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Abstract

Estimates of the length of the Last Interglacial in Europe, conventionally defined by the presence of forest as inferred from pollen

diagrams, have varied considerably. Here an account of recent developments, largely instigated by a paper by Kukla et al. (1997), is

presented. These include the emergence of new records with improved chronologies and a re-evaluation of previous assumptions of

synchroneity between marine and terrestrial stage boundaries and also between northern and southern European changes. The

current scheme proposes that the onset of the Last Interglacial in Europe started well into MIS 5e, after deglaciation was complete

and was coincident with a rise to peak sea-surface temperatures. However, the timing of the end of the Last Interglacial between

northern and southern Europe appears to have diverged considerably: in the north the elimination of forest occurred ca 115 ka, near

the time of the MIS 5e/5d transition, while in the south tree populations persisted into the interval of global ice growth, until the

onset of significant ice rafting ca 110 ka. This significant N–S diachroneity may be a reflection of the effects of different bioclimatic

parameters limiting tree growth in the two areas. These developments highlight the problems of correlating records of different

proxies and from different geographical regions.

r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The Last Interglacial represents the most recent
geological period during which conditions were similar
to the present interglacial, but with negligible anthro-
pogenic effects. In Europe, despite an abundance of Last
Interglacial pollen records, a persistent handicap has
been the lack of sufficiently precise absolute timescales
and regionally or globally synchronous stratigraphical
markers. This means that long-distance correlation
between sites has been problematic and, moreover,
inferred terrestrial changes are difficult to place within
the global framework of ice volume and sea-level
changes. By extension, there has been considerable
uncertainty regarding the length of interglacial condi-
tions on land and the timing and nature of vegetation
and environmental changes towards the end of the
interglacial. Resolving this is critical because ultimately,
in order to have confidence in improved predictions of
future changes, there is a need to establish the mode and

tempo of natural climate variability during situations
that resemble the present configuration.

The first important contribution towards an under-
standing of the duration of the Last Interglacial on land
was made by Shackleton (1969) who proposed that the
Eemian interglacial of NW Europe was not equivalent
to the entire Marine Isotope Stage (MIS) 5 of the deep-
sea stratigraphy, but rather to an interval within it
(substage 5e). By extension, this meant that the Last
Interglacial did not have a duration of half an
eccentricity cycle (ca 50 thousand years [kyr]), but
rather half a precessional cycle (ca 10 kyr). Astronomical
calibration of the marine timescale provided an age of
128 thousand years before present (ka) for the mid-point
of the transition from glacial to interglacial values and
116 ka for the interglacial-to-stadial transition (e.g.
Imbrie et al., 1984). This appeared to be in agreement
with the first direct terrestrial evidence from an Eemian
sequence at Bispingen, Germany, which indicated a
duration of ca 11 kyr (M .uller, 1974). The figure was
based on counts of annual laminations covering part of
the Eemian and extrapolation based on sedimentation
rates for the remainder. Although, the emergent
chronology was not anchored by any absolute dates,
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the good correspondence between the marine and
terrestrial estimates for the duration of the Last
Interglacial led to the assumption that the lower and
upper boundaries of the MIS 5e and the Eemian must
have been broadly synchronous.

Given the uncertainties associated with dating terres-
trial material beyond the radiocarbon limit, the notion
of presumed synchroneity between marine and terres-
trial stage boundaries, led to attempts to assign the
marine timescale to terrestrial sequences. This approach
was used by Tzedakis et al. (1997) who aligned the four
longest pollen sequences of the last 500 kyr from
southern Europe to the SPECMAP stacked d18O record
(Imbrie et al., 1984). Glacial-to-interglacial transitions
were used as the tie points on the basis that these
transitions represent relatively rapid events and the
response of vegetation would not have significant delays
in southern Europe because of proximity to glacial
stations of temperate trees. However, Tzedakis et al.
(1997) refrained from fixing the ends of interglacials to
the marine timescale, reasoning that the elimination of
interglacial vegetation may represent a temporally
diffuse event and that in the absence of direct evidence
from southern Europe, it may have been inappropriate
to tune the records more intensely. The effect of using
only the onset of interglacials as the tie points was that
terrestrial interglacials appeared to continue well into
the time of the ensuing glacial interval in the marine
stratigraphy. In the case of the Last Interglacial, the
onset of the terrestrial interglacial (defined by the
expansion of forest) was fixed at 128 ka, but the end of
the forest period in the pollen sequences appeared to
extend until around 111 ka, well into MIS 5d. Tzedakis
et al. commented that the stadial period following the
Last Interglacial appeared to be much shorter than the
length of MIS 5d on the marine stratigraphy, but
stopped short of making any generalizations on the
length of interglacials, other than underlining the need
for the development of independent terrestrial chron-
ologies.

In contrast, that same year Kukla et al. (1997) did not
shy away from making strong statements on the length
of the Eemian on the basis of a similar land-sea
alignment exercise. Kukla et al. tuned the Grande Pile
pollen record, one of the legendary European sequences
(Woillard, 1978), to the marine stratigraphy of North
Atlantic record V29-191 (McManus et al., 1994), by
fixing the beginning of the Last Interglacial to the MIS
6/5 boundary (at 130 ka) and the onset of the early
Pleniglacial to the MIS 5/4 boundary (at 74 ka).
Interpolating between these ages led to an inferred
duration for the Last Interglacial at Grande Pile (locally
defined as the Lure Interglacial) of 23 kyr, from 130 to
107 ka. Kukla et al. concluded that the Lure extended
well into MIS 5d and that the end of the terrestrial
interglacial was coincident with the onset of significant

ice rafting in the North Atlantic (event C24 of
McManus et al. (1994). Underlying this conclusion,
was the earlier observation that in core V29-191 the
change towards heavier benthic oxygen isotope values,
indicating the transition from MIS 5e to 5d, pre-dates
the re-appearance of ice-rafted detritus and of the polar
foraminifera N. pachyderma (s) associated with event
C-24 (McManus et al., 1994). This implied that warm
conditions persisted in the North Atlantic for several
thousand years after the initiation of ice cap growth and,
by extension, could explain the prolonged duration of
the Eemian well into MIS 5d (see also Broecker, 1998).
In September 1998, Kukla presented these views to a
meeting of the Subcommission on European Quaternary
Stratigraphy in Kerkrade, The Netherlands. The issue
was revisited a year later at an Eemfest meeting in
honour of George Kukla at Lamont Doherty Earth
Observatory of Columbia University, New York, USA1.
The opposing case for a short interglacial duration was
presented by Merkt who showed evidence from addi-
tional sites in Germany with annual laminations,
extending the Bispingen absolute chronology (and
thereby reducing the interval of extrapolation) and
providing further support for a short duration of ca 10–
11 kyr (Caspers et al., 2002). However, by this time
evidence for an interglacial duration somewhere be-
tween the long and short chronology was beginning to
emerge from southern Europe. Tzedakis et al. (2002)
presented a Last Interglacial pollen record from
Ioannina, Greece, which was astronomically calibrated,
using a direct vegetation-orbital link. According to this
age model, the Last Interglacial lasted 16 kyr, from ca
127 to 111 ka. The most compelling evidence, however,
was by Shackleton et al. (2002, in press) who presented
results from a high-resolution pollen record in deep-sea
core MD95-2042, located off southwest Portugal. The
sequence was supported by detailed benthic and
planktonic d18O stratigraphies and a chronology based
on inferred sea-level still-stands correlated with radio-
metrically dated marine coral terraces. This meant that
pollen-stratigraphical changes could be directly com-
pared with changes in global ice volume and could be
also placed within an absolute chronological framework
(Fig. 1). The length of the forested interval was 16 kyr,
with the onset at 126 ka and the end at 110 ka, while the
lower and upper age boundaries for MIS 5e were 132
and 115 ka, respectively. Although the actual date for
the MIS 6/5e boundary (the mid-point of the deglacia-
tion) may be a matter of some debate, with certain
researchers favouring an even earlier timing (e.g.
Henderson and Slowey, 2000; Gallup et al., 2002), the
phase relationship between pollen and benthic d18O

1Proceedings of this meeting were published in the July 2002 issue of

Quaternary Research, in the form of a long joint summary (Kukla

et al., 2002a,b) and additional short papers by individual participants.
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Fig. 1. (i) Benthic and plaktonic d18O data and summary pollen curves from MD95-2042, off southwest Portugal (from Shackleton et al., 2002); (ii)

arboreal pollen (AP) percentages from Bispingen, Germany (M .uller, 1974); the onset of the Eemian is here aligned with the terrestrial interglacial in

MD95-2042 and then the AP curve is plotted on the timescale of Field et al. (1994); and (iii) June insolation 651N (Berger, 1978).
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records derived from the same sediment sequence is
independent of the precise chronology and clearly
reveals that neither the lower nor upper boundaries of
terrestrial and marine stages are coincident. The onset of
interglacial conditions on land (expressed by the full
expansion of tree populations) occurred inside MIS 5e,
well after deglaciation was complete and was coincident
with a rise to peak sea surface temperatures. This result
is in disagreement with the scheme in the Netherlands
(where the Eemian type locality is defined), according to
which sea level continued to rise during the first 3–4 kyr
(into the Corylus zone) of the terrestrial interglacial
(Zagwijn, 1983; van Leeuwen et al., 2000)2. However, it
should be remembered that the Scandinavian ice sheet
reached the Netherlands during the Saalian and there-
fore local sea level history is bound to be complicated by
glacio-isostatic movements (e.g. Lambeck and Chappell,
2001). At the end of MIS 5e sea surface temperatures
began a gradual decline, but essentially interglacial
conditions persisted on land with tree populations
continuing to survive into MIS 5d, albeit at somewhat
reduced densities. The onset of significant ice rafting in
the North Atlantic after 110 ka led to the disruption of
the thermohaline circulation and an abrupt change in
temperature and precipitation regimes, leading to the
elimination of tree populations in SW Iberia.

The evidence of Shackleton and co-workers appeared
incontrovertible, but its significance to northern Europe
was not immediately apparent. If both the German and
Portuguese chronologies were correct, this would imply
significant diachroneity between northern and southern
Europe and the presence of a steep N–S vegetation
gradient for 5 kyr during the first half of MIS 5d. What
would have led to the demise of northern European
forests so much earlier than in the south? More recently
an Eemian workshop was convened by Sirocko, Junge
and Boettger in Leipzig in March 2002, under the
auspices of the German DEKLIM Project. Members of
the marine, ice core and terrestrial communities were
present, along with climate modellers who added an
important dimension to the discussion by shedding light
on the conditions leading to glacial inception. In
contrast to earlier meetings, a broad consensus appeared
to emerge by the end of the workshop. The following
represents a possible scenario of the main environmental
and vegetation changes in Europe during the Last
Interglacial, pieced together from recent developments
and discussions over the last 5 years.

Reconstructions from sites distal to ice fields suggests
that sea level had reached present values by ca 128 ka

(e.g. Lambeck et al., 2002; Muhs, 2002). What is
interesting about the penultimate deglaciation is that it
preceded the Northern Hemisphere summer insolation
peak (ca 127 ka at 651N), in contrast to the last
deglaciation where sea level reached near-present eleva-
tion at ca 6 ka, much later than the insolation peak at ca
11 ka (Lambeck and Chappell, 2001). This asymmetry
may appear at odds with Milankovitch forcing, but it is
worth remembering that during Termination II ob-
liquity peaked earlier (132 ka) than precession (127 ka),
while Holocene equivalent peaks were at 10 and 11 ka,
and that June insolation at 651N had already reached
Holocene maximum values by 131 ka (Berger, 1978).
The combined effect of these factors led to early summer
warming in higher latitudes during Termination II, and
climate models suggest that Northern Hemisphere land
areas were warmer than present by 130 ka (Crowley and
Kim, 1994). In addition, the interplay between insola-
tion, ice melting and isostatic rebound may have led to
the differences in deglaciation patterns of Termination I
and II, and it may be that the last deglaciation is
anomalously slow and episodic compared to the
penultimate (e.g. Alley et al., 2002).

In Europe, although small increases in tree popula-
tions in the south are recorded in some sites after 129 ka,
the onset of full interglacial conditions on land occurred
at approximately 126 ka (Fig. 1). There is some evidence
of a Lateglacial oscillation around 127 ka, perhaps
coincident with Heinrich event 11 (Shackleton et al.,
2002). However, the extent of this oscillation appears to
have been smaller than the Younger Dryas event during
the most recent deglaciation. This means that there was
no significant setback to the northward spread of tree
populations and this can explain the very fast migration
rates that appear to characterize the early Eemian (as
determined in annually laminated sediments). Thus, the
degree of diachroneity between southern and northern
Europe for the onset of Last Interglacial forest
expansion appears to have been small (on the order of
a few hundred years), although regional species compo-
sition differed (e.g. Turner, 2000). Around 125 ka,
southern Europe was characterized by a significant
expansion of Mediterranean vegetation (including a
high proportion of olive trees), a reflection of hot
summers associated with the insolation maximum, while
the area north of the Alps was dominated by deciduous
forest (mainly hazel) (e.g. van Andel and Tzedakis,
1996). As a result of orbital changes, a gradual reduction
in Northern Hemisphere summer insolation led to a
decrease of temperatures after 120 ka. This would reduce
the amount of accumulated growing-season warmth,
which is critical for the survival of boreal forest trees
and determines the boundary between tundra and taiga
(e.g. Prentice et al., 1992). Model simulations (Crucifix
and Loutre, 2002) suggest that after 120 ka, sea-ice and
tundra vegetation expanded between 60–901N. The

2The relative timing of the marine transgression in the Netherlands

is determined in coastal sequences which record a change from

lacustrine to lagoonal and finally marine facies that can be compared

in situ with the pollen zonation scheme, while its duration is estimated

via correlations with the Bispingen chronology (Zagwijn, 1983; van

Leeuwen et al., 2000).
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effect of this would have been to increase albedo,
leading to the settlement of perennial snow. Through
time, this continued trend towards reduced summer
warmth might have contributed to a retreat of the
tundra/taiga boundary further to the south, leading to
the disappearance of tree populations in northern
Europe by ca 115 ka. However, forest in southern
Europe is not limited by the degree of summer warmth,
but largely by moisture availability. During the early
stages of ice growth most of the subpolar North Atlantic
appears to have remained warm, with some cooling
being more prominent in the northern and western
sectors (Chapman and Shackleton, 1999; McManus
et al., 2002). Northward oceanic heat transport con-
tinued to operate, providing a moisture source for ice
sheet growth (McManus et al., 2002). With oceanic and
atmospheric circulation patterns remaining largely un-
changed, winter storm tracks would continue to deliver
the necessary precipitation for the survival of tree
populations in southern Europe. A centennial-scale
episode involving a reduction in forest cover ca 118 ka
in a number of southern European records (e.g.
Tzedakis et al., in press) may have been related to a
brief reduction in North Atlantic Deep Water formation
(e.g. Cortijo et al., 1994; Lehman et al., 2002), but this
had no long lasting impact on vegetation. After 115 ka
there was an overall trend towards more reduced forest
cover in southern Europe, but tree populations con-
tinued to persist for another 5000 years. However, by
110 ka sufficient ice volume had accumulated to initiate
ice rafting in the North Atlantic and disruption of the
thermohaline circulation. This, in turn, led to a
reduction in moisture availability, causing the abrupt
demise of southern European tree populations.

Does this represent the final word on the matter? Far
from it. First of all, the timing and nature of H11
remains unclear; if deglaciation was complete by ca
128 ka, what could have caused the postulated ice-
rafting event at ca 127 ka? In addition, there is also a
need to replicate the patterns emerging from the marine
sequence off Portugal at other European margins as well
as the other side of the Atlantic. More specifically, does
the onset of the Last Interglacial show a lagged sea
surface temperature and tree population response
relative to deglaciation everywhere, or is it geographi-
cally dependent? As regards the end of the terrestrial
interglacial, if the large diachroneity between southern
and northern Europe is indeed correct, where does this
leave areas in between, such as France? Did the
interglacial there end at ca 115 ka or 110 ka, or
somewhere in between? By extension, how steep was
the vegetation gradient in Europe during the first half of
MIS 5d?

Although most ‘Eemianites’ would by now consider
the value of 23 kyr for the duration of the Last
Interglacial at Grande Pile as suggested by Kukla et al.

(1997) to be overestimated (to varying degrees3), it is
important to acknowledge the influence that paper had
in stimulating the research that led to recent develop-
ments. In a sense, Kukla let the genie out of the bottle
and made us reconsider some long-held beliefs. More
importantly, he initiated a debate which led to a
renewed effort by the palaeoclimate community to
generate new data sets designed to test the competing
models and advance our understanding of the length of
interglacials, an issue of potentially significant implica-
tions for future predictions.
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