
THE EFFECT OF SYNCHRONIZATION REQUIREMENTS ON THE
PERFORMANCE OF DISTRIBUTED SIMULATIONS

Murali S. Shanker and B. Eddy Patuwo

Department of Administrative Sciences

Kent State University, Kent, OH 44242

E-mail: mshankert?scorpio .kent. edu

Abstract

Recent experiments have shown that conservative methods

can achieve good performance by exploiting the characteris-

tics of the system being simulated. In this paper we focus

on the interrelationship between run time and synchroniza-

tion requirements of a distributed simulation. A metric that

considers the effect of lookahead and the physical rate of trans-

mission of messages, and an arrival approximation that models

the effect of synchronization requirements on the run time are

developed. It is shown that even when good lookahead is ex-

ploited in the system, poor run-time performance is achieved

if an inefficient mapping of LPs to processors is used.

1 Introduction

With the need to do increasingly complex simulations, dis-

tributed discrete-event simulation appears to be a viable

way for reducing simulation run time. Two popular ap-

proaches for distributed simulation (DS) are the conservative

[Bry77, CM79, CM81, Mis86] and the optimistic paradigms

[Jef85]. In both approaches, the system is modeled aa a col-

lection of logical processes (LPs) that communicate via times-

tamped messages. The two approaches differ in the manner

in which synchronization is provided to ensure the correctness

of the simulation.

In this paper we focus on the interrelationship between

run time and the synchronization requirements of a conser-

vative DS. Specifically, we consider the Chandy-Misra-Bryant

approach for DS [Bry77, CM79, CM81, Mis86]. A metric that

considers the effect of lookahead and the physical rate of trans-

mission of messages, and an arrival approximation that models

the effect of synchronization requirements on the run time are

developed. It is shown that even when good lookahead is ex-

ploited in the system, poor run-time performance is achieved

if there exists disparity in timestamp increments among dif-

ferent input channels to an LP. This suggests the need to find

efficient mappings of LPs to processors if conservative DS are

to perform well, even when lookahead properties are exploited.

The rest of the paper is organized as follows. The next

section describes our research focus. Section 3 develops an

arrival approximation to model the effect of synchronization

requirements on run time. Section 4 contains the experimental

design, and the results and conclusions are in Sections 5 and

6, respectively.

2 Research Focus

Consider the delays experienced by messages in a DS executed

on a parallel-processing computer with the objective of mini-

mizing the run time of the simulation. In addition to the

execution time incurred by a message at an LP (we say that

a message is executed at an LP to mean that it is really exe-

cuted on the physical processor to which the LP is assigned),

messages may also be delayed for the following reasons:

●

●

●

Messages may be blocked to ensure that event causality

is maintained. Here we say that such messages have not

yet satisfied their precedence relationships.

Messages that have satisfied their precedence relation-

ships wait in a ready queue until the processor becomes

free to execute them.

Messages that have been executed at a processor may

also w& in an output queue until the LP’s clock value

advances to the message’s timest amp.

As the execution cost of a message at an LP is normally

a fixed cost (assuming homogeneous processors and ignoring

communication costs), an optimal assignment of LPs to pro-

cessors would seek to minimize the input and output delays.

The advantage of having good lookahead is that it reduces

not only the output waiting time, but also the waiting time

for messages be~ore they can join the ready queue. It is easy

to see that this reduction in waiting time can easily prop-

agate, especially for closed networks and densely connected

networks. Here we provide an arrival approximation that esti-

mates the rate at which precedence relationships are satisfied

in a DS. Using this approximation it is then possible to find

more efficient assignments to improve run time by reducing

the waiting time for messages. The next section describes the

approximation.

151

3 An Approximation for

Throughput in DS

Figure 1 shows a general representation of the input process at

a merge LP for a logical system. Here, LPi, i E {1,2, n},

sends messages to LP~+l along channel Ci,n+l. The n chan-

nels, C,,n+l, i = {1, 2,..0 ,n}, merge into a gate. There is a

single queue, called the ready queue, connecting the gate to

the merge node LPn+l. Messages to LPi, i c {1,2,.. c, n},

are assumed to arrive from outside the system, possibly from

other LPs in the logical system.

Channel

~+1 Arrival rate

through a proper assignment of LPs to processors.

To develop an approximation for the superposition of ar-

rival processes arising in DS, we consider an equivalent in-

terpret ation for the process of Figure 1. Assume messages

arrive at the rate A; along channel Ci, n+l. Let the gate be

open to C,,~+l with probability pi (~~ p, = 1). If messages

are waiting in that channel, the first waiting message passes

through the gate into the ready queue. If there are no mes-

sages in C;,n+l, the gate remains open to that channel untiI

a message arrives and passes through it. The gate then with

probability pj, independent of the previous state, wsits for

a message along Cj,~+l. This interpretation does away with

timestamped messages, and the effect of precedence relation-

ships is mimicked by the probability gate. In the following

discussion we use the two representations interchangeably.

~v;’:’””p Extensive simulations were conducted to study the behavior

of throughput from the gate. If ~{ is the departure rate of

messages from C,, ~+ 1 through the gate, then the following

y 1-
● M.sas.waiting

k3 tab exfxmtad

-O Lp

●
Ready Queue ‘+

Figure 1: A schematic representation

processes to a merge LP

of n arrival

The gate ensures event causality as follows: a message in

C,,~+l passes through the gate if it is the first message there

(the queue discipline is first-in first-out), and if the gate is open

to that channel. At any point, the gate is open to only one

channel: the channel that has either received, or will receive

the message with the least timestamp among messages in all

input channels. Once the message joins the ready queue, the

gate resets to the channel that will receive the message that

should be processed next. Thus, the gate acts to ensure that

messages join the ready queue in non-decreasing timestamp

order. The gate is used to differentiate between the two dif-

ferent input waiting periods for a message. Messages before

the gate are waiting for precedence relationships to be satis-

fied, while messages in the ready queue are waiting for the

processor to become free. Here we provide tools to reduce the

waiting time for messages before the gate. Note that the order

in which messages join the ready queue depends only on the

timestamp of the messages.

In an optimal implementation, ignoring communication

costs, there will be no waiting in queue, before or after the

gate. Usually, the waiting time depends not only on the phys-

ical arrival rates of messages, but also on the relatiue times-

tamp of the messages. If messages do not wait in queue be-

fore the gate, then the arrival rate of messages into the ready

queue is the superposition rate of the n input processes. But

this would rarely be the case. In conservative methods there is

usually a penalty to ensure proper timestamp ordering. Under

such circumstances, we are interested in reducing the penalty

relationship was derived:

A: = pi
(Pm/~m)

where &

Am
= Maximum{p,/A, Vi E {1,... ,n}}

(1)

Equation (1) allows us to predict the superposition arrival

rate of messages to the ready queue. If ~’ defines this rate,

then
n

1
(2)A’= SJ: = z @mTAm) = (PnJ%n)

,=1 i=l

Clearly the departure rate A1 of messages from Ci,n+l is

rest ricted by the channel that observes pm /A~ (i.e., the chan-

nel that receives messages with the least timestarnp incr~

ment per unit time). The actual departure rate depends

on the relative magnitude of Pi with respect to pm/~~, and

unless p,/X = p~JA~, A: < A,, an unstable situation for

C, ,n+ 1 arises, Also, from Equation (2), the liiiting factor

in throughput is pm/Am. To improve throughput then, we

need to minimize p~/A~. An upper bound on the perfor-

mance is when p,/A, = pj/Aj Vi, j G {1, n}, in which case

~~ = Ai, Vi E {1 ,..., n}. Two factors can be manipulated

to increase this throughput rate: the probability of choosing

from a channel, and the arrival rate of messages. The order in

which messages are picked is determined by their timestamp.

For most simulations, this factor cannot be changed since the

mean timestamp change at each LP is a model parameter that

is fixed for the simulation. This is both an advantage and a

disadvantage. A disadvantage because this parameter can no

longer be changed to improve the efficiency of the simulation.

An advantage as this fixed value can lead to a better start-

ing assignment. On the other hand, the arrival rate can be

changed by a suitable allocation of LPs to processors.

An important use of predicting the effect of precedence re-

lationships is in adaptive schemes for load reallocation. To

provide a simple measure for use in such schemes, we define

the advance indicator mtio AIR as

AIR = = Vi, jG{l,,.., n}
rmnA1j

(3)

152

Description] Levels

Input streams (= n) 12,4,5

Arrival rate to LPi

AIR

Service time at LPi 1 ~ i < n

Service time at LPm+l

Communication time

Dist. of arrivals and service

Dist. of lo~icrd clock times

l/n

1, 2, 4

0.87i

0.3, 0.5, 0.8

O.in

Exp.

Det.. EXD.

Table I: Factor levels for experiment 1

Where A13 = Expected logical time increment

in channel clock j per unit physical time

A13 standardizes the logical clock increments with respect

to the arrival rate of messages. In general, larger values of

AI~ give better run-time performance. On the other hand,

AIR shows the inequality (if > 1) among timestamp incre-

ments in the input channels, and large values of AIR are likely

to give poor performance of the simulation. AIR provides a

simple measure of the effect of precedence relationship on the

run time, and can be easily predicted from observed values

during the simulation. The next section describes a series of

experiments conducted to study the effect of synchronization

requirements on run time, and also to validate AIR as a metric

useful in identifying inefficient assignments.

4 Experimental Design

Two different experiments were conducted to study the effect

of precedence relationships on run time of a DS.

In the first experiment, the logical system representation

of Figure 1 was considered for simulation. The objective was

to isolate and study the effect of precedence relationships on

the run time of a DS of feed-forward networks (FFN). While

in most simulations the representation of Figure 1 would be

but a small part of the network, for the purposes of the study

we limit ourselves to determining the effect of precedence re-

lationship at a merge LP (LPn+l). An implicit assumption is

that poor performance at that LP would reflect accordingly

in the run time of the simulation. Also, lookahead capabilities

were introduced at each LP by taking advantage of the queue

discipline and of the non-preemptive service. The factor levels

for this experiment are shown in Table I.

Based on the above experiments, another set of simulations

were conducted to see if run time could be improved through a

suitable reallocation. Here, the arrival rate of messages to LPi,

iE {l,..., n} was changed (a result of a hypothetical reallo-

cation) to minimize the difference in AI values while keeping

all other factor levels the same as in the previous experiment.

To form a basis for comparison, the net arrival rate was still

set to 1.

In the second set of experiments, two closed queueing net-

works (CQN), the hypercube and ring topologies, were con-

sidered for simulation. In each case a network of 16 LPs was

simulated on an Intel i860 Hypercube with 4 processors, We

assume that each LP had the same service time distribution,

and the same homogeneous branching probabilities. As the

simulation involved closed queueing networks, the simulation

load was varied by adjusting N the number of jobs placed

in queue at each LP at the start of the simulation. N varied

within the set {1, 5}. Logical clock times for each LP were cho-

sen to provide different values of AIR. AIR varied within the

set {1, 5, 10}. Again, lookahead capabilities were introduced

at each LP, but only for experiments for which AIR> 1. This

was to determine if good lookahead properties were enough

to overcome synchronization penalties. If so, there should be

no significant difference in run-time performance for different

values of AIR. For all experiments, the simulations were repli-

cated until statistically significant results were obtained at the

9070 level. The next section describes the results.

5 Results

The results of the experiments are in Figures 2 through 5.

Here, only a representative set of results is presented.

5.1 FFN Experiments

Figure 2 shows the effect of precedence relationship on the

arrival rate of messages to the ready queue at LPn+ 1. Even

when good lookahead is exploited, the arrival rate to LPn+ 1

decresses significantly as AIR increases. As the arrival rate to

each LPi, i ~ n, is the same, the performance of the simulw

tion for varying values of AIR is a result of the difference in

timestamp increments in the n input channels. The predicted

arrival rate (based on Equation (2)) is also shown (with legend
n=?(p)). Clearly, large values of AIR lead to a deterioration

in performance, and that Equation (2) serves as a good ap-

proximation. Note that as the arrival rate of messages to the

ready queue is less than 1 (the maximum expected rate) for

AIR >1, the observed utilization at LP~+l will be less than

the maximum expected utilization.

1 ‘2~
Ezi
n=2
n
n=4

1331
n=5

+3-
n=2(p)

““x”
n=4(p)

-i-
n=5(p)

1 2 4
AIR

Figure 2: FFN — Arrival rate of messages to the

ready queue

Clearly, disparity in AI values lead to poor performance of

the simulation. As mentioned earlier, one approach in such

153

situations is to change the arrival rate of messages by reallo-

cating LPs. Now, the arrival rate to LPi, i E {1,... , n}, was

changed so as to minimize the difference in AI values. The

net arrival rate of messages to the system was still set to 1,

with the minimum expected time between arrival to LP, being

0.8n (to prevent an increasing queue there). The results are

shown in Figure 3. Clearly, there is a significant reduction in

run time.

25
24

.; 23
:22
: 21
“g 20
$ 19
; 18
s 17

16
15

2 4
Original AIR

Figure 3: FFN — % reduction in run time

The above experiments support our approximation, and

show that run time performance can be improved by consid-

ering a suitable allocation of LPs to processors.

A similar result is seen for CQNS. Figures 4 and 5 show

the results. In both ewes, values of AIR> 1 (even with

good loolcalmad properties) lead to a deterioration in perfor-

mance compared to when AIR= 1. The percent difference

between actual and predicted values (using Equation (2)) are

also shown (with legend N=?(%diff)). Clearly, Equation (2)

is a good approximation for throughput.

40 * N., * N-6 ~ N.l(WIIT &f N&@dftl 1.2

35- -1 1
30- -0.8 ;

ii 25-
220-

-0.6$

’15- -0.4 j

10- -0.2:

5 1 I I o—
1 10 -

Figure 4: Hypercube Topology — Arrival rate of

messages to ready queue

40 I + 1.2

1 &lo-
Figure 5: Ring Topology — Arrival rate of messages

to ready queue

6 Conclusion

The above experiments show that precedence relationships can

have a significant effect on the performance of a distributed

simulation, even when good lookahead is exploited in the sys-

tem. The experiments also suggest that it is necessary to

consider the physical characteristics of the computer system

as well as the characteristics of the simulation model while

making an assignment of LPs to processors if good run-time

performance of the simulation is desired. To aid in identifying

inefficient mappings of LPs to processors, an arrival approxi-

mation and a measure to model the effect of precedence rela-

tionships are presented. Allocation strategies can then use the

above measures to find efficient assignments of LPs to proces-

sors.

References

[Bry77]

[CM79]

[CM81]

[Jef85]

[Mis86]

R. E. Bryant. Simulation of packet communication

architecture computer systems. Technical Report

MIT-LCS-TR-188, Massachusetts Institute of Tech-

nology, 1977.

K. M. Chandy and J. Misra. Distributed simula-

tion: a case study in design and verification of dk-

tributed programs. IEEE Transactions on Software

Engineering, SE-5(5):440-452, 1979.

K. M. Chandy and J. Misra. Asynchronous dk-

tributed simulation via a sequence of parallel com-

putations. Communications of the ACM, 24:198–

206, 1981.

D. Jefferson. Virtual time. ACM Transactions

on Programming Languages and Systems, 7(3):404–

425, 1985.

J. Misra. Distributed discrete-event simulation.

Computing Surveys, 18(1):39-65, 1986.

154

