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A B S T R A C T  

One of the factors affecting the performance of distributed 

simulation models is the assignment of logical processes to pro- 

cessors. This paper outlines a dynamic allocation scheme which 

can be used for assigning logical processes to processors to min- 

imize the run time of the simulation. The experiments were 

conducted on an iPSC Hypercube, and indicated that  the dy- 

namic scheme reduced and stabilized run times, and was even 

necessary in some cases for the successful execution of the sim- 

ulation. 

1 I N T R O D U C T I O N  

With advances in parallel machines, Distributed Simulation 

(DS) has become a viable way of dealing with time-consuming 

simulations. An important factor affecting the performance of 

DS models, like the Chandy and Misra model (Chandy and 

Misra 1979,1981)(Misra 1986) for DS, is the allocation of logical 

processes (LPs) to available processors. The objective in making 

an assignment is to reduce the run time (the actual time taken by 

the simulation to complete) of the simulation. An "inefficient" 

assignment may lead to poor performance of the simulation, in 

some cases worse than that  of an equivalent sequential simula- 

tion. The problem of assigning LPs to processors to reduce the 

run time of the simulation is one.' instance of the task-allocation 

problem found in distributed systems, and it is NP-complete 

(Garey and Johnson 1979). To distinguish this problem from 

other task- allocation problems, we will refer to it as the Dis- 

tributed Simulation Task Allocation Problem (DSTAP). 

Solution methods for task-allocation problems can be broadly 

classified into two groups:l) those involving static schemes (Chu 

and Lan 1987)(Iqbal, Saltz, and Bokhari 1986)(Lee and Aggar- 

wa11987)(Lo 1988)(Markenscoffand Liaw 1986), and 2) those in- 

volving dynamic schemes (Ander 1987)(Iqbal, Saltz, and Bokhari 

1986) (Lu and Carey 1986). Static schemes typically perform the 

allocation of tasks to processors once, generally at the beginning 
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of the simulation, while dynamic schemes try to react to changes 

in the load on the system, and then make a reallocation. The 

LPs may be reallocated many times during the length of the 

simulation using dynamic schemes. Static schemes by their very 

nature are usually easier and less expensive (in terms of over- 

head) to use than dynamic schemes. But dynamic strategies are 

more appropriate for certain situations, especially when the load 

distribution is likely to change during the simulation. 

In DS, the "tasks" are the messages which travel from LP to 

LP. The path of the message through the logical system depends 

on the precedence relationship among the LPs, and the path 

in the computer system depends on the assignment of LPs to 

the processors. This research will propose a dynamic allocation 

scheme which can be used for DSTAPs. The proposed dynamic 

scheme differs in two primary aspects from previous studies:l) in 

the type of tasks it considers and 2) in the objective it satisfies. 

C h a r a c t e r i s t i c s  of Tasks in DS 

In DS, the number of tasks generated is akin to the number 

of entities generated in a sequential simulation. For a stochas- 

tic simulation, the number of entities, and hence the number 

of tasks, is generally not known beforehand. This uncertainty 

about the number of tasks precludes the use of schemes which 

assume that  the number of tasks is known. Secondly, the path 

of the message in the logical system depends on the precedence 

relationship among the LPs. In most cases, it is not possible to 

predict the exact path of a message through the logical system as 

it (the path) is usually updated as the message proceeds from LP 

to LP. In addition, the amount of work (computation) needed to 

process a message on an LP (actually on the processor the LP is 

assigned to--we will say that  we process a message on an LP to 

mean that  the message is processed on the processor to which the 

LP is assigned) depends on the relative position of the message 

in the system, i.e. it depends on the LP at which the message 

is located, and the processor to which the LP is assigned. For 

a fixed LP - Processor assignment, this amount of computation 

can change during the course of the simulation. This is because 
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events in a simulation can trigger activities requiring different 

amounts of work during the simulation. This dynamic nature of 

the messages will make static schemes (where the assignment is 

made only once at the beginning of the simulation) inefficient to 

use for DS problems. 

The  ob jec t ive  to  be Satisfied 

The primary objective in making an assignment of LPs to 

processors is to minimize the run time of the simulation. While 

experiments have shown (Shaw and Moore 1987) that an unbal- 

anced load can lead to deterioration in run-time performance, 

achieving a balanced load cannot always be equated to getting 

the best run-time performance. For example, if communication 

costs were high, then an unbalanced load over the available pro- 

cessors may lead to better run-time performance than with a 

balanced load. Load-balancing at best serves as an inadequate 

objective for minimizing run time. 

The rest of the paper is organized as follows: Section 2 de- 

scribes the problem, and the metric the allocation scheme will 

use. Section 3 lists the general allocation strategy, and the dy- 

namic allocation scheme, while Section 4 presents the experi- 

mental design used to test the schemes. Section 5 contains the 

results, and the conclusions are in Section 6. 

2 T H E  T A S K  A L L O C A T I O N  P R O B L E M  

The DSTAP can be stated as follows: Given a logical sys- 

tem with n logical processes (LPs), and a computer system with 

m processors (Pjs) (not necessarily homogeneous), find an as- '  

signment (LPi ~ Pj ; i  = 1 . . . .  ,n : j = 1 , . . . , m ) ,  static or 

dynamic, such that the run time of the simulation is minimized. 

We use the metric message-utilization ~rj (Shanker, Kelton, 

Padman 1989) in developing the dynamic allocation scheme. 

Specifically, ~rj is defined as 

rrj 

where 

Aj 

#j 

e j  

= t j / ~ j V j = l  . . . .  , m  

= expected arrival rate of new messages to processor j 

= expected service rate of messages on processor j 

= 1/~bj 

= expcctcd service time of messages on processor j 

We make the following assumptions in developing a strategy 

for reallocation: 

• We either know or can collect observations to predict ex- 

pected arrival and expected service rates of messages. No 

assumption is made about the distributional form of ar- 

rivals and service. 

• We can collect observations to estimate expected commu- 

nication rates between two processors for each message 

type. 

• The simulation at any point will behave like its recent 

past. This is an important assumption because allocation 

schemes are based on the observations collected, and if the 

future will be different from what has been observed, then 

there is no basis for reallocation. 

3 S T R A T E G Y  F O R  R E A L L O C A T I O N  

The dynamic allocation scheme follows a three-phase ap- 

proach. In the first phase, it identifies the processor(s) in need of 

reallocation. Next, the LPs which should be reallocated from the 

affected processor(s) are identified, and finally, the processors to 

which the LPs are reallocated is decided. 

As task reallocation will be performed at execution time, 

there is a need to keep the allocation scheme simple, but effec- 

tive. To facilitate this need, two particular strategies will be 

followed: First, in phase 2, only those LPs which have prede- 

cessor or successor LPs on different processors (from the one at 

which the LP currently resides) will be considered for realloca- 

tion. This reduces the number of LPs considered while making a 

reallocation, and it also helps in maintaining the structure of the 

logical system, thereby implicitly reducing communication costs. 

LPs satisfying the above condition will be referred to as end- 

LPs. Secondly, in phase 3, when identifying processors to which 

to reallocate, those processors containing predecessor or succes- 

sor LPs of those being reallocated will be chosen first. Such 

processors will be called neighbouring processors. This strategy 

reinforces the advantages of tile earlier strategy in choosing LPs 

for reallocation, 

3.1 The  Dynamic  Al locat ion  Scheme 

In phase 1, a processor is a candidate for reallocation if it 

becomes critical(see Figure 1). For example, a processor j is 

critical if ~rj > rk Vk 7t j ,  and ~ri > THUL (upper threshold 

limit set by the modeller). In phase 2, end-Lps in processor j 
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1. /* Identify processor(s) for reallocation*/ 
[Choose processor j such that  either 

7rj > 7r~Vk ¢ j and ~rj >THUL 
o r  

~'j < 7rkVk ¢ j and lrj <THLL 
is true] 

2. /*Choose LP for reallocation*/ 
/*An allocation is needed until 7rj <THUL2, or 
~rj < 0 (if originally ~r i <THLL)*/  
[While allocation is needed and end-LPs are available DO 

Move end-LP from Pj to available neighbouring 
processor Pk 
Evaluate rrk 
If ~rk < THUL2 then 

keep reallocation 
endif 

end DO] 

Figure 1: Dynamic Allocation Scheme 

are considered for reallocation. End-LPs with predecessor LPs 

on different processors are considered first, and then those LPs 

with successor LPs on different processors are considered. In 

phase 3, the first available neighbouring processor is chosen. A 

processor k is available if 7rk _< THUL2 (a parameter set by the 

modeller). A reallocation is performed by moving an end-LP 

from the affected processor to a neighbouring processor. The 

allocation is implemented if the recalculated threshold values 

of the processors, based on the observed data, remain within 

threshold limits. If no reallocation is possible the simulation 

continues with the previous assignment. 

A reallocation is performed by shifting load from one pro- 

cessor to another. An alternative way of changing the load in 

the system is by reducing the rate at which messages are gener- 

ated. A distributed simulation works as follows: A message is 

generated at a certain LP called source-LP. It is then sent to the 

next LP in the logical structure, where it is processed and then 

forwarded to the next LP, etc., until finally the message leaves 

the system. The rate at which messages are generated depends 

on the assignment of LPs to processors. If the source-LP is 

assigned to an overloaded processor, then the rate of message 

generation will be slow (assuming that  a new message is gener- 

ated only when the previous message has finished its processing 

on that  processor). Alternatively, if the source-LP resides on a 

relatively fi-ee processor, then the rate of message generation will 

be high. Thus, processors having source-LPs, called generating 

processors, govern the rate of message generation. By changing 

the load on the generating processors, the load on the system 

can be changed. This fact coupled with the earlier strategy of 

reallocating to neighbouring processors provides an effective way 

of transferring load. 

4 E X P E R I M E N T A L  D E S I G N  

An experimental study was conducted to evaluate the effec- 

tiveness of using the dynamic allocation scheme on tasks like 

those found in distributed simulation. The measure of perfor- 

mance was the run time of the simulation. Two Logical Systems 

(see Figures 2 and 3) were considered for simulation on an iPSC 

Hypercube with 4 nodes. 

~ 0 0 0  

LP1 = Source-LP 
[----7----] = LPi 

Figure 2: Logical System 1 

The study involved running a. distributed simulation of the 

two logical systems on the Hypercube. The following factors 

were considered: 

A The increase in load. This factor represented the change in 

processing time for a message on an LP. Initially, a message 

required equal processing time on all LPs. This factor was 

considered at two levels. 

B The time of load increase. This factor specified the time 

after which an increase in processing was required. This 

was considered at two levels. 

C The location of load increase. The LP experiencing the 

load increase is specified here. This also was considered at 

two levels. 

In addition, it was felt that  the run length (i.e. the number 

of messages simulated) of the simulation, and the frequency of 

reallocation requests, when the scheme was in effect, would in- 

fluence the run time of the simulation. Unfortunately, due to 

technological limitations on the buffer space of the Hypercube, 

the maximum run length that  could be simulated was 1500 mes- 

sages for logical system 1, and 2500 messages for logical system 

2. A greater run length resulted in an error while running the 

simulations, especially when dynamic reallocation was not done. 

The initial conditions, and the design matrix, for the simulations 

are given in Tables 1 through 4. 

All simulations were performed using the Chandy and Misra 

model for Distributed Simulation (Chandy and Misra 1979,1981), 

and all data generated were made independent by using nonover- 
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P ~ = Probability of branching 

LP = Source-LP 
1 

Figure 3: "Logical System 2 

Table 1: Initial Conditions for Logical System 1 

Variable Value 
Run Length 1500 messages 
Reallocation Trigger 500 messages 
Reallocation Frequency 500 messages 
THUL 0.95 
THUL2 0.85 
THLL 0.20 

Table 2: Design Matrix for Logical System 1 

Design Point Factor 
Load(A) Time(B) LP(C) 

10 200 6 
20 200 6 
10 400 6 
20 400 6 
10 200 11 
20 200 11 
10 400 11 
20 400 11 

Table 4: Design Matrix for Logical System 2 

Design Point Factor 
Load(A) Time(B) LP(C) 

180 100 5 
190 100 5 
180 200 5 
190 200 5 
180 100 11 
190 100 I1 
180 200 11 
190 200 11 

lapping random number streams. The models were simulated 

using FORTRAN with extended routines for handling node-to- 

node and node-to-host communications. Thirteen replications 

of the full design were performed for the first simulation (logi- 

cal system 1), and 23 for the second simulation (logical system 

2). The initial static allocation was chosen so as to achieve the 

best possible run time for the simulation under the assumption 

that  the initial load remained unchanged for the duration of the 

simulation. 

Table 3: Initial Conditions for Logical System 2 

Variable Value 
Run Length 
Reallocation Trigger 
Reallocation Frequency 
THUL 
THUL2 
THLL 

2500 messages 
800 messages 
800 messages 
0.95 
0.85 
0.25 

5 R E S U L T S  

The run time achieved by using the dynamic scheme was at 

least as good, if not better than, that  when running the simu- 

lations without the scheme. Figures 4 and 5 show a 90% confi- 

dence interval for the average run time for each of the simula- 

tions. Though the run times are significantly different only for 

the first simulation, in both simulations the average run time 
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is more stable when the scheme is used. This is very apparent 

for the second simulation (see Figures 3 and 5), where the prob- 

abilistic branching of messages at branch points LP3 and LP4, 

coupled with the load increase in these branches, leads to highly 

variable run times when the scheme is not in use. In contrast, 

the scheme, by realloeating, is able to stabilize the run time. 
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Figure 4: Average Run Time--Logical System 1 
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Figure 5: Average Run Time--Logical System 2 

In addition, the dynamic scheme appears to use the proces- 

sors more efficiently. Figures 6 and 7 show the average threshold 

value achieved across the processors for each design point. The 

average threshold value is usually lower when the scheme is in 

use, indicating that the scheme is able to use "less" of the proces- 

sors to get the same result, thus suggesting that a load increase 

could be more easily absorbed when the scheme is in use. Also, 

using the dynamic scheme produced a more balanced load among 

the processors. Figures 8 and 9 show a 90% confidence interval 

for the average deviation in load. For logical system 1 there 

was no statistical difference in the deviation in load (for sake of 

clarity the confidence limits have not been shown in Figure 8), 

but for logical system 2, the scheme consistently produced a 

more balanced load. While it cannot be concluded from these 

experiments that a balanced load leads to an improvement in 
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Figure 7: Average Threshold--Logical System 2 

run time, earlier simulation experiments did support the theory 

that a balanced load leads to an improvement in run-time perfor- 

mance, but with one modification. The load is balanced among 

the processors used, and not over all available processors. This 

is because for certain simulations, communication time becomes 

an important factor affecting the run time. The number of pro- 

cessors used depends on the assignment made by the scheme in 

effect. This observation could not be confirmed by the present 

experiments, as the simulations chosen were processing intensive 

(each message on an LP took approximately 9.3 milliseconds for 

the first simulation, and 6.5 milliseconds for the second simula- 

tion, before experiencing the load increase), thus reducing the 

influence of communication time on run time. The simulations 

were so chosen due to the earlier mentioned limitation of the 

Hypercube. 

To confirm the fact that simulations running with only a 

static allocation, even a good one, would fail when the run-length 

increased, logical system 2 was simulated for 5000 messages with 

all other conditions remaining unchanged. The simulations ter- 

minated with an error status (caused by the cube being in a 
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"hang" status) after approximately 3900 messages were gener- 

ated. The same simulations completed normally when the dy- 

namic scheme was in effect (see Figure 10), supporting our earlier 

observation that  the scheme uses the processors more efficiently. 
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Figure 8: Average Deviation in Load--Logical  System 1 
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5.1 L i m i t a t i o n s  

While using ~rj as a metric provides us with the advantage 

of directly measuring the effect of a reallocation on run time, 

the calculation of 7rj when making a reallocation is based on one 

impor tant  assumption: that  the future will behave like the recent 

past. While the effectiveness of the scheme is not affected for 

moderate  departures from the above assumption, a fact which 

can be s t rengthened by choosing appropriate values for THUL 

and THUL2, it is believed that  a major  violation of the above 

assumption could result in a serious miscalculation of 7rj, thus 

resulting in an incorrect reallocation. 

In addition, while a Hypercube is a suitable architecture for 

running distributed simulations, care should be taken in choos- 

ing simulations to be run on a machine like the iPSC hypercube. 

Although most simulations could be run by modifying the syn- 

chronization protocols to accommodate  the limitations of the 

cube, this would to a certain extent  defeat the purpose of using 

the particular distr ibuted algorithm. 

6 C O N C L U S I O N S  

The dynamic allocation scheme was found to be "cost" effec- 

tive for running distributed simulations even for very short  run- 

lengths. The experiments resulted in an important  conclusion: 

Dynamic Schemes are needed to produce feasible solutions. Also, 

the initial static allocation was chosen to get favourable run 

times when the dynamic scheme was not used. In most simula- 

tions, this "best" static allocation will generally be not known. 

In such cases, it will become imperative to use an adaptive 

6 4 5  



dynamic allocation scheme to run the simulation successfully. 

While dynamic allocation tends to be expensive (the average 

time spent on reallocation was approximately 600 milliseconds), 

the benefits from using a scheme, such as outlined in this paper, 

far outweigh the costs when applied to tasks like those found in 

distributed simulations. 
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