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ABSTRACT 
 

This study shows how artificial neural networks can be used to model consumer choice.  Our 
study focuses on two key issues in neural network modeling – model and feature selection.  
Using the cross-validation approach, we address these two issues together and specifically 
examine the effectiveness of a backward feature selection algorithm for consumer situational 
choices of communication modes. Results indicate that the proposed heuristic for feature 
selection is robust with respect to validation sample variation. In fact, the feature selection 
approach produces the same best subset of features as the all-possible-subset approach.  
Keywords: Consumer choices, feature selection, model building, cross validation, prediction 
risk.  

 
INTRODUCTION 

 
Understanding consumer choice is crucial to effective marketing management. Previous studies 
have shown that consumer choice is a function of consumer demographics, psychographics, the 
consumption motives and goals [3] [19], and the specific consumption situational context [28]. 
Accurate information on the relative importance of these variables makes it possible for firms to 
more effectively price and promote their products and services. 
  
Logit models are traditionally used for predicting consumer choices [6] [27].  These models are 
useful for understanding and predicting brand choice behavior and examining the effects of 
marketing mix and demographic variables on consumers’ choice of products. The limitation of 
this model, however, is the essentially linear form of the utility function that is used to calculate 
the probability or odds-ratio of making a specific choice. Although nonlinear terms such as 
interactions could be added into the model, the inclusion of such terms requires knowledge of the 
underlying structure of the utility function. 
 
Artificial neural networks are a promising modeling tool to overcome the above-mentioned 
limitation of logit model as well as other linear parametric models used in modeling consumer 
choices. Neural networks have enjoyed increasing popularity and have been applied to a large 
number of business problems. For example, [17] uses neural networks and traditional time series 
methods to forecast state tax revenues. [12] compares a number of nonlinear methods for 
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predicting earnings surprise and returns. In marketing, we have found applications of neural 
networks in forecasting market share [2], predicting market response [10] [35], modeling repeat 
purchase purchasing in direct marketing [4], market segmentation [24] [36], and consumer brand 
choice modeling [5] [37]. 
 
As West et al. [37] point out in modeling consumer choice with neural networks, market 
researchers typically treat neural network models as a black box.  It is evident that market 
researchers are not able to fully appreciate the power of neural network models.  As a result these 
models have made very limited inroads into the standard toolbox of these researchers.  The 
hesitation on the part of market researchers is also due to their limited understanding of how 
neural networks can be used for feature selection.  Most neural network applications in consumer 
choice models rely on logit or logistic regression for variable/feature selection before subjecting 
the reduced set of features to neural network models for prediction purposes [37]. 
 
In this paper, we present a case study on neural network model building for consumer situational 
choice for long distance communication. Building a successful model that relates important 
consumer characteristics such as demographic and situational factors to their choice among 
various modes of communication is a valuable exercise to telecommunication companies. The 
model can help focus their effort in planning, advertising, and target marketing and thus enhance 
a company’s competitive position. In the process, we highlight the critical issues we have 
identified previously in building neural networks:  
 
• Model selection. Selection of an appropriate model is a non-trivial task. One must balance 
model bias (accuracy) and model variance (consistency). A more complex model tends to offer 
smaller bias but greater variance. Among neural networks, a larger network tends to fit a training 
data set better but may perform poorly when it is applied to new data. 
 
• Feature selection. All modeling efforts should strive to achieve parsimony. So the goal here 
is to build a model with the fewest number of independent variables yet producing equal or 
comparable predictive power as larger models. For neural networks, as statistical parameter or 
model testing is difficult to apply, more computational intensive methods must be employed to 
determine the variables that should be included in a model.  
 

 
MODEL AND FEAURE SELCTION 

 
Model selection addresses the issue of what is the appropriate neural network model for a given 
sample. Theoretically, model selection is based on the trade-off between model bias and model 
variance [15]. The bias of a model relates to the predictive accuracy of the model, whereas 
variance refers to the variability in the predictions. A model with low bias — by having many 
hidden nodes, for example — tends to have high variance. On the other hand, a model with low 
variance tends to have high bias.  
 
The model bias measures the extent to which the average of the estimation function over all 
possible data sets with the same size differs from the desired function. The model variance, on 
the other hand, measures the sensitivity of the estimation function to the training data set. The 
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well-known bias-plus-variance decomposition of the prediction error is the guiding principle for 
model building and selection.  
 
Feature selection is an important component of model building. The issue of feature selection is 
also closely related to the bias-variance or learning-generalization tradeoff discussed above. The 
objective of feature selection is to identify a small number of features that contribute most to 
model learning. Since exhaustive search through all possible subsets of feature variables is often 
computationally prohibitive, most of the feature selection methods use stepwise search 
algorithms such as forward addition and backward elimination approaches similar to those 
commonly used in linear statistical modeling. The forward addition approach successively adds 
one variable at a time, starting with one variable, until no attractive candidate remains. The 
backward elimination approach starts with all variables in the model and successively eliminates 
one at a time until only the ``good'' ones are left. Most of the feature selection algorithms in 
neural network research are based on the backward sequential method.  
 

 
RESEARCH DESIGN 

 
Data 
 
The American Telephone and Telegraph Company maintained a residential consumer diary 
panel to study the consumer choice behavior in selecting long distance communication modes 
over time [26]. The company embarked on a major research effort to understand the effect of 
situational influences on consumer choices of communication modes. It is envisioned that the 
usage of long distance phone calling is largely situational since the service is readily available 
within a household and is relatively inexpensive. A demographically proportional national 
sample of 3,990 heads of households participated in the study over a twelve-month period. The 
sample was balanced with respect to income, marital status, age, gender, population density and 
geographic region. Each participant has to record the specifics on a weekly basis of one long 
distance (50 miles or more) communication situation.  
 
The communication modes being reported are of three types, long distance telephone calling 
(LD), letter or card writing. Since long distance telephone calling is verbal and the other two are 
non-verbal, letter and card in this study are combined into one category. The dependent variable, 
COMMTYPE, is coded as `1' for LD and `0' for `letter and card'.  
 
In a pre-diary survey, each respondent was asked to provide information on the usage rate of LD 
(MEANCALL) and written communications (MEANLET) in a typical month. Each diarist also 
provided information on five communication situation related variables for a specific 
communication that has taken place in a diary week. The selection of these factors is based on 
research findings in [21] [26]. These input variables will be treated as initial feature variables in 
our modeling effort. The seven factors are presented as follows: 
1. MEANLET: Average number of cards and letters combined in a typical month 
2. MEANCALL: Average number of calls in a typical month 
3. TYCALL: the nature of the communication decision, whether it is `impulse' (coded as `0') or 
`planned' (coded as `1');  
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4. REASON: Reason for communication, `ordinary' (coded as `1') or `emergency' (coded as 
`0');  
5. RECEIVER: Receivers of the communication, `relatives' (coded as `1') or `friends' (coded as 
`0');  
6. NUMCALLS: Total number of LD calls made and received in a particular week, and  
7. NUMLET: Total number of letters/cards sent and received in a particular week. 
 
Methodology 
 
As detailed in the following sections, we propose a backward-elimination procedure for feature 
selection. An experiment was conducted to evaluate our procedure, and it consisted of training 
neural networks with all possible combinations of the feature variables and computing the 
prediction risks of each trained network. Results from the backward elimination procedure were 
then compared with those from all possible combinations.  
 
The methods to determine the appropriate network architecture can be summarized as follows.  
1. Eliminating arcs whose weights are small or nonsignificant.  
2. Eliminating arcs whose saliency measure is small. Saliency is typically based on the partial 

derivative of the SSE with respect to the arc. Methods differ in the approximation of this 
derivative. The optimal brain damage of [25] defines saliency of arc i as 2/2

iii wH  where Hii 
is the i-th diagonal element of the Hessian matrix, the matrix of second derivatives (of SSE 
with respect to arc weights), and wi is the weight of arc i.  

3. Building networks with different numbers of hidden nodes and then selecting one using some 
performance measure on validation sample. For example, the measure used by Moody and 
Utans [29] is the prediction risk discussed below and it is the mean squared error on the 
validation set, adjusted by the number of weights.  
 

We use a method for feature selection based on our measure of prediction risk, which is quite 
similar to that of Moody and Utans [29]. Moody and Utans’ variable elimination approach is 
based on sensitivity analysis under the framework of prediction risk. Given a trained network of 
n features and h hidden nodes, denoted as h

nM , the prediction risk can be estimated as the mean 
sum of squared errors (SSE) of a validation set V. That is,  
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where |V| is the number of patterns in the validation set: V=(Y,T), where T is the matrix of target 
values, Y the output of the network, and l the number of output nodes of the neural network h

nM . 
As the validation sets in our study are all of the same size, we use the sums of square error 

( )h
nMSSE  as a measure of prediction risk in our research. The procedure is detailed below: 

1. Start with all n features and train a network over a range of hidden nodes; i.e., h=0, 1, …k. 
2. Select the optimal hidden nodes h* which yields the smallest sums of squared errors 

( )h
nMSSE .  
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3. Reduce the number of features by 1, and train every possible (n-1) feature network with h* 
hidden nodes. Let ( )*

)1(
* h

nMSSE −  indicate the network with the smallest SSE of the (n-1) 
networks.  
4. If ( )( ) ( )h

n
h
n MSSEMESS ′′
− ≤′ 1 , then n=(n-1), and go to Step 3; otherwise, go to Step  

5. Use the features selected in Step 3, train networks over the range of hidden nodes used in 
Step 1 and select the optimal hidden nodes h* again.  

 
 

RESULTS 
 

To evaluate the effectiveness of the feature selection procedure, we consider all possible subsets 
of the seven potential feature variables identified. With all-possible-subset results, we are able to 
compare results from our feature selection method to those obtained from the best combination 
of features. In this AT&T situational choice study, we are able to consider all possible subsets 
due to the small number of feature variables. It will be very difficult if not impossible to 
experiment all possible subsets when the number of features is large.  
 
A neural network was set up for each of the 127 possible subsets of the seven input variables. 
Each network was then trained using 8 different architectures (0 to 7 hidden nodes). These 
correspond to a total of 1,016 networks. Table 1 shows the minimum sum of squared errors 
(SSE) across all hidden nodes and subsets of feature variables for each validation sample. In 
validation sample 1, among the seven 1-variable networks, variable 6 (not shown) with 4 hidden 
nodes is tied with variable 6 with 3 hidden nodes with SSE equal to 103.87. Among the 6-
variable networks, the network with 2 hidden nodes has the minimum SSE of 68.62. The network 
with the smallest SSE among all combination of variables and hidden nodes is shown in bold.  
 
Results from validation sample 2 are similar to those from sample 1. Both indicate that the 6-
variable network with variables 2, 3, 4, 5, 6 and 7, and 2 hidden nodes has the smallest SSE. 
Validation set 3 shows a slight difference from the other two samples. The 4-variable (variables 
4, 5, 6, and 7) with two hidden nodes has the smallest SSE. 
 
Next, we experiment with the backward elimination procedure. The seven input variables were 
trained in eight network architectures, hidden nodes from 0 to 7. With validation sample 1, Table 
1 shows that the network with two hidden nodes has the smallest SSE of 73.73 for seven 
variables. With the number of hidden nodes fixed at 2, we then proceeded to examine the SSEs 
from the seven 6-variable networks. As shown in Table 3 (not shown), the network with 
variables 2, 3, 4, 5, 6, and 7 has the smallest SSE, 68.62. Further elimination of variables resulted 
in an increase in SSE. The set of variables 2, 3, 4, 5, 6, and 7 is then used to train networks with 0 
to 7 hidden nodes, and the minimum SSE corresponds to the network with two hidden nodes. So 
the recommended feature set, based on validation sample 1, is variable combination of 2, 3, 4, 5, 
6, and 7. The best network architecture is the one with two hidden nodes. This is the same “best'” 
selection suggested by the all-subset experiment.  
 
Overall results indicate that the feature selection procedure identifies the same “best’’ models as 
the all-possible-combination approach in all three validation samples. This suggests that the  
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Table 1: Minimum SSE across Hidden Nodes and Number of Variables 
Number of Hidden Nodes # of 

Variables 0 1 2 3 4 5 6 7 
Validation Sample 1 

1 114.68 106.13 106.13 103.87 103.87 115.04 114.74 115.24 
2 101.40 84.45 77.78 78.81 79.54 80.27 81.80 80.83 
3 98.74 79.82 73.72 74.70 76.30 77.31 77.48 76.72 
4 95.45 76.91 70.82 71.54 73.03 73.18 73.74 73.97 
5 92.88 74.38 68.68 70.23 69.95 73.18 74.66 75.45 
6 92.24 75.37 68.62 70.73 72.37 72.88 73.32 75.29 
7 92.29 75.51 73.73 74.38 77.65 78.31 80.84 82.72 

Validation Sample 2 
1 115.19 103.11 103.11 98.27 98.27 110.73 109.94 110.01 
2 87.17 80.58 69.54 70.37 70.17 70.86 71.76 72.37 
3 86.21 79.44 67.70 68.09 68.66 70.25 70.47 70.85 
4 83.27 75.63 64.50 65.06 66.24 67.17 67.31 68.06 
5 82.74 74.29 63.19 64.78 64.98 66.51 69.43 70.18 
6 82.88 73.63 61.80 63.87 64.25 64.63 65.93 66.79 
7 83.14 73.67 66.46 67.73 71.31 74.24 74.65 75.46 

Validation Sample 3 
1 118.07 108.24 108.24 108.17 108.17 111.93 111.89 112.19 
2 96.29 84.18 75.00 75.19 75.74 76.64 76.51 76.97 
3 94.76 83.90 75.08 74.04 75.62 74.89 75.04 77.15 
4 91.91 79.41 72.06 72.48 72.74 73.20 74.67 75.80 
5 91.26 78.85 73.11 73.23 72.66 75.55 76.11 78.29 
6 91.52 79.74 74.03 75.55 76.09 75.21 77.68 77.04 
7 91.73 80.57 76.80 76.13 78.08 78.10 78.66 80.14 

 
feature selection algorithm based on the prediction risk is quite robust judged from 
generalization ability for new observations. In addition, we find that networks with 2 or 3 hidden 
nodes are appropriate for our application.  
 
 

CONCLUSIONS 
 

Our cross-validation experimental results suggest that the feature selection approach based on the 
prediction risk idea is very robust. The variables selected by the selection procedure correspond 
precisely to those identified by the all-possible-subset approach. Presumably the all-possible-
subset procedure should be the most comprehensive and reliable approach for feature selection. 
Therefore, we have provided credence to the effectiveness of our backward selection algorithm.  
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