
Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

A D A P T I V E D I S T R I B U T I O N O F M O D E L
C O M P O N E N T S V I A C O N G E S T I O N

M E A S U R E S

Murali S. Shanker
W. David Kelton

Department of Operations and Management Science
Carlson School of Management

University of Minnesota
Minneapolis, MN 55455

A B S T R A C T

One of the factors affecting the performance of distributed

simulation models is the assignment of logical processes to pro-

cessors. This paper outlines a dynamic allocation scheme which

can be used for assigning logical processes to processors to min-

imize the run time of the simulation. The experiments were

conducted on an iPSC Hypercube, and indicated that the dy-

namic scheme reduced and stabilized run times, and was even

necessary in some cases for the successful execution of the sim-

ulation.

1 I N T R O D U C T I O N

With advances in parallel machines, Distributed Simulation

(DS) has become a viable way of dealing with time-consuming

simulations. An important factor affecting the performance of

DS models, like the Chandy and Misra model (Chandy and

Misra 1979,1981)(Misra 1986) for DS, is the allocation of logical

processes (LPs) to available processors. The objective in making

an assignment is to reduce the run time (the actual time taken by

the simulation to complete) of the simulation. An "inefficient"

assignment may lead to poor performance of the simulation, in

some cases worse than that of an equivalent sequential simula-

tion. The problem of assigning LPs to processors to reduce the

run time of the simulation is one.' instance of the task-allocation

problem found in distributed systems, and it is NP-complete

(Garey and Johnson 1979). To distinguish this problem from

other task- allocation problems, we will refer to it as the Dis-

tributed Simulation Task Allocation Problem (DSTAP).

Solution methods for task-allocation problems can be broadly

classified into two groups:l) those involving static schemes (Chu

and Lan 1987)(Iqbal, Saltz, and Bokhari 1986)(Lee and Aggar-

wa11987)(Lo 1988)(Markenscoffand Liaw 1986), and 2) those in-

volving dynamic schemes (Ander 1987)(Iqbal, Saltz, and Bokhari

1986) (Lu and Carey 1986). Static schemes typically perform the

allocation of tasks to processors once, generally at the beginning

Rema Padman
School of Urban and Public Affairs

Carnegie-Mellon University
Pittsburgh, PA 15213

of the simulation, while dynamic schemes try to react to changes

in the load on the system, and then make a reallocation. The

LPs may be reallocated many times during the length of the

simulation using dynamic schemes. Static schemes by their very

nature are usually easier and less expensive (in terms of over-

head) to use than dynamic schemes. But dynamic strategies are

more appropriate for certain situations, especially when the load

distribution is likely to change during the simulation.

In DS, the "tasks" are the messages which travel from LP to

LP. The path of the message through the logical system depends

on the precedence relationship among the LPs, and the path

in the computer system depends on the assignment of LPs to

the processors. This research will propose a dynamic allocation

scheme which can be used for DSTAPs. The proposed dynamic

scheme differs in two primary aspects from previous studies:l) in

the type of tasks it considers and 2) in the objective it satisfies.

C h a r a c t e r i s t i c s of Tasks in DS

In DS, the number of tasks generated is akin to the number

of entities generated in a sequential simulation. For a stochas-

tic simulation, the number of entities, and hence the number

of tasks, is generally not known beforehand. This uncertainty

about the number of tasks precludes the use of schemes which

assume that the number of tasks is known. Secondly, the path

of the message in the logical system depends on the precedence

relationship among the LPs. In most cases, it is not possible to

predict the exact path of a message through the logical system as

it (the path) is usually updated as the message proceeds from LP

to LP. In addition, the amount of work (computation) needed to

process a message on an LP (actually on the processor the LP is

assigned to--we will say that we process a message on an LP to

mean that the message is processed on the processor to which the

LP is assigned) depends on the relative position of the message

in the system, i.e. it depends on the LP at which the message

is located, and the processor to which the LP is assigned. For

a fixed LP - Processor assignment, this amount of computation

can change during the course of the simulation. This is because

640

events in a simulation can trigger activities requiring different

amounts of work during the simulation. This dynamic nature of

the messages will make static schemes (where the assignment is

made only once at the beginning of the simulation) inefficient to

use for DS problems.

The ob jec t ive to be Satisfied

The primary objective in making an assignment of LPs to

processors is to minimize the run time of the simulation. While

experiments have shown (Shaw and Moore 1987) that an unbal-

anced load can lead to deterioration in run-time performance,

achieving a balanced load cannot always be equated to getting

the best run-time performance. For example, if communication

costs were high, then an unbalanced load over the available pro-

cessors may lead to better run-time performance than with a

balanced load. Load-balancing at best serves as an inadequate

objective for minimizing run time.

The rest of the paper is organized as follows: Section 2 de-

scribes the problem, and the metric the allocation scheme will

use. Section 3 lists the general allocation strategy, and the dy-

namic allocation scheme, while Section 4 presents the experi-

mental design used to test the schemes. Section 5 contains the

results, and the conclusions are in Section 6.

2 T H E T A S K A L L O C A T I O N P R O B L E M

The DSTAP can be stated as follows: Given a logical sys-

tem with n logical processes (LPs), and a computer system with

m processors (Pjs) (not necessarily homogeneous), find an as- '

signment (LPi ~ Pj ; i = 1 ,n : j = 1 , . . . , m) , static or

dynamic, such that the run time of the simulation is minimized.

We use the metric message-utilization ~rj (Shanker, Kelton,

Padman 1989) in developing the dynamic allocation scheme.

Specifically, ~rj is defined as

rrj

where

Aj

#j

e j

= t j / ~ j V j = l , m

= expected arrival rate of new messages to processor j

= expected service rate of messages on processor j

= 1/~bj

= expcctcd service time of messages on processor j

We make the following assumptions in developing a strategy

for reallocation:

• We either know or can collect observations to predict ex-

pected arrival and expected service rates of messages. No

assumption is made about the distributional form of ar-

rivals and service.

• We can collect observations to estimate expected commu-

nication rates between two processors for each message

type.

• The simulation at any point will behave like its recent

past. This is an important assumption because allocation

schemes are based on the observations collected, and if the

future will be different from what has been observed, then

there is no basis for reallocation.

3 S T R A T E G Y F O R R E A L L O C A T I O N

The dynamic allocation scheme follows a three-phase ap-

proach. In the first phase, it identifies the processor(s) in need of

reallocation. Next, the LPs which should be reallocated from the

affected processor(s) are identified, and finally, the processors to

which the LPs are reallocated is decided.

As task reallocation will be performed at execution time,

there is a need to keep the allocation scheme simple, but effec-

tive. To facilitate this need, two particular strategies will be

followed: First, in phase 2, only those LPs which have prede-

cessor or successor LPs on different processors (from the one at

which the LP currently resides) will be considered for realloca-

tion. This reduces the number of LPs considered while making a

reallocation, and it also helps in maintaining the structure of the

logical system, thereby implicitly reducing communication costs.

LPs satisfying the above condition will be referred to as end-

LPs. Secondly, in phase 3, when identifying processors to which

to reallocate, those processors containing predecessor or succes-

sor LPs of those being reallocated will be chosen first. Such

processors will be called neighbouring processors. This strategy

reinforces the advantages of tile earlier strategy in choosing LPs

for reallocation,

3.1 The Dynamic Al locat ion Scheme

In phase 1, a processor is a candidate for reallocation if it

becomes critical(see Figure 1). For example, a processor j is

critical if ~rj > rk Vk 7t j , and ~ri > THUL (upper threshold

limit set by the modeller). In phase 2, end-Lps in processor j

641

1. /* Identify processor(s) for reallocation*/
[Choose processor j such that either

7rj > 7r~Vk ¢ j and ~rj >THUL
o r

~'j < 7rkVk ¢ j and lrj <THLL
is true]

2. /*Choose LP for reallocation*/
/*An allocation is needed until 7rj <THUL2, or
~rj < 0 (if originally ~r i <THLL)*/
[While allocation is needed and end-LPs are available DO

Move end-LP from Pj to available neighbouring
processor Pk
Evaluate rrk
If ~rk < THUL2 then

keep reallocation
endif

end DO]

Figure 1: Dynamic Allocation Scheme

are considered for reallocation. End-LPs with predecessor LPs

on different processors are considered first, and then those LPs

with successor LPs on different processors are considered. In

phase 3, the first available neighbouring processor is chosen. A

processor k is available if 7rk _< THUL2 (a parameter set by the

modeller). A reallocation is performed by moving an end-LP

from the affected processor to a neighbouring processor. The

allocation is implemented if the recalculated threshold values

of the processors, based on the observed data, remain within

threshold limits. If no reallocation is possible the simulation

continues with the previous assignment.

A reallocation is performed by shifting load from one pro-

cessor to another. An alternative way of changing the load in

the system is by reducing the rate at which messages are gener-

ated. A distributed simulation works as follows: A message is

generated at a certain LP called source-LP. It is then sent to the

next LP in the logical structure, where it is processed and then

forwarded to the next LP, etc., until finally the message leaves

the system. The rate at which messages are generated depends

on the assignment of LPs to processors. If the source-LP is

assigned to an overloaded processor, then the rate of message

generation will be slow (assuming that a new message is gener-

ated only when the previous message has finished its processing

on that processor). Alternatively, if the source-LP resides on a

relatively fi-ee processor, then the rate of message generation will

be high. Thus, processors having source-LPs, called generating

processors, govern the rate of message generation. By changing

the load on the generating processors, the load on the system

can be changed. This fact coupled with the earlier strategy of

reallocating to neighbouring processors provides an effective way

of transferring load.

4 E X P E R I M E N T A L D E S I G N

An experimental study was conducted to evaluate the effec-

tiveness of using the dynamic allocation scheme on tasks like

those found in distributed simulation. The measure of perfor-

mance was the run time of the simulation. Two Logical Systems

(see Figures 2 and 3) were considered for simulation on an iPSC

Hypercube with 4 nodes.

~ 0 0 0

LP1 = Source-LP
[----7----] = LPi

Figure 2: Logical System 1

The study involved running a. distributed simulation of the

two logical systems on the Hypercube. The following factors

were considered:

A The increase in load. This factor represented the change in

processing time for a message on an LP. Initially, a message

required equal processing time on all LPs. This factor was

considered at two levels.

B The time of load increase. This factor specified the time

after which an increase in processing was required. This

was considered at two levels.

C The location of load increase. The LP experiencing the

load increase is specified here. This also was considered at

two levels.

In addition, it was felt that the run length (i.e. the number

of messages simulated) of the simulation, and the frequency of

reallocation requests, when the scheme was in effect, would in-

fluence the run time of the simulation. Unfortunately, due to

technological limitations on the buffer space of the Hypercube,

the maximum run length that could be simulated was 1500 mes-

sages for logical system 1, and 2500 messages for logical system

2. A greater run length resulted in an error while running the

simulations, especially when dynamic reallocation was not done.

The initial conditions, and the design matrix, for the simulations

are given in Tables 1 through 4.

All simulations were performed using the Chandy and Misra

model for Distributed Simulation (Chandy and Misra 1979,1981),

and all data generated were made independent by using nonover-

642

0.5

0.5

P ~ = Probability of branching

LP = Source-LP
1

Figure 3: "Logical System 2

Table 1: Initial Conditions for Logical System 1

Variable Value
Run Length 1500 messages
Reallocation Trigger 500 messages
Reallocation Frequency 500 messages
THUL 0.95
THUL2 0.85
THLL 0.20

Table 2: Design Matrix for Logical System 1

Design Point Factor
Load(A) Time(B) LP(C)

10 200 6
20 200 6
10 400 6
20 400 6
10 200 11
20 200 11
10 400 11
20 400 11

Table 4: Design Matrix for Logical System 2

Design Point Factor
Load(A) Time(B) LP(C)

180 100 5
190 100 5
180 200 5
190 200 5
180 100 11
190 100 I1
180 200 11
190 200 11

lapping random number streams. The models were simulated

using FORTRAN with extended routines for handling node-to-

node and node-to-host communications. Thirteen replications

of the full design were performed for the first simulation (logi-

cal system 1), and 23 for the second simulation (logical system

2). The initial static allocation was chosen so as to achieve the

best possible run time for the simulation under the assumption

that the initial load remained unchanged for the duration of the

simulation.

Table 3: Initial Conditions for Logical System 2

Variable Value
Run Length
Reallocation Trigger
Reallocation Frequency
THUL
THUL2
THLL

2500 messages
800 messages
800 messages
0.95
0.85
0.25

5 R E S U L T S

The run time achieved by using the dynamic scheme was at

least as good, if not better than, that when running the simu-

lations without the scheme. Figures 4 and 5 show a 90% confi-

dence interval for the average run time for each of the simula-

tions. Though the run times are significantly different only for

the first simulation, in both simulations the average run time

6 4 3

is more stable when the scheme is used. This is very apparent

for the second simulation (see Figures 3 and 5), where the prob-

abilistic branching of messages at branch points LP3 and LP4,

coupled with the load increase in these branches, leads to highly

variable run times when the scheme is not in use. In contrast,

the scheme, by realloeating, is able to stabilize the run time.

90000

85000

80000

75000

70000

65000

60000

A Scheme ON
Scheme OFF

I I I a i I I I

0 1 2 3 4 5 6 7 8 9
Design Point

Figure 4: Average Run Time--Logical System 1

84000 -

80000

76000

72000

88000

64000

60000

56000

52000

48000

44000

4 t

I
Scheme ON
Scheme OFF

++ +
1

I I I I I

3 ,t ¢ 6 7 Design Point

Figure 5: Average Run Time--Logical System 2

In addition, the dynamic scheme appears to use the proces-

sors more efficiently. Figures 6 and 7 show the average threshold

value achieved across the processors for each design point. The

average threshold value is usually lower when the scheme is in

use, indicating that the scheme is able to use "less" of the proces-

sors to get the same result, thus suggesting that a load increase

could be more easily absorbed when the scheme is in use. Also,

using the dynamic scheme produced a more balanced load among

the processors. Figures 8 and 9 show a 90% confidence interval

for the average deviation in load. For logical system 1 there

was no statistical difference in the deviation in load (for sake of

clarity the confidence limits have not been shown in Figure 8),

but for logical system 2, the scheme consistently produced a

more balanced load. While it cannot be concluded from these

experiments that a balanced load leads to an improvement in

1.00

0.95 -

0.90 •

Average
Threshold 0.85.

0.80 •

0.75 -

0.70

0

Figure 6:

/ % I

s

It - - ~ - " Scheme ON
i Scheme OFF

i i | i i | | !

1 2 3 4 5 6 7 8
Design Point

Average Threshold--Logical System 1

1.00

0.95 -

0.90 -

Average
Threshold 0.85-

0.80

0.75

0.70

0

- - .m- - Scheme ON
8 Scheme OFF

I
I

| i i i | i 1 i

1 2 3 4 5 6 7 8
Design Point

Figure 7: Average Threshold--Logical System 2

run time, earlier simulation experiments did support the theory

that a balanced load leads to an improvement in run-time perfor-

mance, but with one modification. The load is balanced among

the processors used, and not over all available processors. This

is because for certain simulations, communication time becomes

an important factor affecting the run time. The number of pro-

cessors used depends on the assignment made by the scheme in

effect. This observation could not be confirmed by the present

experiments, as the simulations chosen were processing intensive

(each message on an LP took approximately 9.3 milliseconds for

the first simulation, and 6.5 milliseconds for the second simula-

tion, before experiencing the load increase), thus reducing the

influence of communication time on run time. The simulations

were so chosen due to the earlier mentioned limitation of the

Hypercube.

To confirm the fact that simulations running with only a

static allocation, even a good one, would fail when the run-length

increased, logical system 2 was simulated for 5000 messages with

all other conditions remaining unchanged. The simulations ter-

minated with an error status (caused by the cube being in a

6 4 4

"hang" status) after approximately 3900 messages were gener-

ated. The same simulations completed normally when the dy-

namic scheme was in effect (see Figure 10), supporting our earlier

observation that the scheme uses the processors more efficiently.

0.10

0.08

0.06

0.04

0.02 "

0.00

- - ~ - - Scheme ON
A s / \ s Scheme OFF

i , | i | i | i

1 2 3 4 5 6 7 8
Design Point

Figure 8: Average Deviation in Load--Logical System 1

0.09 t

0.08 1

0.07 1

0.06 t

0.05 1

0.04 1

Oo:Oo: t
o

. Scheme ON
Scheme OFF

, , ; , , ,
1 2 4 5 7

Design Point

Figu.re 9: Average Deviation in Load--Logical System 2

I~iniW _

l

126900"

126700"

126500"

12 oo : . ~
~ 126100:.

125900-

125700 ~

125500
0

_

w
@@ @ @ @_-

Scheme ON
+ Scheme O F F

i i i i

2 4 6 8
D,si~ Poi~

Figure 10: Run Time for 5000 messages--Logical System 2

5.1 L i m i t a t i o n s

While using ~rj as a metric provides us with the advantage

of directly measuring the effect of a reallocation on run time,

the calculation of 7rj when making a reallocation is based on one

impor tant assumption: that the future will behave like the recent

past. While the effectiveness of the scheme is not affected for

moderate departures from the above assumption, a fact which

can be s t rengthened by choosing appropriate values for THUL

and THUL2, it is believed that a major violation of the above

assumption could result in a serious miscalculation of 7rj, thus

resulting in an incorrect reallocation.

In addition, while a Hypercube is a suitable architecture for

running distributed simulations, care should be taken in choos-

ing simulations to be run on a machine like the iPSC hypercube.

Although most simulations could be run by modifying the syn-

chronization protocols to accommodate the limitations of the

cube, this would to a certain extent defeat the purpose of using

the particular distr ibuted algorithm.

6 C O N C L U S I O N S

The dynamic allocation scheme was found to be "cost" effec-

tive for running distributed simulations even for very short run-

lengths. The experiments resulted in an important conclusion:

Dynamic Schemes are needed to produce feasible solutions. Also,

the initial static allocation was chosen to get favourable run

times when the dynamic scheme was not used. In most simula-

tions, this "best" static allocation will generally be not known.

In such cases, it will become imperative to use an adaptive

6 4 5

dynamic allocation scheme to run the simulation successfully.

While dynamic allocation tends to be expensive (the average

time spent on reallocation was approximately 600 milliseconds),

the benefits from using a scheme, such as outlined in this paper,

far outweigh the costs when applied to tasks like those found in

distributed simulations.

A C K N O W L E D G E M E N T S

The authors would like to thank Intel Scientific Computers,

Beaverton, Oregon, for graciously allowing us to use their Hy-
percube.

R E F E R E N C E S

Andert, E. (1987). A simulation of dynamic task allocation in a
distributed computer system. In Proceedings of the 1987 Winter
Simulation Conference, pp. 768-776.

Chandy, K. M. and J. Misra (1979). Distributed simulation: a
case study in design and verification of distributed programs.
IEEE Transactions on Software Engineering, SE-5, 440-452.

Chandy, K. M. and J. Misra (1981). Asynchronous distributed
simulation via a sequence of parallel computations. Communi-
cations of the ACM, 24, 198-206.

Chu, W. W. and M. Lan (1987). Task allocation and precedence
relations for distributed real-time systems. IEEE Transactions
on Computers, C-36, 667-679.

Garey, M. R. and D. S. Johnson (1979). Computers and In-
tractability, W. H. Freeman and Company, San Francisco.

Iqbal, A. M., J. H. Saltz, and S. H. Bokhari (1986). A compar-
ative analysis of static and dynamic load balancing strategies.
In Proceedings of the 1986 International Conference on Parallel
Processing, pp. 1040-1047.

Lee, S. and J. K. Aggarwal (1987). A mapping strategy for
parallel processing. IEEE Transactions on Computers, C-36,
433-442.

Lo, V. M. (1988). Heuristic algorithms for task allocation in dis-
tributed systems. IEEE Transactions on Computers, 37, 1384-
1397.

Lu, H. and M. J. Carey (1986). Load-balanced task allocation in
locally distributed computer systems. In Proceedings of the 1986
International Conference on Parollel Processing, pp. 1037-1039.

Markenscoff, P. and W. Liaw (1986). Task allocation problems
in distributed computer systems. In Proceedings of the 1986
International Conference on Parallel Processing, pp. 953-960.

Misra, J. (1986). Distributed discrete-event simulation. Com-
puting Surveys, 18, 39-65.

Shanker, M. S., W. D. Kelton, and R. Padman (1989). A metric
for dynamic task allocation. Working Paper, Carlson School of
Management, University of Minnesota.

Shaw, W. H. J. and T. S. Moore (1987). A simulation study of a
parallel processor with unbalanced loads. In Proceedings of the
1987 Winter Simulation Conference, pp. 759-767.

A U T H O R S ' B I O G R A P H I E S

MURALI S. SHANKER is a Ph.D. candidate in the Carlson

School of Management, University of Minnesota. His research

interests are in simulation, parallel processing, and in the inter-

face between Computer Science and Management Science. He is

a student member of ORSA, TIMS, IEEE, and DSI.

Murali S. Shanker

Department of Operations and Management Science

Carlson School of Management

University of Minnesota

Minneapolis, Minnesota 55455

612/626-71.14

murali@vx.acss.umn.edu

murali@umnacvx.bitnet

W. DAVID KELTON is an Associate Professor in the Op-

erations and Management Science Department at the Carlson

School of Management, University of Minnesota, in Minneapo-

lis. He received a B.A. in Mathematics from the University of

Wisconsin-Madison, an M.S. in Mathematics from Ohio Univer-

sity, and M.S. and Ph.D. degrees in Industrial Engineering from

the University of Wisconsin-Madison. His research interests are

in simulation ~nethodology, stochastic modeling and estimation,

and quality control. He is a member of ORSA, TIMS, and ASA.

He served as Program Chair for the 1987 Winter Simulation

Conference.

W. David Kelton

Department of Operations and Management Science

Carlson School of Management

646

University of Minnesota

Minneapolis, Minnesota 55455

612/624-8503

dkelton@vx.acss.umn.edu

dkelton@umnacvx.bitnet

REMA PADMAN is on the faculty of the School of Urban

and Public Affairs at Carnegie-Mellon University. Her interests

are in parallel and distributed optimization algorithms, schedul-

ing problems, and distributed simulation. Her Ph.D. degree is

from the University of Texas at Austin.

Rema Padman

School of Urban and Public Affairs

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

412/268-2159

647

