coefficient, r, are
provided for each comparison. Diamonds, triangles and squares depict observations from the western, central and eastern basins of Lake Erie, respectively. Algorithms are ordered by
their mathematical form (see Table 1).
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implemented, indicating that this criteria helped remove lower-
quality observations. Sensitivity of the results to the choice of
minimum distance to the closest masked pixel indicated that, for the
12 ocean-derived algorithms, average correlation coefficients were
higher and the average RMSE values were lower for a 5 km proximity
threshold as compared with implementation of no proximity thresh-
old. Use of stricter screening was explored (i.e., a maximum of 10%
lake-wide masking, a minimum of 10 km to the nearest masked pixel)
but found to have relatively little impact on the statistics.

To aid in understanding the geographic variations in the quality of
chlorophyll a estimates obtained within the various basins of the lake,
parameters of the statistical comparisons calculated from the
individual basins of the lake, as well as from all 68 collocated
observations from entire lake, are presented in Fig. 4. Each panel of Fig.
4 displays one parameter of the statistical comparison, including the
correlation coefficient (Fig. 4a), slope of the best fit line (Fig. 4b),
intercept of the best fit line (Fig. 4c) and RMSE (Fig. 4d). In each of
these panels, a perfect relationship between the field and satellite-
based chlorophyll a concentrations (i.e., a correlation of 1.0, a best fit
line with slope equal to 1.0 and an intercept equal to 0.0, and an RMSE
of 0.0) is indicated by the horizontal dashed line. The range of
variability obtained from among the twelve ocean-derived algorithms
can be gauged from the shaded boxes in Fig. 4, which encompass the
region between the 25th and 75th percentiles for each parameter, and
from the thin vertical lines, which depict the range between the
minimum andmaximumvalues of each statistical parameter from the
twelve ocean-derived algorithms.

Results from this comparison demonstrate a general improvement
in three of the four statistical parameters as the region of interest
moves from west to east. Exceptionally poor comparisons were
obtained in the shallow western basin, where turbidity due to the
large input of suspended sediment via rivers and the resuspension of
this material may confound the biological lake color signal. Statistical
comparisons were significantly better in the eastern basin of the lake,
with strong improvements observed for the correlation coefficient,
the intercept of the best fit line and the RMSE. In addition to variations
of in-water properties, other potential sources of the observed
variations include systematic differences in atmospheric or illumina-
tion conditions among the three basins.

The difference in typical chlorophyll a concentrations among the
three basins was considered as a possible explanation for the
variations evident in Fig. 4. If the observations for each basin are
stratified into bins based on their field-measured chlorophyll a
concentration (e.g., 0–2 μg/L, 2–4 μg/L, 4–6 μg/L), and the ratio of
RMSE to median chlorophyll a concentration is computed from the
data within each bin, the largest ratios occur in the western basin,
with smaller values in the central basin, and smallest values in the
eastern basin. (Note that this ratio could not be calculated for
chlorophyll a concentrations between 4 and 6 μg/L in the eastern
basin due to an insufficient number of observations). This indicates



Fig. 4. Variations in statistical parameters calculated from comparisons of in-water chlorophyll a measurements with satellite-based estimates using various bio-optical algorithms.
Parameters include (a) correlation coefficient, (b) slope of best fit line, (c) intercept of best fit line and (d) root mean squared difference between in-water measurements and
satellite estimates. Values are shown for calculations from four regions of Lake Erie, including the combined western, central and eastern basins (“all”) and each basin individually. For
the 12 ocean-derived algorithms, the shaded rectangle encompasses the 25th through the 75th percentiles of each parameter, the thin vertical line shows the range between the
minimum and maximum values and the asterisk indicates the median value. The diamonds show values obtained by applying the Darecki and Stramski (2004) regional Baltic Sea
algorithm to the Lake Erie data, while the triangles show values obtained from the Lake Erie regional algorithms. The horizontal dashed line indicates the optimal value for each
parameter.
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that the large scatter observed in Fig. 3 for the western basin is not an
artifact of the generally higher chlorophyll a concentrations found in
this region. Even at low values of chlorophyll a concentration, the
ocean-derived algorithms produce considerably more scatter in the
western basin than in other regions of the lake, with scatter
decreasing toward the east.

While several of the statistical parameters exhibited improvement
from west to east, the slope of the best fit line was low for all 12
algorithms in all regions of the lake. Slopes greater than 0.5 were
obtained for only two algorithms in the central basin (CalCOFI2-cub
and Oc4v4) and two algorithms in the eastern basin (Morel-3 and
CalCOFI2-cub). One result of this is that the dynamic range of
chlorophyll a estimated from the satellite is significantly smaller
than the dynamic range measured from the field samples. At low
values of chlorophyll a concentration, only the Coastal and Aiken-C
algorithms do not substantially underestimate the chlorophyll a
concentration in the central and eastern basins. At larger chlorophyll a
concentrations, many algorithms substantially underestimate these
values.

A regional algorithm derived for Case 2 inland waters

Results from the analysis of the 12 oceanic algorithms thus indicate
that, while correlations between measurements from field samples
and satellite-based estimates improve from west to east, even in the
eastern basin, the oceanic algorithms do not perform adequately. One
approach to this dilemma is to use a regional algorithm that is tuned
for the optical properties of inland water bodies that are more
productive and more turbid than most regions of the ocean. One such
possibility is an algorithm developed for the Baltic Sea based on an
extensive set of in-water optical observations (Darecki and Stramski,
2004).

The Baltic Sea is a shallow and productive water body that is
connected to the North Sea via the narrow Danish Straits. The
atmosphere over the Baltic Sea is strongly influenced by terrestrial
processes and the waters of the Baltic Sea can carry significant
quantities of suspended sediment and CDOM. The predominance of
Case 2 water in the Baltic Sea provided the motivation for Darecki and
Stramski (2004) to explore the limitations of applying ocean-derived
algorithms, which are generally tuned for Case 1 conditions, to the
Baltic Sea environment, and then, to ultimately derive their own
algorithm for this environment. While their algorithm reduced errors
in satellite chlorophyll a retrievals, unresolved issues, particularly
those involving the atmospheric correction, precluded Darecki and
Stramski from recommending that the algorithm be used for
chlorophyll a monitoring in the Baltic Sea region. This algorithm
does however represent an attempt to obtain more valid satellite
retrievals from optically complex waters.

The Darecki and Stramski Baltic Sea regional bio-optical algorithm
(see Table 1) was developed for the MODIS wavebands. Here, we
apply this algorithm to the Lake Erie dataset to explore whether using
an algorithm derived specifically for a large inland body which
includes Case 2 waters might produce better results than the oceanic
algorithms described above. Values of Lwn at the 20 nmwide SeaWiFS
bands centered on 490 nm and 555 nm are substituted for values of
Lwn at the 10 nmwide MODIS bands centered at 488 nm and 551 nm,
respectively. While this substitution will introduce an additional
component of error, this error contribution is expected to be small
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compared to other sources (e.g., inadequately corrected atmospheric
effects), based on spectral properties of filtered Lake Erie water
samples (Fig. 2) and based on the sensitivity of the SeaWiFS
atmospheric correction to variations in the position of spectral bands
(Wang, 1999).

The resulting satellite chlorophyll a estimates are plotted against
the values of chlorophyll a measured from the water samples (Fig. 5).
Like the oceanic algorithms, there is a clear improvement in the
statistics of the comparison as the region of interest moves from the
western to the central to the eastern basin of the lake. In all three
basins however, the resulting comparisons suffer from problems
similar to those observed for the oceanic algorithms, a result that was
also obtained by Darecki and Stramski (2004) in their Baltic Sea
analysis. In particular, correlations are too low, the intercept calculated
for the best fit line is too high, and the slope of the best fit line is
unacceptably low.

In Fig. 4, statistical parameters from the Baltic Sea algorithm are
plotted as diamonds, allowing a more direct comparison between the
performance of this algorithm and that of the twelve oceanic
algorithms listed in Table 1. The correlation coefficient obtained for
the Baltic Sea algorithm is comparable to those obtained from the
oceanic algorithms (Fig. 4a). The slope of the best fit line for the Baltic
Sea algorithms is less optimal than slopes obtained from most of the
oceanic algorithms (Fig. 4b). Positive aspects of the comparison
included the significantly lower intercept and lower RMSE values
obtained with the Baltic Sea algorithm as compared with most of the
oceanic algorithms (Figs. 4c, d).

Regional algorithms derived for Lake Erie

The approach of developing and applying a regional algorithm has
been utilized in previous studies of chlorophyll a distributions within
Fig. 5. Comparison of chlorophyll a measurements from Lake Erie water samples with chlo
regional bio-optical algorithm to spatially and temporally collocated SeaWiFS observations. E
(c) central basin, (d) eastern basin. The dashed line shows the best linear fit to the data, whi
coefficient (r), the root mean squared error (RMSE), and the number of observations in the
the Great Lakes (Budd andWarrington, 2004; Shuchman et al., 2006).
For example, Li et al. (2004) derived regional algorithms and analyzed
their performance in order to recommend approaches for improving
satellite-based chlorophyll a retrievals for Lake Superior. To assess
whether the approach of using a regional algorithm might improve
chlorophyll a retrievals for Lake Erie, a set of regional algorithms was
derived using the collocated Lake Erie field and satellite datasets.
Linear, quadratic and cubic functional forms, similar to those used in
the oceanic algorithms, were considered,

C = 10 a0 + a1Rð Þ ð1aÞ

C = 10 a0 + a1R + a2R
2ð Þ ð1bÞ

C = 10 a0 + a1R + a2R
2 + a3R

3ð Þ ð1cÞ

where R was represented as one of the following expressions:

R = log Rrs443 = Rrs555ð Þ ð2aÞ

R = log Rrs490 = Rrs555ð Þ ð2bÞ

R = log Rrs510 = Rrs555ð Þ ð2cÞ

R = log max Rrs443;Rrs490;Rrs510½ �= Rrs555ð Þ: ð2dÞ

The unknown coefficients, ak, were determined based on least-
squares regression using collocated data from the entire lake or using
collocated data collected within each individual basin of the lake. Note
that, because the algorithms have the form of power laws, they are not
constrained to produce chlorophyll a estimates that cluster around a
1:1 line with respect to the field-based chlorophyll a measurements.
rophyll a estimates obtained by applying the Darecki and Stramski (2004) Baltic Sea
ach panel corresponds to a specific region of the lake: (a) entire lake, (b) western basin,
le the solid line shows the 1:1 relation. The equation for the best fit line, the correlation
comparison (N) are shown for each region.
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For example, the least-squares solution for the coefficients of the linear
algorithm is derived by log-transforming Eq. (1a) and then using R as a
dependent variable and log(C) as the independent variable.

Because of the small size of the collocated dataset, all of the
collocated observations were used in determining algorithm coeffi-
cients, precluding the possibility of independently validating the
algorithms using this dataset. These regional assessments therefore
provide one “best case” indication of the results that might be
obtained from regional algorithms of the mathematical form shown
above. Such assessments are useful because if these “best case” results
are inadequate, this clearly indicates that a different approach is
needed. The nature of any inadequacies can then guide future
approaches toward improved algorithm development. These
approaches might include, for example, using alternative screening
criteria, using alternate forms for atmospheric corrections, using more
restrictive spatial and temporal collocation windows, using better
corrections for the effects of unresolved CDOM and other CPAs, or
using algorithms with different mathematical forms.

Algorithm performance was assessed based on the four statistical
parameters shown in Fig. 4. The four linear algorithms (e.g., Eq. (1a)
with Eqs. (2a)–(2d)) were first considered for the lake as a whole and
for the eastern basin (the least optically complex of the lake regions).
Within this group, algorithms based on Rrs490/Rrs555 and Rrs510/Rrs555
each performed best on two of the four metrics. With the addition of a
quadratic term, algorithms based on Rrs490/Rrs555 performed best on
all four metrics in both regions. Adding the quadratic term
significantly improved the slope and intercept of the best fit line in
the eastern basin and produced a small improvement in these
quantities for the lake as a whole. Adding a cubic term (Eq. (1c))
provided negligible improvement. In the western basin, all forms of
algorithm performed poorly; for every algorithm, correlations were
lower and the RMSE and the intercept of the best fit line were higher
Fig. 6. Comparison of chlorophyll ameasurements from Lake Erie water samples with chloro
lake, (b) the western basin, (c) the central basin, and (d) the eastern basin). The dashed lin
equation for the satellite-based chlorophyll a concentration (C) is shown on each panel, alo
squared error (RMSE) and number of observations in the comparison (N) are shown for ea
in the western basin than in the eastern basin. The slope of the best fit
line was also much flatter in the western basin than the eastern basin
for the majority of algorithm forms. In the central basin, algorithms
based on Rrs490/Rrs555 or Rrs510/Rrs555 performed better on most
metrics than those based on Rrs443/Rrs555, with quadratic algorithms
producing more optimal slopes and intercepts than linear algorithms.

Fig. 6 compares chlorophyll a values measured from field samples
with estimates obtained using quadratic Lake Erie regional algorithms
derivedwith R=log(Rrs490/Rrs555) for the lake as awhole (Fig. 6a) and
for the three individual basins of the lake (Figs. 6b–d). The
mathematical expressions for the whole lake, and western, central
and eastern basin models are shown in the corresponding panels of
Fig. 6. As noted above, quadratic algorithms based on the Rrs490/Rrs555
band ratio outperformed other choices of algorithms in most regions
of the lake as gauged from a variety of metrics. In Fig. 4, results from
the Lake Erie regional algorithms are plotted as triangles.

For the western basin, the Lake Erie regional algorithm produced
only a small improvement in the quality of chlorophyll a retrievals
over those obtained from most of the ocean-derived algorithms or
from the Baltic Sea algorithm. While the western basin regional
algorithm produced a lower RMSE and intercept, the slope obtained
with this algorithm was not distinctly different from those obtained
with the oceanic algorithms and the correlation was slightly smaller
than that obtained with most of the oceanic algorithms (see Fig. 4).
Scatter in the satellite estimates of chlorophyll a is also problematic
with this regional algorithm (see Fig. 6b).

In the central and eastern basins, regional algorithms produced
improvements in all four statistical measures. Correlations and slopes
obtained with the central and eastern basin regional algorithms are
higher than those obtained with any of the other algorithms
considered here, and intercepts and RMSE values are significantly
lower (see Figs. 6c, d). At low chlorophyll a concentrations, most of the
phyll a estimates obtained by applying regional algorithms developed for: (a) the entire
e shows the best linear fit to the data, while the solid line shows the 1:1 relation. The
ng with the equation for the best fit line. The correlation coefficient (r), the root mean
ch region.
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ocean-derived algorithms and the Baltic Sea algorithm overestimated
concentrations. This problem was significantly less evident with the
central basin regional algorithm (Fig. 6c) and not evident with the
eastern basin regional algorithm (Fig. 6d). As a result, the best linear fit
had a lower intercept and more optimal slope than those produced
with other algorithms. Not unexpectedly, the significant improvement
represented by the eastern and, possibly, central basin algorithms
resulted in better performance for the regional algorithm derived
using data from the entire lake (Fig. 6a).

Discussion and conclusions

Twelve ocean-derived algorithms for estimating chlorophyll a
concentrations from SeaWiFS observations were evaluated for the
three basins of Lake Erie. In the lake, biological and sedimentological
materials within the water column can result in an optically complex
and optically inhomogeneous environment. These particular algo-
rithms were chosen as they have performed well over a wide range of
chlorophyll a concentrations (O'Reilly et al., 1998, 2000). Of the
twelve algorithms, none performs adequately in the lake as awhole or
in any of the three sub-basins of the lake. In the western basin, the
oceanic algorithms produce highly inaccurate estimates of the
chlorophyll a concentration, and some algorithms fail to produce the
dynamic range observed in the field dataset. In the eastern basin,
scatter was less problematic, but at low chlorophyll a concentrations,
the oceanic algorithms tend to produce estimates that are biased high.
Results for the central basin are intermediate between those of the
western and eastern basins.

Even under the most ideal conditions, a wide range of factors can
contribute to differences between chlorophyll a concentrations
measured from field-collected samples and estimates calculated
using satellite-collected spectral data. These include differences in
fluorescence measurements versus color-based estimates, effects of
uncorrected atmospheric effects, differences due to inexact spatial and
temporal collocation of paired field and satellite observations,
variations in illumination in the satellite dataset, and errors
introduced as a result of comparing chlorophyll a from a sample
collected at a single depth and location with satellite observations
which are representative of the optical depth of the water column,
averaged over the pixel dimensions for the satellite sensor. In Lake
Erie, these factors are further confounded by terrestrial influences on
the atmosphere and by an inhomogeneous distribution with occa-
sionally high loads of other CPAs within the water column (e.g.,
CDOM, suspended sediment, accessory pigments).

Because some aspects of the poor comparison between the in-
water observations and satellite estimates may be due to the inland
location of Lake Erie and the presence of Case 2 waters within it, the
possibility of using a regional algorithm was explored. An algorithm
derived by Darecki and Stramski (2004) for the Case 2, inland waters
of the Baltic Sea produced slightly better comparisons with the field
observations. This algorithm still suffered from many of the problems
common to the oceanic algorithms, most notably high scatter at the
western basin and systematic overestimation of low chlorophyll a
concentrations.

Regional algorithms were then derived for the lake as a whole and
for each individual basin of the lake. While the field dataset was not
large enough to independently validate these algorithms, comparison
of chlorophyll a measured from water samples and estimated from
satellite observations provides a measure of the outlook for applying
regionally developed algorithms to Lake Erie. The performance of
these algorithms varied across the lake, with poorest results obtained
for the western basin and the most optimal results obtained for the
eastern basin. Of particular interest is the impact of the regional
algorithms on the bias of the satellite estimates at low chlorophyll a
concentrations. Systematic overestimates of low chlorophyll a con-
centrations obtained by applying oceanic algorithms to inland water
have previously been attributed to CDOM in Lake Superior (Budd and
Warrington, 2004; Li et al., 2004) and in the Baltic Sea (Darecki and
Stramski, 2004). In Lake Erie, CDOM is known to covary with
chlorophyll a (Twiss et al., 2006), and thus may contribute to a
similar bias observed here at low chlorophyll a concentrations.

The very low scatter evident for the eastern basin regional
algorithm indicates that unresolved atmospheric effects do not
dominate the satellite signal in the eastern basin dataset used here.
The influence of atmospheric contamination, as gauged from the
percentage of masked pixels in the SeaWiFS dataset, does not vary
substantially among the three basins, suggesting that, while some of
the residual scatter observed with the regional algorithmsmay be due
to unresolved atmospheric effects, it is likely that most of the residual
scatter in the central and western basins is due to other factors. The
western basin is known to have high loads of suspended sediment
(Kemp et al., 1977; Marvin et al., 2007), and to have relatively high
concentrations of algae withmultiple accessory pigments (Ghadouani
and Smith, 2005). These can confound the satellite signal, making it
difficult to separate chlorophyll a from other CPAs. Other issues, such
as differences in the spatio-temporal characteristics of the field and
satellite samples, and small-scale variability (see, e.g., Vincent et al.,
2004) may also contribute to the observed differences.

In most regions of Lake Erie, results from this study provide a
positive outlook for the use of locally calibrated algorithms with
mathematical forms similar to those used for the ocean. In the eastern
basin, use of a regional algorithm greatly improves statistical
measures of algorithm quality, indicating that an algorithm with a
power-law formmay be effective in this region of the lake.While there
are some remaining issues in the central basin (particularly at higher
chlorophyll concentrations), a regional approach using “ocean-like”
algorithms also represents a significant improvement over direct use
of oceanic algorithms there. In the western basin, the regionally
calibrated algorithms considered here do not produce satisfactory
results, and a different approach to algorithm development is needed.

In terms of the specific steps needed for algorithm improvement, a
better understanding of the spectral characteristics of CPAs within the
water is essential. These CPAs are a possible cause of the large scatter
obtained for thewestern basin regional algorithm and the low slope of
the best fit line in the central and western basins. While the dataset
used in this study was extensive in terms of its geographic coverage,
multiple years and multiple seasons of sampling, the number of valid
field-satellite collocated pairs was small, precluding independent
validation of the regional algorithms. Thus another important
consideration for future field sampling is the need for a larger
chlorophyll a field dataset for calibrating and independently validat-
ing satellite algorithms.
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