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ABSTRACT

Statistical classification is to assign an object to an appropriate class. The
assignment is made by comparing a score based on a set of attributes de-
scribing the object and a cutoff value. Bayesian methods, which are the basis
for most classical statistical methods, including linear discriminant analysis,
use the a priori (or the prior) probability distribution to determine the cutoff
value. The prior probabilities are equal to the proportions of the classes in a
finite population. The predicted values of neural networks approximate the
posterior probabilities when the network architecture and sample size are
large. Thus, 0.5 will be the appropriate cutoff value in a two-group classifi-
cation problem. Yet for a practitioner with a relatively small dataset, 0.5
may not be appropriate. This study illustrates with a data set obtained from
AT&T that 0.5 is still the appropriate cutoff value to use when the sample
size is relatively small.

1. INTRODUCTION

Classification involves the assignment of an object to an appropriate
group, based on a number of variables describing that object. Suppose there
are n variables and hence each object is described with an n-vector x € X,
where X C R" is the sample space. A classifier is a mapping function F:

a = F(x).

The output a, maybe a vector, is used for the assignment of object x.
When there are two classes in the sample space, a can be formulated as a
scalar and the assignment of x is based on the comparison of a to some
threshold, or cutoff value. Classical methods such as the linear discriminant
analysis (LDA) of Fisher [3] determine a score for each object x and the
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score is then compared to a cutoff value in order to assign the object to a
class. For a classification problem involving more than two groups, the out-
put a is typically a vector and the assignment of x is determined by the com-
parison of the elements of a. For example, a can be a vector of discriminant
scores, one score for each class. Then the assignment is based on, say, the
maximum score.

In recent years, artificial neural networks (ANNs) have been widely used
for classification [1, 4, 5, 6, 8]. Most neural network classifiers are feed-for-
ward networks, which are acyclic networks where the nodes are partitioned
into input, output, and hidden layers, with directed arcs connecting nodes on
one layer to nodes on a higher layer. The inpur layer receives variables x,
while the output layer nodes yield the result a. The layers between the input
and the output layers are called the hidden layers. In general, neural net-
works allow for a nonlinear transformation F of x into a. For classification,
the output node with the maximum activation value is usually used to deter-
mine the class of the object. For two-group classification, only one output
node is needed. The object x is classified as group 1 if the output value is
less than a cutoff value, say 0.5, and is assigned into group 2 otherwise.

It has been shown that when the neural network architecture (layers and
connections or links among the nodes) and sample size are large enough [7],
the predicted values of neural networks are good approximations of posterior
probabilities. In such cases, 0.5 will be the appropriate cutoff value for two-
group classification problems. This paper reports on experiments using small
random and stratified random samples from a large AT&T dataset to deter-
mine the appropriateness of using a cutoff of 0.5 on small samples. Results
show that a cutoff value of 0.5 is robust under the experimental conditions.

To set the foundation for deriving the cutoff values, the Bayesian theory
of classification is reviewed in the next section. The theory is then special-
ized to two-group problems, since they are the object of interest. Neural net-
works are also briefly reviewed. At the conclusion of this section, the re-
search question is stated. Section 3 explains the design of our study. The
study entails two experiments, one with pure random samples and the other
with stratified random samples. The results from these experiments are dis-
cussed in Section 4. Finally, Section 5 summarizes the findings.

2. BACKGROUND

This section defines the terminology and concepts of classification and
neural networks.
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2.1. Theory of Classification

Following Duda and Hart 2], let w; denote the state of nature j, or, in this
case, the fact that a pattern is a member of group j. Define P(a)) as the a pri-
ori probability of group j. This is the probability that a randomly selected
object in the sample space belongs to group j. For a finite population, P(a))
is the proportion of group j members in the population. For a two- group
classification problem, P(@,) + P(w,) = 1. Let f(x|a)) be the state-condi-
tional probability density function for x, the probabrlrty density function for
x being a member of group j. The a posteriori probability, P(® |x) by the
Bayes rule, is

@,x)= L2,

f(x)

where

f(xawj) = f(xle)P(wj)’
2
fx)= fxo)).
j=1
When a random observation x is given and a decision is made to declare

the group membership of x, a cost function can be defined for the decision.
Assume, for simplicity, that the cost is binary and can be defined as follows:

— J 1if x is assigned to group i when the state of nature is @, Jj#i,
v 0 otherwise.

Let R,(x) be the expected cost of assigning x to group i. Then

2
R(x)= a;P(w|x)
j=1

= P(w;|x)

i#j

=1- P(w,x).
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Thus R(x) is the probability of misclassifying x. Since x will be assigned to
only one group, let the resultant cost be denoted by R(x). Then the expected
cost for the sample space X is

R= J'R(x) f(x)dx,
xeX

and R is the probability of making incorrect decisions, or the misclassifica-
tion rate. Both R(x) and R are minimized by the following Bayes decision
rule. Decide o, for x if P(a)|x) = max; P(w;|x).

Stated in terms of the previous terminology that a classifier is transforma-
tion F for a = F(x), the Bayesian formula is function F and the a posteriori
probability P(w; |x) is element i of the output vector a. If there are two
classes, i.e.,.c = 2, then the Bayes decision rule can be restated as “decide
o, if P(wllx) > P(w2|x), @, otherwise.” In other words, decide o, if
P(o, |x) > 0.5, o, otherwise.

2.2 Neural Network Classifiers

An artificial neural network (ANN) is a system of interconnected units
called nodes, and is typically characterized by the network architecture and
its node functions.

Let G = (N,A) denote a neural network, where N is the node set and A the
arc set containing only directed arcs. G is assumed to be acyclic in that it
contains no directed circuit. The node set N is partitioned into three subsets:
N, Ny, and Ny. N is the set of input nodes, N, is that of output nodes, and
Ny that of hidden nodes. In a popular form called the multi-layer perceptron,
all input nodes are in one layer, the output nodes in another layer, and the
hidden nodes are distributed into several layers in between. The knowledge
learned by a network is stored in the arcs and nodes, in the form of arc
weights and node values called biases. We will use the term k-layered net-
work to mean a layered network with k£ — 2 hidden layers.

When a pattern is presented to the network, the variables of the pattern
activate some of the neurons (nodes). Let af’ represent the activation value at
node i corresponding to pattern p.

o |xf ifi € Ny,
" |FP) ifi e NyUN,,

where x ip »i=1,..., n, are the variables of pattern p. For a hidden or output
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node i, yip is the input into the node and F is called the activation function.
The input, representing the strength of stimuli reaching a neuron, is defined
as a weighted sum of incoming signals,

P
Vi —zwkiaf’
k

where w,; is weight of arc (k, i). In some models, a variable called bias is
added to each node. The activation function is used to activate a neuron
when the incoming stimuli are strong enough. Today, it is typically a
squashing function that normalizes the input signals, so that the activation
value is between 0 and 1. The most popular choice for F is the logistic func-
tion [1, 10], and it is given by F(y) = (1 + e )1

Then, the neural computing process is as follows. The variables of a pat-
tern are entered into the input nodes. The activation values of the input
nodes are weighted (with w;;’s) and accumulated at each node in the first
hidden layer. The total is then squashed (by F) into the node’s activation
value. It in turn becomes an input into the nodes in the next layer, until even-
tually the output activation values are computed. Figure 1 shows the basic
topology of the type of neural network used in our study. The network con-
sists of 2 input nodes, 2 hidden nodes and 1 output node. Connections exist
from the input nodes to the hidden nodes, and from the hidden nodes to the
output node. Node biases exist only at the output nodes, and the activation
function used is the aforementioned logistic function.

Before the network can be used for classifying a pattern, the arc weights
must be determined. The process for determining these weights is called
training. A training sample is used to find the weights that provide the best
fit for the patterns in the sample. Each pattern has a target value ¢ {’ for out-
put node i. For a two-group classification problem, only one output node is
needed and the target can be ¢ = 0 for group 1, and 1 for group 2. In order
to measure the best fit, a function of errors must be defined. Let EP represent
a measure of the error for pattern p.

I
’

E? = zya{’ —tf
ieN,

where [ is a nonnegative real number. A popular choice is the least-squares
problem where / = 2. The objective is to minimize ZPEP, where the sum is
taken over the patterns in the training sample.
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Figure 1. A Neural Network with 2 Hidden Nodes

For classification, the output node with the maximum activation value is
used to determine the class of the pattern. For example, in a neural network
classifier with a single output node for two-group classification, the pattern
is classified as group 1 (¢? = 0) if the output value is less than 0.5, otherwise
into group 2.

Richard and Lippman [7] provided the proof that when the network archi-
tecture and sample size are large, the predicted values of neural networks are
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good approximation of posterior probabilities. Thus, the 0.5 cutoff value in
two-group classification may be appropriate, as in the case of LDA. In prac-
tice, the approximation hinges on the question of how well the network out-
puts approximate the true posterior probabilities when network architecture
and sample size are small. Since network architecture can be expanded by
the user if necessary, the size of a sample becomes a critical concern in
using neural networks for classification. This gives rise to the following re-
search question:

For a two-group classification problem with small sample size, should the
neural network cutoff value be equal to 0.5?

3. DESIGN OF EQUIPMENT

To answer the foregoing question, Monte Carlo simulations were de-
signed and executed. The experimental subjects were 2-group 2-variable
classification problems. Three types of problems were considered, and were
chosen to present a wide range of situations for the neural network classi-
fiers.

In problem P1, both input variables x; and x, are continuous, while in
problem P2 both variables are categorical. In problem P3, x, is continuous
while x, is categorical. For each problem type, test sets of different propor-
tions of group 1 members are created. Each test set has 1000 patterns. There
are three different proportions of group 1 members and they are 0.5, 0.7, and
0.84. Thus, for a test set of proportion 0.7, 700 patterns belong to group 1.
As there are three problem types, there are a total of 9 test sets.

Training sets were randomly drawn from each test set and were used for
training the neural network. After a network is trained, it is used to classify
objects in both the training and the parent test set. Two performance mea-
sures were gathered:

* CRyy : Classification rate of the training sample,
* CRygr Classification rate of the test set.

The classification rate is the proportion of correctly classified objects.
CR g7 is an approximation to the theoretical classification rate.

All networks in this study have two input nodes, two hidden nodes on one
layer, and are fully connected, i.e., there is an arc from every input node to
every hidden node, and from every hidden node to the output node. Only the
output node has a bias, and the network training is done by our GRG2-based
algorithm [9].
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The cutoff values used in this experiment are 0.1, 0.3, 0.5, 0.7, and 0.9.
These values were chosen to test the robustness of the neural classifiers
when the cutoff values are different from 0.5.

3.1. Data

Data for this study are provided by the American Telephone and Tele-
graph Company. A consumer survey was conducted to measure the relation-
ship between perceived level of long-distance telephone usage and some
socio-economic characteristics of the consumer. A sample of 1417 heads of
households responded to the questionnaire. The sample was demographi-
cally balanced with respect to six variables: population density, income,
marital status, age, sex, and geographical region of domicile. The respon-
dents were asked to categorize themselves into either heavy/medium (coded
as “0”) or light/non (coded as “1”) users of long-distance calling and pro-
vided responses to four socio-economic questions—gender (male/female,
GENDER), marital status (married/not married, MARRIED), number of
friends and relatives (FRIENDS), and total household income (INCOME).
The first two variables are categorical, while the remaining two are continu-
ous. The nine test samples of various proportions were selected from this
dataset.

Problem type P1 corresponds to using FRIENDS and INCOME to clas-
sify consumers into one of two perceived usage groups. P2 uses the two cat-
egorical variables GENDER and MARRIED, while P3 uses FRIENDS and
GENDER.

Two separate experiments were conducted. The first one used samples
randomly drawn from each test set whereas the second experiment drew
stratified samples with proportion of group 1 members matching that in the
test set. In the latter experiment using stratified sampling, as the proportion
of group 1 members remains the same across samples, the variability due to
sample proportion is eliminated.

3.2. Experiment 1: Random samples

In the first experiment, 100 training samples of 200 patterns each were
randomly drawn from each test set. Each training sample is used to train a
neural network. Training is initiated with a randomly generated set of arc
weights and node bias. The classification rates, CRyp and CRypop, were
gathered. The same sample was then trained with another set of randomly
generated initial solution. Ten random starting solutions were generated for
each training sample. The final solution with the highest CRygor was used
for data analysis. Afterwards, another sample of the same size was drawn
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and a new network was trained with 10 starting solutions. This was repli-
cated 100 times.

3.3. Experiment 2: Matched samples

In this experiment, the proportion of group 1 members in the sample is
set to the proportion in the test set. Thus the sample drawing is stratified ran-
dom. First, the sample size of each group is determined. Then members of
each group are randomly selected from the same group of the test set until
the specified number of patterns is reached. For example, a stratified random
sample of 200 from a population with proportion of group 1 members equal
to 0.7 would consist of 140 observations belonging to group 1 and 60 to
group 2.

From each test set, 20 samples of size 200 each are drawn. As in experi-
ment 1, each sample is used to train a neural network. There are 10 random
starting solutions and the final solution with the best CRyz¢y is reported.

Further experiments were conducted by considering samples of size 50
and 100. Samples smaller than 50 were not considered as they would pro-
duce very few group 2 observations in the random sample, especially for
high proportions of group 1 members in the test set. For example, a stratified
random sample of 30 would contain just two group 2 observations from a
test set with 90% group 1 members. As the results from the experiments
using samples of size 50 and 100 were qualitatively similar to those using
samples of size 200, the next section discusses only the results of experi-
ments using samples of size 200.

4. RESULTS
4.1. Experiment 1: Random samples

The summary results of this experiment are shown in Tables I and II.
Each entry in the table is the average classification rate of the 300 (3 propor-
tions X 100 samples) neural networks. It is clear from Table I that cutoff
value 0.5 is the best for all three problem types, by both CR z¢7 and CRzz
measures. The classification rates drop as the cutoff value moves away from
the midpoint of 0.5, with the second best cutoff being 0.7, followed by 0.9.
The second observation is that this pattern varies from problem type to prob-
lem type. Consider the difference in CR g between cutoffs 0.5 and 0.7.
The smallest difference is 0.05%, which occurs in problem P2. The largest
difference is 0.86%, which occurs in P1. Problem P2 comprises only binary
variables. Thus the implication here is that for problems with continuous
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TABLEI. Summary Classification Rates: Random Samples
Problem Classification Cutoff Values
Type Rates 0.1 0.3 0.5 0.7 0.9
P1 CR¢ 36.05 66.40 71.88  70.03 68.48
CRygsr 3548  64.42 69.79  68.93 68.12
P2 CRp 35.18 63.86 69.51 67.95 67.76
CRygsr 34.75 62.25 67.95 67.90 67.87
P3 CRx 36.77  66.48 71.39  69.73 68.40
CR gt 35.89  64.42 69.16  68.86 68.17
TABLEII. Mean Classification Results: Random Samples
Problem Classification Cutoff Values
Type Prop. Rates 0.1 0.3 0.5 0.7 0.9
P1 0.5 CRz 50.09 5121 59.77 5496 51.08
CRygsr 4996 50.65 56.30 53.09 50.64
0.7 Roe 3047 65.04 7171 71.15 70.54
CRygsr 30.15 61.57 70.03 70.23 70.16
0.84 CRp 2759 8295 84.18 83.97 83.84
CRygsr 2633 81.04 83.05 83.48 83.57
P2 0.5 CRyy 50.50 50.66 54.65 50.07 49.51
CRygsr 50.00 4996 50.66 50.11 50.00
0.7 CR 3048 57.43 7022 70.12 70.12
CRygsr 30.38 53.51 69.60 70.00 70.00
0.84 Rrr 2456 8349 83.67 83.67 83.67
CRygsr 23.87 8329 83.60 83.60 83.60
P3 0.5 CRx 50.66 51.04 57.74 53.77 50.58
CRygsr 4997 50.12 5431 52776 50.75
0.7 Rrg 30.65 6597 7228 71.44 70.80
CRygsr 3039 6249 6997 7029 70.17
0.84 Rg 29.00 8243 84.16 8397 83.81
CRygsr 2730 80.65 83.21 83.53 83.58
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variables, the specification of cutoff value is more important than for prob-
lems with discrete variables. This is intuitive, as one would expect that with
discrete variables there is more room for the cutoff value. The difference in
CRypgr between cutoffs 0.5 and 0.9 is much more pronounced, but the pat-
tern according to problem type is very similar.

Table II shows the classification rates by problem type and by proportion
of group 1 members. In addition to the results revealed in Table I, we see
that the penalty of misspecification is the highest when population propor-
tion is 0.5, and the smallest when it is 0.84. The best cutoff, as measured by
CRyggps is either 0.5 or 0.7, but the relative advantage of one cutoff over the
other is small. In all cases, 0.5 provides the best results by CRpp.

4.2. Experiment 2: Matched samples

The results here are similar to those when samples are random. Clearly,
from Table III, cutoff 0.5 is the best. This is followed by 0.7 and then by 0.9.
Again, the penalty for misspecification between cutoffs 0.5 and 0.7, as mea-
sured by the difference in CRyggps is largest for P1 (0.68), and smallest for
P2 (0.21).

The results in Table IV echo very much the observations in Table II. The
best cutoff, as measured by CRyz¢p is either 0.5 or 0.7 for all problem
types. For training classification, 0.5 gives the best results in all cases.

5. CONCLUSION

The question of specifying the cutoff value for two-group classification
using neural networks with small samples is answered by two experiments

TABLE IIl. Summary Classification Rates: Matched Samples

Problem Classification Cutoff Values
Type Rates 0.1 0.3 0.5 0.7 0.9
P1 CRp; 3532 6683 7154 7019  68.56
CRpgsr 3493 6572 6981 6913 6824
P2 CRp 34.74 62.02 69.33 67.89 67.83
CRpgsy 3466 6107 6809 67.88  67.87
P3 CRz 35.39 67.25 70.93 69.55 68.51

CRrgsr 3490 6578  69.08 6859  68.19
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TABLEIV. Mean Classification Rates: Matched Samples
Problem Classification Cutoff Values

Type Prop. Rates 0.1 0.3 0.5 0.7 0.9

Pl 0.5 CR 50.05 5063 5898 55.50 51.55

CRrgsr 50.00 50.50 5597 53.53 50.99

0.7 Rrg 30.80 67.50 71.58 71.25 70.48

CRygsr 3046 65.75 70.19 70.34 70.16

0.84 Rrg 25.10 8238 84.08 83.83 83.65

CRygsr 2432 8093 83.27 83.53 83.58

P2 0.5 CRx 50.00 50.10 54.50 50.18 50.00

CRygsr 50.00 4998 50.95 50.05 50.00

0.7 CRyy 30.20 52.78 70.00 70.00 70.00

CRygsr 30.14 50.16 69.73 70.00 70.00

0.84 CRz 24.03 83.18 8350 83.50 83.50

CRygsr 23.83 83.08 83.60 83.60 83.60

P3 0.5 CRyz 50.18 50.60 56.45 53.53 51.40

CRrger 4998 50.19 54.04 52.06 50.89

0.7 Rrg 30.23 6855 7220 71.13 70.30

CRygsr 29.96 6650 70.14 70.27 70.17

0.84 Rz 25.78 82.60 84.13 84.00 83.83

CRygsr 24.75 80.66 83.08 8345 83.51

involving a wide range of problem types with different population propor-
tions of group 1 members. The conclusion is that a cutoff of 0.5 is the best
for most problem types and population proportions, even when the sample
size is small. In certain cases, a cutoff of 0.7 provided better classification in
the test set, but the advantage over 0.5 was minimal. In all cases, 0.5 pro-
vided the best training classification rate.
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N =

10.
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