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Abstract

Classification is an essential decision making tool, especially to the diagnosis of diseases. 
Unfortunately, while many classification procedures exist, many of the methods suffer in 
the presence of statistical outliers or overlapping groups. Recently, artificial neural 
networks have been suggested as tools for classification. In this paper, we determine the 
suitability of neural network classifiers in the diagnosis of thyrotoxicosis. Experimental 
and clinical data are used for classification. We found that neural networks provided 
consistently good classification results.
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I. Introduction

Classification has emerged as an important decision making tool. It has been used for a 
variety of applications including credit scoring (Capon 1982), prediction of events like 
credit card usage (Awh and Waters 1974) and tender offer outcomes  (Walking 1985), and 
as a tool in medical diagnosis (Booth and Isenhour 1986; Crooks, Murray et al. 1959). 
Unfortunately, while several classification procedures exist (Patuwo, Hu et al. 1993), many 
of the current methods do not work well in the presence of statistical outliers or 
overlapping groups. For example, most least-squares based procedures are affected by 
outliers (Booth and Isenhour 1986; Hogg 1979).

In recent years, artificial neural networks (ANNs) have been suggested as an 
alternative tool for classification (Denton, Hung et al. 1990; Huang and Lippmann 1987). 
The idea of neural computing grew out of a desire to capture pattern recognition 
capabilities of a biological brain. McCulloch and Pitts (McCulloch and Pitts 1943) 
developed the first model of a physiological brain called “McCulloch-Pitts Neuron,” which 
became the basis for almost all artificial neural networks where nodes are likened to 
neurons and arcs to dendrites or axons. Now, ANNs have been developed for recognition of 
such ill-defined objects as handwritten characters (Le Cun, Boser et al. 1990; Martin and 
Pittman 1990), finger prints (Leung, Engeler et al. 1990), and double spirals (Lang and 
Witbrock 1988). They also have been developed for detection of faults in a chemical process 
(Hoskins, Kaliyur et al. 1990), explosives in airline baggage (Shea and Liu 1990), and 
prediction of bank failures (Tam and Kiang 1992). ANNs, unlike traditional classifiers like 
linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA), are 
nonparametric and are able to adjust the form of the discrimination to fit the data. As 
ANNs can approximate, arbitrarily closely, any mapping function (Lippmann 1987), they 
might prove to be useful classification tools.

In this paper, we evaluate the effectiveness of ANNs classifiers on datasets 
involving the diagnosis of thyrotoxicosis. Specifically, we use the datasets considered by Hu 
et al. (Hu, Fisher et al. 1989) in their comparison of 5 classifiers, including three linear-
programming classifiers. In each case, the data consisted of statistical outliers and group 
overlap, and hence generally proved difficult to classify.

The rest of the paper is organized as follows. The next section reviews artificial 
neural networks. Section III describes the data and presents the results, and conclusions 
are given in Section IV.

II. Artificial Neural Networks

Let G=(N,A) denote a neural network where N is the node set and A the arc set containing 
only directed arcs. G is assumed to be acyclic in that it contains no directed circuit. The 
node set N is partitioned into three subsets: NI, NO, and NH. NI is the set of input nodes, NO 

is that of output nodes, and NH that of hidden nodes. In a popular form called the multi-
layer perceptron, all input nodes are in one layer, the output nodes in another layer, and 
the hidden nodes are distributed into several layers in between. The knowledge learned by 
a network is stored in the arcs and nodes, in the form of arc weights and node values called 
biases. We will use the term k-layered network to mean a layered network with k-2 hidden 
layers. Appendix A shows a three-layered network.
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When a pattern is presented to the network, the variables of the pattern activate 
some of the neurons (nodes). Let xi

p and ai
p  be, respectively, the input and the activation 

value at node i corresponding to pattern p. If i NI , then xi
p is the value of the ith variable 

in the input pattern p and a xi
p

i
p . If i is not an input node, then the two variables are 

defined as follows:

x w ai
p

i ki k
p

k Ni

 

 (1)

and
a F xi

p
i
p ( )

where Ni denotes the set of nodes sending signals to node i, wki is the weight of arc (k,i), 
and i is the bias. F is called the activation function and it is typically a “squashing” 
function that normalizes the input signals so that the activation value is between 0 and 1. 
The most popular choice for F is the logistic function, defined as

F x e x( ) ( )   1 1 (2)

Since the network G is acyclic, computation can proceed from the input nodes, one 
layer at a time, toward the output node until the activation values of all the output nodes 
are determined.

To simplify notation, we shall define for each node i an extra arc (0,i) such that 
w0i=i. Let w denote the vector of all weights. This vector is determined by “training” the 
network with a set of training patterns. For pattern p, let E p  be defined as: 

E a tp
i
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i
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 

 , (3)

where ti

p is the target for node i and l is a non-negative real number. Then training refers 

to the determination of w such that E p

p is minimized.

The efficiency of solving this unconstrained minimization problem arises from the 
fact that the network is acyclic and thus the partial derivatives can be computed exactly in 
an iterative fashion. Consider the derivative for one input pattern p.
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The last equation comes from Equation (1). The term  i
p  is defined as the rate of change of 

the pattern error with respect to the input to node i and it can be computed as 
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where
F a ai

p
i
p

i
p ( )1

if F is the logistic function.
It can be seen that the only quantity that is dependent on the network structure is 

the partial of E p  with respect to the activation value ai
p and it will be computed 

recursively. In the following, we assume that l in (3) is integer and greater than 1.
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where the sign when l is odd is equal to the sign of a ti
p

i
p , and Ti denotes the set of nodes 

receiving signals from i. The derivative of E p with general l can be derived, but since 
functions of this type are rarely used ,we will not develop it here.

The process for computing the partial derivatives is as follows. For each of the 
output nodes, use Equations (5) and (6) to compute  i

p . Then for each arc going into an 
output node, use Equation (4) to find the partial derivative with respect to its weight. Since 
the network is acyclic, there must be a node i where Ti consists of output nodes only. 
Compute  i

p using Equations (5) and (6). (If the network is layered, then all the nodes in 

the layer below the output layer can have their  i
p computed.) Then for the arcs coming into 

node i, use Equation (4) to compute the partial derivatives. Repeat until all partials are 
computed.

Back-propagation developed by Werbos (Werbos 1974) and popularized by 
Rumelhart (Rumelhart, Hinton et al. 1986), is also known as Generalized Delta Rule and is 
applicable when the objective function is that of least squares, i.e., l=2 in E p , and the 
network is layered. In most implementations, it is also assumed that the activation 
function is logistic. The weight vector w is updated as follows: 

w w w 
where  is often referred to as the learning rate and w is defined as 

  w wki

where
w aki i

p
k
p

p



So it can be seen that w is the steepest-descent direction, and therefore the back-
propagation is a steepest-descent method with fixed step size  . A complete update of all 
the weights is called an epoch.

The computational experience with back-propagation has been mixed. On one hand, 
it has been used in most feed-forward networks, including the examples cited in the 
Introduction section. On the other hand, stories of no convergence or slow convergence 
have been reported (Rumelhart, Hinton et al. 1986; Tesauro and Janssens 1988; 
Wasserman 1989).

Recognizing that the wealth of theory and algorithms of nonlinear optimization 
could be useful for neural-network training, Subramanian and Hung (Subramanian and 
Hung 1993) developed the GRG2 based procedure for training neural networks. GRG2 is a 
widely distributed nonlinear optimization system (Lasdon and Waren 1986), and it has 
been shown to be particularly effective for problems where the objective and constraint 
functions are highly nonlinear. As the objective function in neural-network training is 
highly nonlinear, a GRG2 based procedure is expected to do well. Another reason for using 
GRG2 is that it is sometimes useful to put bounds on the variables w, for example, when 
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the network contains many local minima. Bounds are handled implicitly in GRG2 and do 
not degrade the performance of the algorithm.

Reduced gradient refers to the gradient vector for a subset of variables that are free 
to change without violating the constraints. For an unconstrained optimization problem, 
the reduced gradient and the gradient are the same. In GRG2, the first search direction is 
always the steepest descent search direction. After that, either the BFGS formula (for 
Boyden-Fletcher-Goldfarb-Shanno, see Gill, Murray et al. 1981) or any of four conjugate 
gradient methods is used. Once the search direction is determined, a line search is carried 
out to find the optimal step size. As in most effective codes, GRG2 performs the line search 
only approximately. Sophisticated rules for restarting the search direction with the 
steepest descent and for accepting a line search are used to ensure convergence and 
efficient computation. As explained in Subramanian and Hung (1993), GRG2 includes most 
techniques that have been suggested for the improvement of the back-propagation 
algorithm, and therefore a training procedure based on GRG2 should be competitive with 
back-propagation in terms of quality of solution and computationally efficiency. Their 
results (Subramanian and Hung 1993) support this assertion. For the training of neural 
networks in this research, we use the GRG2 based procedure.

The next section presents the data and the experimental analysis.

III. Experimental Analysis

The datasets used in this study are those considered by Hu et al. (Hu, Fisher et al. 1989), 
and consist of the following:

 The classification of clinical patients as having or not having thyrotoxicosis, based on a 
set of observable signs and symptoms and the results of 4-hr glandular uptake studies 
with radioiodine (Table I)

 A set of simulated data by Freed and Glover (Freed and Glover 1986), modified to 
include overlap between groups (Table II).

The datasets are shown in Tables I and II. Clearly, in both cases, there is an overlap 
between groups. In addition, observation #6 in Table II is a statistical outlier for class 2. 
For both datasets, it appears that a nonlinear mapping function would provide the best 
classification.

Hu et al. (Hu, Fisher et al. 1989) test the performance of 5 classifiers on the above 
datasets. The five classifiers included linear discriminant analysis (LDA), robust partial 
discriminant analysis (RPDA),  and three linear-programming classifiers: minimize the 
maximum deviation (MMD), minimize the sum of interior distances (MSID), and minimize 
the sum of deviations (MSD). In contrast to LDA, which can be influenced by outliers, 
RPDA was proposed as an outlier-resistant procedure (Booth and Isenhour 1986). Research 
on linear-programming classifiers indicate that the most promising model is MSD (Hu, 
Fisher et al. 1989; Freed and Glover 1986), with performance comparable to other 
parametric and non-parametric classifiers (Patuwo, Hu et al. 1993). For the datasets in 
Tables I and II, Hu et al. (Hu, Fisher et al. 1986) found that MSD produced the best 
classification.



5

Table I: Thyrotoxicosis Data

Table II: Freed and Glover Data

Before neural networks can be used for classification it is necessary to determine 
the appropriate architecture to use for a dataset. Network architecture refers to the 
number of layers, the number of nodes in each layer, and the number of arcs and nodes 
they connect. Other network design decisions include the choice of activation functions, and 
whether to include biases or not. All neural networks considered for this study have either 
zero or one hidden layer. Node biases occur only in output nodes, and the activation 
function used is the earlier mentioned logistic function. (An example of a typical neural 
network used in our study is shown in Appendix A.) In neural network literature, a 
popular choice for the number of hidden nodes is 2n+1, where n is the number of input 
variables. For the dataset in Table I, we would have two input variables, one to represent 
sign and symptom index, and the other for glandular uptake. Thus the above rule would 
indicate a network with 5 hidden nodes. Our research on neural networks have suggested 
that in many instances a smaller network would suffice to achieve good classification. 

Observation Sign and Symptom Index Glandular Uptake Class
1 11 29.0 1
2 11 62.4 1
3 12 45.0 1
4 12 35.0 1
5 13 40.0 1
6 13 17.3 1
7 14 84.9 2
8 16 65.8 2
9 17 50.5 2

10 18 18.5 1
11 18 62.3 2
12 19 71.0 2
13 19 65.0 2
14 27 41.7 1

Observation X1 X2 Class
1 -1 3 2
2 -1 4 2
3 1 3 2
4 4 9 2
5 2 7 2
6 1 1 2
7 0 2.5 1
8 2 3 1
9 -4 -9 1
10 3 4 1
11 -1 -3 1
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The final neural network architecture used and the computation time for 
classification on an RS6000 workstation is shown in Table III. Classification results, 
presented as a comparison between neural network (NN) and other classifiers are shown in 
Tables IV and V.

Table III: Neural Network Architecture and Computation Time

Neural Network Architecture
Data Input Nodes Hidden Nodes Output Nodes Computation Time

(Milliseconds)
Thyrotoxicosis 2 0 1 6
Freed and Glover 2 2 1 27

Table IV: Classification Results: Thyrotoxicosis Data

LDA RPDA MMD MSID MSD NN
Misclassified 8, 14 14 3, 8, 14 3, 8, 14 None 9
Not classified N/A 3, 8 N/A N/A N/A N/A

Table V: Classification Results: Freed and Glover Data

LDA RPDA MMD MSID MSD NN
Misclassified 6, 8 6, 7 1, 2, 3, 6, 8, 10 1, 2, 3, 6, 8, 10 6 None
Not classified N/A 3, 8, 10 N/A N/A N/A N/A

The results in Tables IV and V indicate that NN performed as well, or better than 
other classifiers. In addition, overlapping or outlying points, e.g., #6 in Table II, were 
correctly classified without difficulty. But, for the Thyrotoxicosis data in Table I, 
observation #9 was incorrectly classified. For this dataset, the neural network architecture 
has zero hidden nodes, therefore the output from this network can be represented as 
F x e w x w x( ) ( )( )     1 3 13 1 23 2 1 , where 3 is the bias at node 3 (output node), x1 and x2 the input 
at nodes 1 and 2 (input nodes), respectively, and wij the arc weight between nodes i and j. 
As we use a logistic activation function, the final network output will be between 0 and 1. 
In our classifier, all output values below 0.5 are classified as class 1, with the rest 
classified as class 2. This separation line is shown in Figure 1, where points above the 
separation line are classified as class 2 points, while below the separation line the points 
are classified into class 1. As the neural network used in this particular case is equivalent 
to logistic regression, to correctly classify #9, higher orders of neural network would be 
required. In any case, the neural network classifiers were not only good classifiers for the 
chosen datasets, but also computationally efficient (Table III). 

IV. Conclusions

Clearly, neural networks can serve as an important tool for classification. But, 
unlike other classifiers, neural networks have several advantages. Some of them being:
 As neural networks are not so much programmed as they are trained with data, neural 

networks are likely to improve with experience (more data).
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 No assumptions need be made about the underlying distribution of data for 
classification using neural networks. This makes it attractive for real-world problems, 
where the data is rarely error free, and the distributional form is usually unknown.

 As neural networks can approximate any arbitrary function, they should serve as 
excellent tools for function mapping.

 Neural networks, even for large data sets, can be trained in a relative short time. As 
such, a wider range of problems and architectures can be considered for classification.

But, neural networks also have several disadvantages. Some of them being:
 Unlike classifiers like LDA, and like linear-programming classifiers, no statistical 

inference procedures yet exist for neural networks. As such, statistical testing of 
parameters cannot yet be performed.

 Previous studies in using neural networks classifiers suggest that they are better than 
traditional methods and LP models in classifying training samples, but do worse when 
they are used on “test” (population) data (Patuwo, Hu et al. 1993). This suggests that 
care should be taken in using neural-network classifiers for prediction. 

In conclusion, neural networks classifiers appear attractive in two aspects: 
generality and flexibility. Flexibility in that neural networks can be easily changed by 
considering different architectures, and generality in that neural network depends only on 
the data provided. 
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Appendix A

Figure 2: A 3-Layered Neural Network
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