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Abstract

An important aspect of running a distributed simulation is to reduce the run time of the simula-

tion. Here we develop a framework to predict the run-time performance of conservative simulations

of feed-forward networks before the simulation is run. This is done by �rst developing analytical

models to represent the e¤ect of the input and output waiting rules in conservative simulation

on the throughput rate of messages in the simulation. A uni�ed framework is then developed to

predict run-time performance. Experiments on an Intel Hypercube suggest that the framework is

quite accurate in predicting performance. By developing the framework, it is possible to evaluate

the cost e¤ectiveness of a distributed simulation without incurring the cost of the simulation.



Categories and Subject Descriptors: C.4 [Computer Systems Organization:]
Performance of Systems � Measurement techniques, modeling techniques; D.4.1
[Operating Systems:] Process Management � Scheduling; D.4.8 [Operating
Systems:] Performance � Measurements; I.6.0 [Simulation and Modeling:]
General; I.6.8 [Simulation and Modeling:] Types of Simulation � Distributed,
Parallel
General Terms: Algorithms, Measurement, Performance
Additional Key Words and Phrases: Conservative simulation, approximations, per-
formance analysis, queueing models



In recent years, distributed simulation has become a viable alternative to traditional sequential

event-list simulation. As simulations of physical systems, including many analytically intractable

feed-forward systems, can be time consuming, one potential use of parallel simulation is to reduce

run time. For example, in manufacturing it is essential to understand the impact of di¤erent system

parameters like the number of parallel servers, number of inspection stations, the allocation of tasks to

workstations, the e¤ect of bu¤er space and the assignment of workers on the throughput of jobs in the

system so that e¢ cient �ow lines can be designed. For such problems, as simulation is often the only

practical tool for analysis, distributed simulations can be used to reduce run time. But partly because

of the expertise needed to run distributed simulations (DS) e¢ ciently, it has not yet enjoyed wide-

spread use [11, 31]. This work develops a framework for predicting distributed simulation run-time

performance before the simulation is run. The framework can then be used as a tool to evaluate the

cost e¤ectiveness of running a distributed simulation, and to develop performance-enhancing strategies,

e.g., adaptive schemes, in a manner transparent to the end user.

Two popular approaches for distributed simulation (DS) are the conservative [4, 5, 6, 22] and the

optimistic paradigms [13]. Numerous studies have been conducted to study the performance of the

above two basic methods (see [11] for a summary of selected speedup measurements). To a large

extent, the performance of the distributed simulation method is a¤ected by the overheads necessary

to ensure a correct simulation. For conservative simulations, the overheads are the input and output

waiting rules that are needed to ensure proper timestamp ordering of messages [10, 17, 19, 32], while for

optimistic simulations it is the cost of rollbacks and state saving [9, 10]. As such, various methods have

been proposed for reducing overheads in distributed simulations [3, 8, 10, 12, 18, 20, 23, 24, 25, 33].

But, the trade-o¤ between seeking an optimized method and reducing overheads is still not clear.

Our work parallels Lin and Lazowska�s work in conservative simulations [19], where they study the

e¤ect of input and output waiting rules on simulation performance. As in [19], we use the Chandy-

Misra-Bryant (CMB) [4, 5, 6, 22] algorithm, but here we develop analytical models for predicting the

e¤ect of input and output waiting rules on the throughput rate of messages in conservative distributed

simulations. The models are then incorporated in a framework that can be used to estimate run-time

performance for conservative simulations of feed-forward network systems before the simulation is run.

In so doing, we may be able to improve the simulation�s run time performance by identifying potential

bottlenecks in the system before the system is run.

The rest of the paper is organized as follows: The next section brie�y reviews the CMB algorithm,

and identi�es the objectives of our research. Section 2 describes the overheads in a conservative
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Figure 1: A logical system with 6 LPs

simulation, and presents mathematical models to determine their e¤ect on the performance of DS.

Section 3 provides a framework for predicting the performance of DS. Experimental analysis is in

Section 4, while Sections 5 and 6 contain the results and conclusions, respectively. In Appendix A

we discuss how lookahead can be used more e¤ectively to improve simulation performance, while

Appendix B de�nes the variables used in this paper.

1 The Chandy-Misra-Bryant Algorithm

In this model, the physical system to be simulated is represented as a collection of physical processes

(PPs) that interact through messages. To simulate the system, each PP is represented by a logical

process (LP) in the logical (simulated) system. The logical system correctly simulates the physical

system if it predicts the exact sequence of message transmissions in the physical system. That is,

if ts1; ts2; � � � are the times at which the messages m1;m2; � � � are transmitted in the physical sys-

tem and ts1 � ts2 � � � � , then the logical system should be able to output the message sequence

{(ts1;m1); (ts2;m2); � � � }.

In DS, there is no global event list or a global simulation clock. Here each LP has its own clock

indicating how long the LP has been executing in simulation time, and events in a sequential simulation

are replaced by timestamped messages that go from LP to LP along directed channels in the logical

system. As LPs in the logical system may be assigned to di¤erent processors in the computer system,

to correctly simulate a PP, the corresponding LP must process messages in timestamped order, as

opposed to real-time arrival order. As such, a major di¢ culty in parallel simulation is to ensure that

event causality is maintained. In conservative simulation this is accomplished by ensuring that an LP

does not process a message until it is certain that it will not receive an earlier (timestamped) message.

Consider an example of a CMB simulation for a feed-forward network. Messages originate at LPs
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called source LPs. They are then sent to the next LP in the logical structure, where they are processed

and then sent to the next LP, etc., until �nally they arrive at a sink LP and leave the system. For

example, Figure 1 shows a logical system with six LPs. There LP1 is the source LP, and LP6 the

sink LP. At each LP, there are three queues: an input queue for input messages, a local event queue

for events scheduled for the LP itself, and an output queue for output messages (in practice, the local

event and output queues are combined). Messages in the above queues are sorted in non-decreasing

timestamp order. Initially, some events are scheduled in the local event queues of LPs (source LPs

must have non-empty event queues initially). Then each LP, say LPN , repeats the following steps:

Step 1: LPN waits until at least one message from each input channel is in its input message queue.

Let mk, with timestamp tsk, be the message with the smallest timestamp among all waiting

messages (for source LPs, there are usually no input queues, then mk is the message with the

smallest timestamp in the local event queue). Thus LP4 in Figure 1 would wait until it received

messages from both LP2 and LP3.

Step 2: LPN processes, in order, all events in its local event queue with timestamp no greater than

tsk, as well as the message mk itself. The processing of these messages may generate new

messages and events, which should in turn be processed if their timestamps are no greater than

tsk.

Step 3: LPN then processes, in order, all output messages with timestamp no greater than tsk + d,

where d is the lookahead. For sink LPs, there are no output queues, and hence no output message

is sent.

Step 4: If mk was an end-of-simulation (EOS) event, then LPN terminates by sending an EOS

message with timestamp 1 along each output channel. Otherwise, return to Step 1.

For such simulations, in addition to the execution time incurred by a message at an LP (we say

that a message is executed at an LP to mean that it is really executed on the physical processor to

which the LP is assigned), messages may also be delayed for the following reasons:

� In Step 1 of the above algorithm, messages at LPN are blocked from further processing until

messages exist in all input queues to LPN . This waiting is called the input waiting rule (IWR),

and we say that the waiting messages have not yet satis�ed their precedence relationships. Note

that for LPs with a single input queue, precedence relationships are satis�ed immediately.
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� Messages that have satis�ed their precedence relationships wait in a ready queue until the proces-

sor becomes free to execute them. In practice, the above two waiting periods are usually com-

bined. Here, the ready queue is used to model and di¤erentiate between the two types of waiting

in the input queue.

� In Step 3, messages wait in an output queue until the LP�s clock value advances to the message�s

timestamp. This is needed to ensure that messages are sent in non-decreasing timestamp order.

This waiting is known as the output waiting rule (OWR).

As the execution cost of a message at an LP is normally a �xed cost (assuming homogeneous

processors and ignoring communication costs), an optimal implementation of the algorithm would

seek to minimize the input and output waiting overheads [16]. Here we provide a framework to predict

the run-time performance of such conservative distributed simulations before the simulation is run.

By run-time performance we mean the message throughput rate, i.e., the long-run time average rate

at which messages leave the system. If � denotes this rate, then � = lim
t!1

(number of messages that

leave the system in the �rst t time units): As throughput rate is inversely related to run time, two

implementations of a logical system can be compared by observing their throughput rates. We predict

throughput rates, rather than the actual run time of a simulation, as it is a more tangible objective

for the purposes of implementing performance-enhancing tools [27]. Therefore, the objective of our

framework is �to predict the throughput rate of messages for conservative simulations of systems with

feed-forward network topology before the simulation is run.�

The next section de�nes the waiting overheads in a conservative simulation and develops models

to predict their e¤ect on the throughput rate of messages.

2 Waiting Overheads in Conservative Simulations

The waiting overheads in most conservative simulations arise primarily because of the input and output

waiting rules (Section 1). We formally de�ne the waiting overheads as follows:

De�nition 1 Let there be n � 1 input channels to an LP, say LPN . Let mi, 1 � i � n, be the

message from input channel i that LPN waits to receive, and tri be the real time that LPN waits

before receiving mi. tri is equal to 0, if mi is already in the input channel. Then the time LPN waits

before it can execute the next input message mi is tmax;mi = maxftri; 1 � i � n} (Step 1 of CMB

algorithm). Then, tmax;mi is the input waiting overhead of the CMB algorithm.
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De�nition 2 In the CMB algorithm, LPN sends an output message mout with timestamp tsout when

LPN�s clock value equals tsout (Step 3 of CMB algorithm). Let trout be the real time that elapses

between mout joining LPN�s output queue and until LPN�s clock value advances to tsout. Then trout

is the output waiting overhead of the CMB algorithm for message mout.

There are many instances when waiting overheads can be reduced by taking advantage of the

event knowledge in the system [8, 10, 20, 23, 33]. For example, in �rst-in �rst-out systems the output

waiting overhead can be reduced to zero, as an output message can be sent as soon as it is generated.

Similarly, when lookahead is present, input messages may be processed out-of-order as long as care is

taken to send output messages in the right timestamp order. Initially, in developing our framework, we

do not exploit any event knowledge that may be inherent in the system. In Appendix A we relax this

assumption and show how lookahead capabilities may be used more e¤ectively to improve simulation

performance.

The following convention is used for naming variables: variables with a superscript �L� denote

logical time values, otherwise time units refer to physical time. Thus, if � denotes the expected

physical service time for a message, then �L denotes the expected logical service time for a message.

In addition, we use the dot �.� notation to show summation over the corresponding subscript. For

example, if �ij is the arrival rate of messages to LPj from LPi, then �:j =
P
i �ij would be the

superposition arrival rate of messages to LPj , where the summation is over all input channels to LPj .

A complete list of variable de�nitions is given in Appendix B. Finally, as our interests lies in estimating

throughput rates, variable values in our examples and experiments (given in the following sections)

are presumed to estimate long-run time averages, i.e., as time !1. Also, while we do not explicitly

de�ne variables to di¤erentiate between estimators and parameters, this distinction should be clear

from the problem context.

The next section presents an analytical model that predicts the e¤ect of the input waiting rule on

the throughput of messages in the system.

2.1 A Model to Predict the E¤ect of Input Waiting Rule on Performance

In Step 1 of the CMB algorithm, the message that is chosen from the n input channels to an LP is

the one that has the least timestamp of all waiting messages. If that message has not yet arrived (i.e.,

the channel is empty), then messages in the other input channels are blocked from further processing.

Clearly, this synchronization protocol enforces a penalty on the throughput of messages. To model
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Figure 2: Input and output process at an LP in a logical system

the e¤ect of this penalty consider Figure 2, which depicts the input processes to an LP in the logical

system. Here LPi, i 2 f1; 2; � � � ; ng, sends messages to LPN along directed input channel Ci;N at rate

�iN . The n input channels, Ci;N , i 2 f1; 2; � � � ; ng, merge into a gate. There is a single queue, called

the ready queue, connecting the gate to the node LPN , and let �0iN denote the arrival rate of messages

into the ready queue from Ci;N . Messages to LPi, i 2 f1; 2; � � � ; ng, are assumed to arrive from other

LPs in the system, or originate at LPi, if LPi is a source LP.

The gate models the IWR as follows: a message in Ci;N passes through the gate if it is the �rst

message there (messages arrive in non-decreasing timestamp order along each channel), and if the gate

is open to that channel. At any point, the gate is open to only one channel: the channel that has either

received, or will receive the message with the least timestamp among messages in all input channels.

Once the message joins the ready queue, the gate resets to the channel that will receive the message

that should be processed next. Thus the gate acts to ensure that messages join the ready queue in

non-decreasing timestamp order. The gate is an arti�cial device used to di¤erentiate between the two

di¤erent input waiting periods for a message. Messages before the gate are waiting for precedence

relationships to be satis�ed, while messages in the ready queue are waiting for the processor to become

free. If the IWR imposes no penalty on throughput, then the arrival rate of messages into the ready

queue will be the superposition rate of the n input arrival processes. That is, if �0:N de�nes this
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superposition arrival rate to the ready queue, then �0:N =
Pn
i=1 �

0
iN =

Pn
i=1 �iN . But, in conservative

methods there is usually a penalty to ensure proper timestamp ordering, and as such the arrival rate to

the ready queue is likely to be less than the above superposition rate. This indicates an unstable queue.

Therefore, in a practical implementation of this simulation some form of �ow control will be needed

for the simulation to complete normally [14]. For example, mechanisms like time windows [30] and

bounded lag [21] are used for queue stabilization. We ignore sure implementation overheads. Therefore,

our approach of modeling the e¤ect of the IWR on performance points to certain fundamental limits

on throughput imposed by the IWR. This is re�ected in our experimental results (Section 5).

While extensive work has been done in developing approximations for superposition processes for

systems with general arrival streams with a general service distribution (i.e.,
P
GI=G=1 systems),

and a prespeci�ed queue discipline like FIFO [1, 2, 34, 35, 36], to our knowledge, no results yet

exist for systems with queue discipline as de�ned by precedence relationships like those in DS. In an

earlier paper [29], mainly using extensive simulations, we developed a �rst-moment approximation for

the superposition process in a DS. Our results have since been supported in an analysis of a formal

stochastic model by Kumar and Shorey [14]. In this paper, we extend our results of [29] to develop a

framework to predict simulation performance.

To present our approximation for the superposition process arising in DS, we consider an equivalent

interpretation for the process of Figure 2. As mentioned earlier, let messages arrive at rate �iN along

channel Ci;N . Let piN (
Pn
i=1 piN = 1) represent the steady-state probability that the gate is open to

Ci;N . If messages are waiting in that channel, the �rst waiting message passes through the gate into the

ready queue. If there are no messages in Ci;N , the gate remains open to that channel until a message

arrives and passes through it. The gate then with probability pjN , independent of the previous state,

waits for a message along Cj;N . This interpretation does away with timestamped messages, and the

e¤ect of precedence relationships is mimicked by the probability gate.

To provide insight into our approximation (given below), consider Figure 2 with two input channels,

i.e., n = 2. Let successive messages arrive along channel C1;N with timestamps 1; 2; 3; � � � , and in C2;N
with timestamps 2; 4; 6; � � � . Then, independent of the physical arrival rate, for every message that

joins the ready queue from C2;N , two join from C1;N (Step 1 of CMB algorithm). Therefore, an

estimate of the steady-state probability of a message joining the ready queue from each of the input

queues is p1N = 2=3 and p2N = 1=3. For this system to be stable in C2;N , the physical arrival rate

�1N of messages in C1;N must be at least twice �2N , the physical arrival rate of messages in C2;N . If

not, �02N < �2N , and C2;N experiences an increasing queue as the simulation progresses. Conversely,
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if �1N is more than twice �2N , C1;N experiences an increasing queue with �01N < �1N . For this system

to be stable, then, �1N should be exactly twice �2N . When this is so, the timestamp increment per

unit physical time will be identical across the two input queues, and �0:N =
Pn
i=1 �

0
iN =

Pn
i=1 �iN . We

formalize this insight in our model given below. Then, an approximation for the arrival process to a

ready queue in a conservative distributed simulation is:

�0iN =
piN

(pmN=�mN )
; (1)

where
pmN
�mN

= MaximumfpiN
�iN

: i 2 f1; � � � ; ngg

Then,

�0:N =
nX
i=1

�0iN =
nX
i=1

piN
(pmN=�mN )

=
1

(pmN=�mN )
(2)

To determine the logical superposition arrival process into the ready queue, we proceed as follows:

For a logical time period of TL, the number of messages taken from each input channel is TL=�LiN ,

where �LiN is the expected logical timestamp increment in CiN . Then, an estimation of the logical

arrival rate into the ready queue is

�L:N =
Number of messages taken in that time period

Time period

=

Pn
i=1(T

L=�LiN )

TL

=

nX
i=1

1=�LiN

=

nX
i=1

�LiN (3)

Equations (1) and (2) show that the departure rate �0iN of messages from Ci;N is restricted by the

channel that observes pmN=�mN . This channel, i.e., the channel that observes pmN=�mN , represents

the channel with the least logical timestamp increment rate (TSIR). To show this, let TSIRiN denote

the timestamp increment rate in input channel CiN . Then
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TSIRiN = Expected logical time increment in CiN�s clock per unit physical time

=
Expected logical time change

Expected time between arrival of messages in channel CiN

=
�LiN
1=�iN

=
�iN

�LiN
(4)

We estimate piN , the probability of choosing a message from CiN , as:

piN =
Logical arrival rate of messages in CiN

Sum of logical arrival rate of messages across all input channels

=
�LiNPn
i=1 �

L
iN

(5)

Then, substituting Equations (3) and (5) into (4)

TSIRiN = �iN �
1

piN
Pn
i=1 �

L
iN

=
1

�L
0
:N

� �iN
piN

(6)

From Equation (6), we see that pmN=�mN (given in Equation (1)) refers to minfTSIRiN : i =

1; � � � ; ng, or to the channel with the least timestamp increment per unit time.

Each time a distributed simulation is run, the objective is to reduce the run time of the simulation.

As run time is directly related to the throughput of messages in the system, any approach to increase

this throughput should have a corresponding decrease in run time. Equations (1) through (5) allow

us to model the e¤ect of the IWR on throughput of messages. Some important implications are:

� The throughput of messages is restricted by the channel with the least timestamp increment per

unit time. That is, the channel observing pmN=�mN . Therefore to improve performance, the

objective is to minimize pmN=�mN , or equivalently, to increase the TSIR in that channel.

� The greater the inequality in timestamp increment rates among the input channels, the higher

the penalty of the IWR. The penalty is minimized when piN=�iN = pjN=�jN ;8i; j.

� When piN=�iN 6= pmN=�mN , �0iN < �iN . That is, for channels with a timestamp increment

rate (TSIR) greater than the minimum TSIR among the input channels, the departure rate

of messages through the gate will be less than the arrival rate to the gate. This signi�es an

increasing queue possibly leading to memory exhaustion.
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Clearly, to reduce the impact of the input waiting rule it is necessary to equalize the timestamp

increment rate across input channels. Two parameters can be used to do this: the probability of

choosing from an input channel, and the physical arrival rate of messages. The order in which messages

are picked from input channels (i.e., the probability of choosing a message) is determined solely by the

timestamps of the messages. For most simulations, this value cannot be changed, as usually the mean

timestamp change at an LP is a parameter that is �xed for the simulation. This is a disadvantage as

this parameter can no longer be manipulated to increase the e¢ ciency of the simulation. But as shown

in Section 3, this �xed value is also advantageous as it can be used to predict simulation performance

a priori. On the other hand, the arrival rate of messages can be changed during the simulation by a

suitable allocation of LPs to processors [26]. It is beyond the scope of this paper to provide allocation

strategies that use the framework to improve simulation performance. Here we only show how the

framework predicts performance based on the characteristics of a particular assignment of LPs to

processors. Allocation strategies can then use this information to improve performance.

The above section has discussed the e¤ect of the IWR on the throughput of messages. Models

have been developed to discuss this impact. The next section develops models to determine the e¤ect

of the output waiting rule (OWR) on throughput.

2.2 Predicting the E¤ect of Output Waiting Rule on Performance

In Step 3 of the CMB algorithm, messages wait in an LP�s output queue until their timestamp values are

less than or equal to the timestamp of the next input message to be processed by that LP (ignoring any

lookahead). This implies that the OWR that ensures proper timestamp ordering of output messages

may impose a penalty on the rate at which messages are sent from an LP�s output queue to other LPs

in the system. A graphical representation of this output process is shown in Figure 2. Here messages

to LPN arrive at rate �0:N , and are serviced at rate �N (again, service at an LP implies that it is

serviced on the processor to which the LP is assigned). If �0N: is the rate at which messages join LPN�s

output queue, then clearly �0N: = minf�0:N ; �Ng. If the output waiting rule imposes no penalty on

throughput, then the rate at which messages leave LPN�s output queue, i.e., �N:, will be equal to �0N:.

But in conservative simulations, this will rarely be the case.

As an example to illustrate the e¤ect of the OWR, consider Table I, which shows a simulation of

the input and output process at an LP, say LPN , for 10 physical time periods. (Again, for the purposes

of illustration, we assume that the average rates calculated from Table I estimate the long-run time

average behavior of the simulation.) It is assumed that the service time at that LP is negligible, and
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Table I: Departure process from an LP�s output queue

Real Input Msg. Output Msg. LP�s Clock Output Msg. Messages in

Time Arrival Scheduled (logical) Sent Output Queue

1 (m1; 10) (m0
1; 35) 10 � (m0

1; 35)

2 (m2; 20) (m0
2; 30) 20 � (m0

2; 30); (m
0
1; 35)

3 (m3; 30) (m0
3; 90) 30 (m0

2; 30) (m0
1; 35); (m

0
3; 90)

4 (m4; 40) (m0
4; 50) 40 (m0

1; 35) (m0
4; 50); (m

0
3; 90)

5 (m5; 50) (m0
5; 75) 50 (m0

4; 50) (m0
5; 75); (m

0
3; 90)

6 (m6; 60) (m0
6; 105) 60 � (m0

5; 75); (m
0
3; 90); (m

0
6; 105)

7 (m7; 70) (m0
7; 115) 70 � (m0

5; 75); (m
0
3; 90); (m

0
6; 105);

(m0
7; 115)

8 (m8; 80) (m0
8; 135) 80 (m0

5; 75) (m0
3; 90); (m

0
6; 105); (m

0
7; 115);

(m0
8; 135)

9 (m9; 90) (m0
9; 150) 90 (m0

3; 90) (m0
6; 105); (m

0
7; 115); (m

0
8; 135);

(m0
9; 150)

10 (m10; 100) (m0
10; 165) 100 � (m0

6; 105); (m
0
7; 115); (m

0
8; 135);

(m0
9; 150); (m

0
10; 165)

(mi; t) implies input message i at logical time t

(m0
i; t) implies output message i at logical time t.
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therefore an output message is scheduled instantly on receipt of its corresponding input message. For

this simulation, from Table I, the estimated physical arrival rate of messages in the input queue and

the output queue are the same, i.e., �0:N = �0N: = 1. But, the estimated expected logical timestamp

between messages, calculated by observing the logical time between messages in Table I, in the input

queue is 1=�L
0
:N = 10, and in the output queue is 1=�

L0
N: = 15. The e¤ect of the OWR can be noted by

calculating the rate at which messages are sent from LPN�s output queue. Here, the estimated expected

time between departures is 1=�N: =
(4�3)+(5�4)+(8�5)+(9�8)

4 = 3
2 . Thus, �N: = 2=3 < �0N:(= 1). This

clearly is an unstable situation, and some form of interprocessor �ow control will be needed in a

practical implementation for the simulation to complete normally. As we ignore such overheads here,

our analysis leads to certain fundamental limits on throughputs imposed by the OWR.

Two factors a¤ect the departure rate of messages waiting in LPN�s output queue: the physical

arrival rate of messages to LPN�s input and output queues, and the relative logical timestamp of

messages in the input and output queues. For example in Table I, (m0
2; 30) will wait in LPN�s output

queue until (m3; 30) arrives at physical time 3. If (m0
2; 30) has not yet been scheduled in the output

queue when (m3; 30) arrives, the departure of (m0
2; 30) from LPN is further delayed. Secondly, (m

0
2; 30)

is sent only when its timestamp is less than or equal to the timestamp of the next input message to be

processed, here (m3; 30). Therefore, messages from the input and output queues are processed in non-

decreasing timestamp order. The above conditions mirror those of the IWR where messages in input

channels wait until their timestamps are the least among all future message timestamps. This suggest

that the approximations and results of Section 2.1 may be applicable for determining the penalty

of OWR on throughput. Speci�cally, for the simulation of Table I consider applying Equations (1)

through (5) with n = 2 and channel C1;N representing the input (ready) queue and C2;N the output

queue. Then, the departure process from C2;N through the gate would represent the departure process

of messages from LPN�s output queue. That is, �02;N would represent �N:. Using data from Table I,

and Equations (1), (2) and (5): �1N = �2N = 1, �L1N = 1=10, �L2N = 1=15, p1N = 1=10
(1=10+1=15) =

3
5 ,

p2N =
1=15

(1=10+1=15) =
2
5 ,

pmN
�mN

= maxf35 ;
2
5g =

3
5 . Then, �N: = �02N =

(2=5)
(3=5) =

2
3 < �2N (= 1).

Exactly the same results as obtained directly from Table I. As in Section 2.1, it can be shown that

the departure rate from the output queue is limited by the queue with the least timestamp increment

rate. Here the TSIR for the input queue is 10 (using Equation 4) and for the output queue it is 15. As

the output queue TSIR is greater than the input queue TSIR, the departure process from the output

queue is restricted by the input arrival process. Therefore, the departure rate from the output queue

is less than the arrival rate into the output queue. As in Section 2.1, equalizing timestamp increment
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rates between the input and output queues reduces the e¤ect of the OWR. From this discussion, we

state the following:

Lemma 1 Let �I and �LI denote the physical and logical arrival rate of messages to an LP, say LPN ,

respectively. Also, let �O and �LO denote the physical and logical arrival rate of messages to LPN�s

output queue, respectively. Then, an approximation to �, the expected rate at which messages leave

LPN�s output queue, is:

� =
pO

maxf pI�I ;
pO
�O
g

where

pI =
�LI

(�LI + �
L
O)

pO =
�LO

(�LI + �
L
O)

With reference to Figure 2, �I and �LI refer to �
0
:N and �L

0
:N , the physical and logical arrival rate

into the ready queue, respectively, and �O and �LO to �
0
N: and �

L0
N:, the physical and logical arrival rate

into the output queue, respectively. The above lemma suggests that the approximations of Section 2.1

could be used to determine the penalty of the OWR if we know the arrival processes into the input

and output queues. Knowing the arrival and service processes at an LP, the arrival process into the

output queue can be determined simply as:

Lemma 2 Let �0:N and �
L0
:N denote the physical and logical arrival rates to LPN , and �N and �

L
N denote

the physical and logical service rates at that LP. Then, �0N: = minf�0:N ; �Ng and �L
0
N: = minf�L

0
:N ; �

L
Ng,

where �0N: and �
L0
N: refer to the physical and logical arrival rates of messages into LPN�s output queue,

respectively.

In their paper on waiting overheads in conservative simulations [19], Lin and Lazowska, for speci�c

distributions of arrival and service processes, derive exact results for the waiting time of messages in

the output queue. They also show that it is possible to determine E(NN ), the expected number of

input messages needed at LPN before an output message is sent. Given their results, and under the

assumption that E(NN ) can be determined, the e¤ect of the OWR on throughput can alternatively

be stated as follows:

Lemma 3 If �0N: is the rate at which messages arrive into LPN�s output queue, then the departure

rate of messages from LPN�s output queue is �N: =
�0N:

E(NN )
.

13



In the simulation of Table I, an estimate of E(NN ) is 15/10 (ratio of the expected logical time

between arrival of messages in the output queue and input queue). Using this estimate and the

above lemma, �N: =
�0N:

E(NN )
= 1=(3=2) = 2=3. The same result as obtained earlier. If E(NN ) can be

determined, Lemma 3 provides an exact answer to the throughput rate from an LP�s output queue.

But in practice, the assumptions of Lin and Lazowska�s [19], i.e., exponential or uniform time between

arrivals and exponential service time, are unlikely to be satis�ed. In such cases, Lemma 1 can be used

to determine the e¤ect of the OWR on throughput.

This section has provided ways of determining the e¤ect of the OWR on throughput. The next

section uses the results of Sections 2.1 and 2.2 to develop a framework to predict simulation run-time

performance.

3 A Framework for Estimating Run-Time Performance

Our framework to predict distributed simulation performance is based on the premise that given the

arrival processes of messages from source LPs into the system, the arrival and departure processes at

all other LPs can be predicted recursively. As the rate at which messages are deleted from the various

LPs in the system determines the throughput rate for the simulation, the run-time performance of the

simulation can be estimated.

The framework is shown in Figure 3, with supporting routines in Figures 4 through 6. Figure 4

shows the algorithm for estimating the input processes to an LP, and uses results from Section 2.1. The

algorithm for estimating departure processes from an LP uses results from Section 2.2, and is given

in Figure 5, while Figure 6 shows the estimation procedure at source LPs. The complete framework

is illustrated below, and makes the following assumptions:

Assumption 1 The distributions of logical service time at each LP and of logical time between arrival

of messages originating from source LPs are known. Speci�cally, only the �rst moment of the above

distributions need be known. As the expected logical service time and logical time between arrival of

messages that originate (are generated) at source LPs are input parameters to most simulations, this

information is readily available.

Assumption 2 For each LP, the relative magnitudes of the physical arrival and service rates can be

estimated. That is, for each LP we can determine if the physical arrival rate is greater than the service

rate there, or vice versa. The actual values of the arrival and service rates need not be known. Note
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Table II: Logical service rate for logical system of Figure 1

LP Expected Predecessor Successor

LP Type Service Rate LPs LPs

1 Source 1 � 2, 3

2 � 1
4 1 4, 5

3 � 1
2 1 4, 5

4 � 1 2, 3 6

5 � 1 2, 3 6

6 Sink 1 4, 5 �

that the relationship between arrival and service rates is a¤ected by the assignment of LPs to processors

and the polling system used to allocate processing time among various LPs in that processor. As this

is implementation speci�c, we only assume that it is possible to determine the relative magnitudes of

arrival and service rates for each LP in that system for any particular assignment of LPs to processors.

Assumption 3 The relative magnitudes of communication and processing rates are known. Knowing

this, the e¤ect of communication on throughput can be modeled.

As an illustration, consider the logical system of Figure 1 with logical service rates as given in

Table II. This logical system can be viewed as an interconnected graph with directed arcs connecting

LPs. If there is a directed arc from LPi to LPj , then we say LPi is a predecessor of LPj , or that LPj

is a successor to LPi. Table II shows the predecessor and successor LPs for each LP of Figure 1, and

lists LPs in precedence order. That is, all predecessor LPs of LPi appear before it in the list.

A step-by-step calculation of the throughput process for the logical system of Figure 1 is shown in

Table III, and is discussed below. Note that no assumption is made about the assignment of LPs to

processors. Instead we assert that the performance calculations shown in Table III are valid for any

assignment that satis�es the following problem speci�c assumptions, which are made for convenience

in illustrating the example:

Assumption 4 The physical arrival rate at each LP is less than or equal to the physical service rate

at that LP. That is, �0:N � �N ; 8N . This relates to Assumption 2 of our framework.

Assumption 5 The rate at which messages originate from source LPs is given by the algorithm in

Figure 7. Then, the physical arrival rate of messages at source LPs will be less than or equal to the
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MAIN();

/*Main routine for estimating the throughput process in a distributed simulation*/

Step 1 Sort LPs according to precedence order. That is, all predecessor LPs to LPj

should appear before it in the list. By de�nition, source LPs have no predecessors.

For each LPj taken in order from the list DO

if LPj == source LP

call source_LP_calculation(LPj);

call estimate_departure_rate(LPj);

else

call estimate_arrival_rate(LPj);

call estimate_departure_rate(LPj);

endif

end_DO

end_MAIN

Figure 3: Algorithm to estimate performance of distributed simulations
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SUBROUTINE Estimate_Arrival_Process (LPj);

/*Estimates arrival processes to an LP*/

/*Estimate arrival process along each input channel*/

�L
0
:j = 0; /* initialize logical arrival rate for superposition process*/

For each input channel to LPj from LPi DO

�ij = minf�ij ;
ijg; /* models e¤ect of communication*/

�Lij = �Lij ; /*expected logical arrival rate*/

�L
0
:j = �L

0
:j + �

L
ij ; /*Equation (3)*/

end_DO

/* Estimate superposition arrival process*/

MR = 0; /*temporary variable to represent maxfpij=�ijg*/

For each input channel to LPj from LPi DO

pij =
(�Lij)

�L
0

:j

; /*Equation (5)*/

MR = maxfMR; pij=�ijg; /*Equation (1)*/

end_DO

/*Determine physical superposition arrival rate*/

�0:j =
1
MR ; /*Equation (2)*/

end_SUBROUTINE

Figure 4: Algorithm to estimate arrival process to an LP
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SUBROUTINE Estimate_Departure_Process (LPj);

/*Estimates the net departure process from LPj�s output queue */

/*Use Lemmas 1, 2 and 3*/

�Lj: = �L
0
j: = minf�L

0
:j ; �

L
j g;

�I = �0:j ;

�O = �0j: = minf�0:j ; �jg;

�LI = �L
0
:j ;

�LO = �L
0
j: ;

pI =
�LI

(�LI +�
L
0 )
;

pO =
�LO

(�LI +�
L
0 )
;

�j: =
pO

maxf pI
�I
;
pO
�O
g ;

/*Estimate departure process along each output channel*/

For each output arc from LPj to LPk DO

�jk = �j: � qjk; /*departure rate from LPj to LPk*/

�Ljk = �Lj: � qjk; /*de�ned only for qjk > 0*/

end_DO

end_SUBROUTINE

Figure 5: Algorithm to estimate departure process from an LP
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SUBROUTINE Source_LP_Calculation(LPj);

/*Estimates the arrival process at a source LP*/

/*Estimates are implementation speci�c to the manner in which messages are generated at source LPs*/

�:j � �j ; /*using algorithm in Figure 7*/

�L:j /*estimate based on assumptions regarding logical system */

end_SUBROUTINE

Figure 6: Algorithm for calculating arrival and departure processes at source LPs

If messages are waiting then

process message

else

generate another message

endif

Figure 7: Algorithm to generate messages at source LPs

service rate at that LP. For our example, �0:1 � �1. We refer to this arrival rate of messages originating

from source LPs as the arrival rate of new messages to the system.

Assumption 6 At each source LP, the logical arrival rate of messages is equal to the logical service

rate at that LP. Thus, �L
0
:1 = �L1 .

Assumption 7 For simplicity, we assume that communication time is insigni�cant. The framework

can be easily extended to handle positive communication times by modeling communication channels

as single-server, single-queue systems [27].

To begin, we �rst predict the arrival and departure processes at all LPs with no predecessors. By

de�nition, source LPs have no predecessors. For our example, LP1 is the source LP (Table II). Let �s

denote the physical rate at which messages originate from LP1. As there is only one input channel

to LP1, �0:1 = �11 = �s and p11 = 1, and from Table II and Assumption 6, �L
0
:1 = �L11 = �L1 = 1.

From Figure 5 and Assumption 5, �01: = minf�0:1; �1g = �s, and �L
0
1: = minf�L0:1 ; �L1 g = 1. Then,
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Table III: Estimating Run-Time Performance for Logical System of Figure 1

Arrival Process Serv. Departure Process

From Equations noted in () Proc. From Lemmas noted in ()

Frm (5) (2) (3) (2) (1) Max (2) To

LPj LPi �ij �Lij pij �0:j �L
0
:j �j �Lj �0j: �L

0
j: pI pO { pI�I ;

pO
�O
} �j: LPk �jk �Ljk

1 1 �s 1 1 �s 1 �1 1 �s 1 1
2

1
2

1
2�s

�s 2 �s
2

1
2

3 �s
2

1
2

2 1 �s
2

1
2 1 �s

2
1
2 �2

1
4

�s
2

1
4

2
3

1
3

4
3�s

�s
4 4 �s

8
1
8

5 �s
8

1
8

3 1 �s
2

1
2 1 �s

2
1
2 �3

1
2

�s
2

1
2

1
2

1
2

1
�s

�s
2 4 �s

4
1
4

5 �s
4

1
4

4 2 �s
8

1
8

1
3

3 �s
4

1
4

2
3

� 3�s
8

3
8 �4 1 3�s

8
3
8

1
2

1
2

4
3�s

3�s
8 6 3�s

8
3
8

5 2 �s
8

1
8

1
3

3 �s
4

1
4

2
3

� 3�s
8

3
8 �5 1 3�s

8
3
8

1
2

1
2

4
3�s

3�s
8 6 3�s

8
3
8

6 4 3�s
8

3
8

1
2

5 3�s
8

3
8

1
2

� 3�s
4

3
4 �6 1 3�s

4
3
4

1
2

1
2

2
3�s

3�s
4 � 3�s

4
3
4
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�I = �0:1 = �s, �O = �01: = �s, �LI = �L
0
:1 = 1 and �LO = �L

0
1: = 1. Therefore, pI =

�LI
(�LI +�

L
0 )
= 1

2 ,

pO =
�LI

(�LI +�
L
0 )
= 1

2 , and �1: =
pO

maxf pI
�I
;
pO
�O
g =

pO
maxf 1

2�s
; 1
2�s

g =
1=2
1=2�s

= �s. Given the branching

probabilities in Figure 1, �12 = �1: � q12 = �s=2, and �13 = �s=2, where qij is the probability of a

message going from LPi to LPj .

Next, consider LPj such that the departure processes of its predecessor LPs have already been

estimated. As the arrival process to LPj is a function of the departure processes of its predecessors, it

(the arrival process) can now be estimated. In Figure 1, the arrival process to LP2 and LP3 can now

be estimated.

Consider LP2. From Figure 4 and Assumption 7, �12 = minf�12;
12g = �12 = �s=2, where 
12

is the communication rate between LP1 and LP2. Similarly, �L12 = �L12 = 1=2. Like LP1, LP2 has

a single input channel. Thus, �0:2 = �12 = �s=2 and �L
0
:2 = 1=2. From Assumption 4 and Figure 5,

�02: = minf�0:2; �2g = �s=2, and �L
0
2: = minf�L0:2 ; �L2 g = minf1=2; 1=4g = 1=4. Then, �I = �s=2,

�O = �s=2, �LI = 1=2 and �
L
O = 1=4. Therefore, pI =

2
3 , pO =

1
3 , and �2: =

1=3

maxf 2=3
�s=2

;
1=3
�s=2

g
= 1=3

4=3�s
= �s

4 .

Clearly, the output waiting rule has an e¤ect on throughput as the departure rate from the output

queue is less than the arrival rate of messages into the output queue. That is, �2: < �02:.

By considering LPs in order from Table II, the throughput processes from all other LPs can be

calculated similarly. As LP4, LP5 and LP6 have multiple (> 1) input channels, the e¤ect of the

input waiting rule needs to be calculated to determine the superposition arrival process. For example,

LP4 receives messages from LP2 and LP3. From Figure 4, �24 = �24 = �s=8, �34 = �34 = �s=4,

�L24 = �L24 = 1=8 and �L34 = �L34 = 1=4. Then, p24 = 1=3 and p34 = 2=3, and maxf p24�24 ;
p34
�34
g = 8

3�s
.

Therefore, �0:4 =
3�s
8 , and �

L0
:4 =

3
8 . The departure process can then be calculated as before. The

complete throughput analysis is shown in Table III.

An analysis of the results suggests the following:

� The throughput rate of messages in the system, i.e., the rate at which messages are deleted at

the sink LP, is 3�s4 , which is less than �s, the rate at which new messages enter the system. This

indicates a potential bottleneck in the �ow of messages in the system.

� At all LPs with multiple input channels, i.e., at LP4, LP5 and LP6, the timestamp increment

rate (TSIR) across input channels for an LP is the same. For example, the TSIR for both

input channels to LP4, C2;4 and C3;4, is �s (using Equation (4)). As such, the IWR imposes no

penalty on throughput. As precedence relationships are always satis�ed for LP�s with a single

input channel, �0:N =
Pn
i=1 �

0
iN =

Pn
i=1 �iN : 8N .
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� For LP2, the TSIR for the input queue is less than the TSIR for the output queue. Therefore,

the departure rate of messages from the output queue is less than the arrival rate of messages

into the output queue. That is, �2: < �02:. Here, the OWR imposes a penalty on throughput. To

decrease the penalty, it is necessary to equalize the TSIR between the input and output queues.

At all other LPs, the TSIR in the input and output queues is the same, and so �j: = �0j: : j 6= 2.

Clearly, for this system the bottleneck is at LP2 where the OWR imposes a penalty on throughput.

For this LP it can be shown that even if Assumption 4 is violated there may be no degradation in

performance. Speci�cally, as long as �2 � �0:2=2, the departure rate from LP2�s output queue remains

�2: = �s=4. At �rst, this would appear contradictory. That is, we can lower the service rate at LP2

from �2 � �0:2 (Assumption 4) to �2 � �0:2=2, and yet achieve the same throughput from the bottleneck

LP .

At LP2, the arrival rate into the output queue is �s=2, while the departure rate from the output

queue is �s=4. Using Lemma 3, an approximation for E(N2), the average number of input messages

needed before an output message is sent, is 2. Then, as long as a message can be processed at LP2

before two input messages arrive there, it should have no e¤ect on throughput. This is why as long

as �2 � �0:2=2, there is no e¤ect on throughput.

On the other hand, at LP3, on average one output message is sent for each input message. That is,

E(N3) = 1. So if the service rate decreases to �3 < �0:3, then the new departure rate will be less than

�s=2, the current departure rate. Therefore, for LP3 it is important that Assumption 4 be satis�ed.

In general, as long as �j � �0:j=E(Nj); 8j, there will be no deterioration in throughput compared to

when �j � �0:j ; 8j.

The previous sections have developed a framework to predict run-time performance a priori. The

next two sections present experimental validation of the framework.

4 Experimental Analysis

An experimental study was conducted to evaluate the e¤ectiveness of using the framework to predict

run-time performance of distributed simulations. The measure of performance was the accuracy of the

framework in predicting logical and physical throughput rates. All simulations were performed on an

Intel i860 Hypercube with a maximum of 8 processors. The following factors were considered:

� Network Topology: Three di¤erent logical systems (logical system 1 given in Figure 1 and logical

systems 2 and 3 given in Figure 8) were considered for simulation. The networks (systems 2 and
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Logical Logical Process

System 1 2 3 4 5 6 7 8 9 10 11 12

1 1 4 2 1 1 1

2 1 2 1 4 6 8 3 5 1

3 1 3 4 5 6 7 5 6 7 8 9 1

Table IV: Mean Logical Service Time

3 are identical to those used by Lin and Lazowska [19]) were chosen to simulate di¤erent levels

of input and output waiting overheads during the simulation.

� Logical System Parameters: Three di¤erent logical service time distributions were considered:

Uniform, Exponential and Deterministic. Table IV gives the mean logical service time used

at each LP for the three logical systems. Parameter values were so chosen that they induced

di¤erent degrees of input and output waiting overheads during the simulation.

� Routing Probabilities: As in [19], after a message has been received, each output channel had

an equal probability of being selected.

� Assignment of LPs to Processors: For each logical system, three di¤erent assignment of LPs to

processors were considered. Care was taken that the three assignments satis�ed the same set

of assumptions. For example, if we assumed that the service rate was greater than the arrival

rate at each LP for a particular assignment of a logical system, then all other assignments for

that logical system satis�ed the same assumption. Again, the actual values of the arrival and

service rates are likely to be di¤erent under di¤erent assignments. We only presume that the

same set of assumptions on the relative magnitudes of the arrival and service rates hold true for

all assignments for a particular logical system.

Always, to simulate steady-state conditions, data from the simulation was collected after an initial

transient period [15], and each experiment was replicated until statistically signi�cant results were

obtained at the 90% con�dence level.

5 Results

This section discusses the results of the experiments described in the previous section. The results of

the experiments are shown in Figure 9 through 12. Only the results using the Uniform distribution
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Figure 8: Logical systems 2 and 3
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Figure 9: MPPE: Physical arrival rate

for logical service times are shown, as the results using Exponential and Deterministic service times

are qualitatively similar.

Figure 9 through 12 show the maximum percent prediction error in using the framework to estimate

throughput rates. As mentioned earlier, three di¤erent assignment were considered for each logical

system. For each assignment, data was gathered on the throughput process. The percent prediction

error (PPE) at LPj for a particular assignment is de�ned as 100 � [Oj � Pj ]=Oj , where Oj and Pj

are the observed and predicted (using the framework) throughput rate from LPj , respectively. The

maximum percent prediction error (MPPE) is the maximum of the PPE across the three assignments,

and denotes the worst-case behavior of the framework. A few points need to be noted:

� As the three assignments for a particular logical system all satisfy the same set of assumptions

(given in Section 3), then if our earlier assertion is correct, the observed performance from the

three assignments will be similar, and hence the predicted departure rate (using the framework)

needs to be computed only once. For example, the di¤erent assignments of LPs to processors for

logical system 1 (LS1) (Figure 1) all satis�ed Assumptions 4 through 7. The predicted departure

rates for each of the assignments will be the same, and is given in Table III.

� As the actual values of the departure rates are likely to be di¤erent for di¤erent assignments of

25



­14

­12

­10

­8

­6

­4

­2

0

2

4

M
ax

im
um

 P
er

ce
nt

 P
re

di
ct

io
n 

E
rr

or

1 2 3 4 5 6 7 8 9 10 11 12
Logical Process

Logical system 1

Logical system 2

Logical system 3

Figure 10: MPPE: Physical departure rate
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Figure 11: MPPE: Logical arrival rate
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Figure 12: MPPE: Logical departure rate

a logical system, it is necessary to scale either the observed, or the predicted values to calculate

the percent error. For example in Section 3, the predicted departure from LP6 for LS1 is 0:75�s.

If for a particular assignment, the observed value of �s is 1, then the predicted departure rate

will be 0:75. Then two assignments can be compared simply by knowing the relatives values of

�s under the two assignments.

Figures 9 and 10 show the MPPE for the physical arrival and departure rates at each LP for

the three logical systems (Figures 1 and 8). While the maximum error is around 13% (for LS2 at

LP6 in Figure 10), in most cases, MPPE is less than 6%. More importantly, in all cases, the MPPE

at sink LPs is less than 6%. This suggests that the framework is reasonably accurate in predicting

throughput rates from the system, even when di¤erent mappings of LPs to processors is used. Also, the

framework always overestimates the observed throughput rates (Figures 9 and 10). This is expected as

the framework ignores many di¤erent overheads like interprocessor �ow control, message receiving and

preparation delays, selecting LPs for processing, etc., in predicting performance. As these overheads

have an impact on throughput, the predicted throughput rates will overestimate the observed rates.

Thus, the accuracy of the framework is likely to increase with more e¢ cient implementations of the

simulation.
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Figure 13: Average PPE: Simulation throughput rate

Figures 11 and 12 show the MPPE for the logical arrival and departures rates. As simulation

parameter values are independent of the actual implementation of the simulation, i.e., running the

simulation on di¤erent computers with the same random numbers should provide identical simulation

results but di¤erent physical run-time performance, the maximum error for logical time values is much

smaller, less than 4% in all cases.

The above experiments show that the framework can predict simulation performance a priori with

reasonable accuracy when the assignment of LPs to processors satis�es the same set of assumptions

under which the performance was predicted using the framework. Further analysis was done to study

the e¤ect of violating these assumptions (Assumptions 1 through 3). Speci�cally, �how sensitive is the

framework to the violation of the these assumptions?�

Logical system 1 (Figure 1) was considered for simulation. The problem speci�c assumptions under

which this system was simulated are given in Assumptions 4 through 7. We now estimate the system

throughput rate, i.e., the rate at which messages are deleted at sink LPs, using the framework by

successively violating Assumption 4 at each LP in the system. Speci�cally, we �rst assume that the

physical arrival rate �0:N is greater that the physical service rate �N at a particular LPN ; 1 � N � 6;

by a �xed percentage p. The throughput rate is then estimated and the percent prediction error
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calculated. Assumption 4 is then violated at a di¤erent LP, say LPK , K 6= N; 1 � K � 6, and

the PPE is again calculated. This process is repeated until all LPs in the logical system have been

considered. For any one prediction, only one LP violates Assumption 4. Figure 13 shows the average

(over the three assignments of LPs to processors) percent prediction error of the system throughput

rate for di¤erent values of p. Clearly, higher values of p produce larger error, but the average prediction

error is always less than p. Also, unlike the results of Figure 10, here the framework underestimates

the observed throughput rate because we assume the service rate to be lower than it really is in the

simulation. When the service rate is underestimated at LP2, it produces no signi�cant change in

predicted throughput rate. This is not the case at other LPs, where an estimation error about the

relative magnitude of the physical arrival and service rates produce an error in prediction, though to

a smaller degree than p. This agrees with our discussion on Page 22, which shows that the service

rate at bottleneck LPs can be reduced without lowering the overall throughput rate, but changes at

other LPs have an impact on overall throughput. For this particular logical system, violation of the

assumption at all LPs other than LP2 have an equal impact on prediction error. Therefore, for an

accurate prediction, it is necessary that the assumptions of the simulation and the framework match

for these LPs. The next section presents the conclusions.

6 Conclusions

This paper has presented a framework to predict distribution simulation run-time performance be-

fore the simulation is run. Experimental results suggest that the framework is quite accurate in its

prediction.

An important assumption that has been made in predicting performance is that the relative mag-

nitudes of arrival and service rates for a given assignment of LPs to processors can be determined

(Assumption 2). While a number of approaches can be used to satisfy the above assumption, includ-

ing collecting data through exploratory simulations, or estimating values based on the knowledge that

in DS the arrival rates are a function of the assignment [27], in many situations for the framework to

be useful, it may not be necessary to satisfy the above assumption directly.

For example, when the framework is used in adaptive schemes for task allocation, data on relative

arrival and service rates are usually available as part of the simulation [28]. This information can then

be used by the framework to predict the performance of a proposed assignment, before the assignment

is implemented.
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Alternatively, as simulation performance can be predicted for a given set of assumptions, it is pos-

sible to use the framework to identify conditions that improve simulation performance. For example,

as discussed earlier, to improve the performance of LS1 (Figure 1) e¤orts should be concentrated at

removing the bottleneck condition at LP2 (see Section 2). Similarly, Page 22 discusses the issue of

assigning limited processing power among competing LPs to preserve performance. Additional ap-

plications of the framework include evaluating di¤erent logical representations of the same physical

system, and developing polling systems for DS.

In conclusion, though restricted to feed-forward systems, the framework provides us with a tool to

evaluate and improve the cost e¤ectiveness of a DS before the simulation is run, and importantly, in

many cases it can be implemented in a manner transparent to the end user.
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APPENDIX

A Using Lookahead to Improve Performance

Previous studies in conservative simulations have shown that lookahead can reduce the e¤ect of wait-

ing overheads [7, 20, 23]. But, lookahead capabilities incur cost: that of explicitly identifying and

implementing it for particular simulations. Thus it is important to use it cost e¤ectively.

Lookahead characterizes the ability of an LP to predict future messages that it will send based on

knowledge of messages it has already received. In particular, if an LP has just received a message with

timestamp ts, then it can send all output messages with timestamp less than or equal to ts+d, where

d is the lookahead. To describe the e¤ect of lookahead in the context of our framework, we o¤er an

alternative, but equivalent interpretation. Lookahead can be viewed as a tool that relaxes the e¤ect

of the waiting overheads by altering the relative logical arrival rate of messages.

Speci�cally, consider the arrival and departure process at LPN . Let messages to LPN arrive at

times 1; 2; 3; � � � , i.e., with rate �0:N = 1, with successive messages having timestamps 1; 2; 3; � � � . Let

messages to LPN�s output queue be scheduled at times 1; 2; 3; � � � , i.e., at rate �0N: = 1, with successive

messages having timestamps 3; 5; 7; � � � . Thus, �L0:N = 1, and �L
0
N: = 1=2. The timestamp increment

rate (TSIR) in the input channel is 1, and in the output channel it is 2. An output message is sent

whenever its timestamp is less than or equal to the next input message. Here output messages are

sent whenever input messages have timestamps 3; 5; 7; � � � , which occurs at physical time 3; 5; 7; � � � .

Therefore, �N: = 1=2 < �0N: = 1.

Now let LPN have lookahead such that output messages are sent as soon as they are scheduled.

Here, output messages are sent whenever input messages have timestamps 1; 2; 3; � � � , that is at physical

time 1; 2; 3; � � � . Therefore, �N: = 1. Here, to calculate the e¤ective departure rate of messages from

the output queue, the OWR sees a logical timestamp rate of �L
0
N: = 1, instead of 1=2 as in the previous

case. Then, the TSIR is the same in both the input and output channels as �0:N = �0N: = 1 and

�L
0
:N = �L

0
N: = 1, and therefore the OWR has no e¤ect on throughput.

Lookahead therefore has the potential to change the relative logical timestamp rate in a channel.

If the change equalizes the TSIR across the relevant channels, the e¤ect of the waiting rules decrease.

For example, in Table III, �L
0
2: = 1=4 and �

L0
:2 = 1=2, with �

0
:2 = �02: = �s=2, giving �2: = �s=4. As the

TSIR in the input queue is less than that of the output queue, the OWR has an e¤ect on throughput.

If lookahead is introduced at LP2 to increase the relative logical rate in the output queue, for example
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increasing �L
0
2: to 1=2, thereby equalizing the TSIR between the input and output queues, then the

e¤ect of the OWR is reduced and �2: = �s=2. On the other hand, the TSIR in the input and output

queue at LP3 is the same. Here lookahead will not have any e¤ect on throughput unless it is applied to

both the input and output channels. As an example, let lookahead at LP3 increase the logical arrival

rate into the output queue to 2. Then the TSIR in the output queue is �s=4, and in the input queue

it is �s (as before). As the departure rate from LP3�s output queue is limited by the channel with the

least TSIR, using Lemma 1 it can be shown that the departure rate �3: will remain unchanged at �s=2.

Note that while the departure rate is not a¤ected, the average waiting time in output queue may be

reduced by lookahead. And, in systems like closed-queueing networks, this reduction in waiting time

can translate to faster throughput. But for feed-forward networks, the e¤ect on throughput will be

less pronounced.
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Figure 14: Logical system 1: E¤ect of lookahead on performance

But now consider the e¤ect of introducing lookahead at LP2 on the overall performance of the

system. From our discussion above, lookahead at LP2 increases the departure rate to �s=2. This

implies that �24 = �25 = �s=4. Calculating the e¤ect of the IWR at LP4 and LP5 we note that

�0:4 = �0:5 = 3�s=8, exactly the same rate as before. Thus, lookahead at LP2 has only succeeded in

pushing the bottleneck from LP2 to LP4 and LP5. Unless we can improve the TSIR along channels
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C3;4 and C3;5, lookahead at LP2 will have no impact on run-time performance.

Figure 14 shows the e¤ect of introducing lookahead at LP2 and LP3 for LS1. The values have

been normalized as it was di¢ cult to generate the same value for �s under all three conditions: 1) no

lookahead, 2) lookahead at LP2 and 3) lookahead at LP3. Note that lookahead at LP3 has no e¤ect

on performance, as discussed above. While, lookahead at LP2 increases the departure rate from LP2

to �s=2 (�s is normalized to 1), it has no e¤ect on overall performance. This is as expected. Therefore

the cost of lookahead can be saved without sacri�cing performance.
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B List of Variable De�nitions

qij = Probability of a message going from LPi to LPj .

= t!1lim (fraction of time during the �rst t time units that messages go from LPi to LPj).

pij = Probability that a message is chosen by LPj from input channel i.

= t!1lim (fraction of time during the �rst t time units that messages are chosen by LPj from input channel i).

� ij = Expected time between arrival of messages from LPi to LPj along input channel Ci;j .

�ij = Average arrival rate of messages from LPi to LPj along input channel Ci;j .

= 1=� ij

� 0ij = Expected time between arrival of messages to LPj�s ready queue from LPi.

�0ij = Average arrival rate of messages to LPj�s ready queue from LPi.

= 1=� 0ij

�j = Expected service time for a message at LPj .

(i.e., on the processor to which LPj is assigned)

�j = Average service rate of messages at LPj .

= 1=�j

 0j: = Expected time between arrival of messages to LPj�s output queue.

�0j: = Average arrival rate of messages to LPj�s output queue.

= 1= 0j:

 jk = Expected time between departure of messages from LPj�s output queue to LPk.

�jk = Average departure rate of messages from LPj�s output queue to LPk.

= 1= jk

�j: = Average overall departure rate of messages from LPj�s output queue.

=
P
k �jk


ij = Average physical communication rate of messages between LPi and LPj

= 1/(Expected communication time between LPi and LPj).

E(Nj) = Expected number of input messages before an output message is sent from LPj .
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