Single-Energy Partial-Wave-Analyses
-Determining The Structure of Baryon Resonances -

Brian Hunt
Advisor: D. Mark Manley
CNR Colloquium Apr. 7 2016 Kent State University
Outline

- Introduction
- Partial-wave-analyses (PWA)
- Fitting procedure
- Preliminary results
- Summary
- Future Goals
- Acknowledgments
Photoproduction Reactions

- My work focuses on analyzing the reactions
 \[\gamma p \rightarrow \eta p \quad \gamma n \rightarrow \eta n \quad \gamma p \rightarrow K^+ \Lambda \]
- Photoproduction reactions depend on 4 complex helicity amplitudes
- Refitting reactions
 \[\pi N \rightarrow \eta N \quad \pi N \rightarrow K \Lambda \]
Why study photoproduction reactions?

- Search for resonances predicted by quark models and lattice QCD
 - A resonance can be thought of as an excited state of a particle N^*, Δ^*, etc.
- Pion beams have been primary tool to study resonances
 - What about resonances that don’t couple strongly to the πN channel?
- The reactions in this work are pure isospin $\frac{1}{2}$ states – Only couple to N^* resonances
Helicity Amplitudes

- Helicity amplitudes are expanded into electric and magnetic multipoles, e.g.,

\[H_N = \sqrt{\frac{1}{2}} \cos \left(\frac{\theta}{2} \right) \sum_{l=0}^{\infty} [(l + 2) E_{l+} + lM_{l+} + lE_{(l+1)-} - (l + 2) M_{(l+1)-}] \left(P'_l - P'_{l+1} \right) \]

- All observables are bilinear combinations of the helicity amplitudes in the form \(\sum H_i H^*_j \)
 - 16 possible combinations leading to 16 observables
 - Eight are linearly independent
 - Causes a global phase ambiguity
Observables

\[\frac{d\sigma}{d\Omega}(\theta) = \frac{q}{2k} \left[|H_N(\theta)|^2 + |H_D(\theta)|^2 + |H_{SA}(\theta)|^2 + |H_{SP}(\theta)|^2 \right] \]

\[\Sigma(\theta) \sigma(\theta) = \frac{q}{k} \text{Re} \left[H_{SP}(\theta)H_{SA}^*(\theta) - H_N(\theta)H_D^*(\theta) \right] \]

\[T(\theta) \sigma(\theta) = \frac{q}{k} \text{Im} \left[H_{SP}(\theta)H_N^*(\theta) + H_D(\theta)H_{SA}^*(\theta) \right] \]

\[P(\theta) \sigma(\theta) = -\frac{q}{k} \text{Im} \left[H_{SP}(\theta)H_D^*(\theta) + H_N(\theta)H_{SA}^*(\theta) \right] \]

\[G(\theta) \sigma(\theta) = -\frac{q}{k} \text{Im} \left[H_{SP}(\theta)H_{SA}^*(\theta) + H_N(\theta)H_D^*(\theta) \right] \]

\[H(\theta) \sigma(\theta) = -\frac{q}{k} \text{Im} \left[H_{SP}(\theta)H_{D}^*(\theta) + H_{SA}(\theta)H_{N}^*(\theta) \right] \]

\[E(\theta) \sigma(\theta) = \frac{q}{2k} \left[|H_N(\theta)|^2 + |H_{SA}(\theta)|^2 - |H_D(\theta)|^2 - |H_{SP}(\theta)|^2 \right] \]

\[F(\theta) \sigma(\theta) = \frac{q}{k} \text{Re} \left[H_{SA}(\theta)H_D^*(\theta) + H_{SP}(\theta)H_N^*(\theta) \right] \]

\[O_x(\theta) \sigma(\theta) = -\frac{q}{k} \text{Im} \left[H_{SA}(\theta)H_D^*(\theta) + H_{SP}(\theta)H_N^*(\theta) \right] \]

\[O_z(\theta) \sigma(\theta) = -\frac{q}{k} \text{Im} \left[H_{SA}(\theta)H_{SP}^*(\theta) + H_N(\theta)H_D^*(\theta) \right] \]

\[C_x(\theta) \sigma(\theta) = -\frac{q}{k} \text{Re} \left[H_{SA}(\theta)H_N^*(\theta) + H_{SP}(\theta)H_D^*(\theta) \right] \]

\[C_z(\theta) \sigma(\theta) = \frac{q}{2k} \left[|H_{SA}(\theta)|^2 + |H_D(\theta)|^2 - |H_N(\theta)|^2 - |H_{SP}(\theta)|^2 \right] \]

\[T_x(\theta) \sigma(\theta) = \frac{q}{k} \text{Re} \left[H_{SP}(\theta)H_{SA}^*(\theta) + H_N(\theta)H_D^*(\theta) \right] \]

\[T_z(\theta) \sigma(\theta) = \frac{q}{k} \text{Re} \left[H_{SP}(\theta)H_N^*(\theta) - H_{SA}(\theta)H_D^*(\theta) \right] \]

\[L_x(\theta) \sigma(\theta) = \frac{q}{k} \text{Re} \left[H_{SA}(\theta)H_N(\theta) - H_{SP}(\theta)H_D(\theta) \right] \]

\[L_z(\theta) \sigma(\theta) = \frac{q}{2k} \left[|H_{SP}(\theta)|^2 + |H_{SA}(\theta)|^2 - |H_N(\theta)|^2 - |H_D(\theta)|^2 \right] \]
Nucleon Resonance

Basic Reactions

s-channel process

\[
\begin{align*}
\gamma & \rightarrow N^* \\
N^* & \rightarrow p + \eta
\end{align*}
\]

*Also u-channel processes

\[
\begin{align*}
\gamma & \rightarrow \rho^0, \omega \\
\rho^0, \omega & \rightarrow p + p
\end{align*}
\]
Resonances as 3-D H.O. Excitations

$N^p = 1^-$

$1 \otimes \frac{1}{2} = \frac{1}{2} \oplus \frac{3}{2}$

$1 \otimes \frac{3}{2} = \frac{1}{2} \oplus \frac{3}{2} \oplus \frac{5}{2}$

$N^p = 2^+$

$0 \otimes \frac{1}{2} = \frac{1}{2}$

$0 \otimes \frac{3}{2} = \frac{3}{2}$

$2 \otimes \frac{1}{2} = \frac{3}{2} \oplus \frac{5}{2}$

$2 \otimes \frac{3}{2} = \frac{1}{2} \oplus \frac{3}{2} \oplus \frac{5}{2} \oplus \frac{7}{2}$

$\hbar \omega \bigg\{ \begin{array}{c} 2S \ 1D \\ \hline \\ 1P \\ \hline \\ 1S \end{array}$
Known Resonances (N=1,2 Bands)

- D13(1520) ****
- S11(1535) ****
- S11(1650) ****
- D15(1675) ****
- D13(1700) ***
- P11(1440) ****
- F15(1680) ****
- P11(1710) ***
- P13(1720) ****
- P13(1900) ***
- F15(1860) **
- F15(1860) **
- F17(1990) **
KSU Fitting Procedure

- Start by analyzing one channel $\pi N \rightarrow \eta N$
 - Fit observables in small energy bins $f(\theta)$
 - Generate single-energy amplitudes $T_{\pi N, \eta N}^{IJ}$
- Fit single-energy amplitudes with energy-dependent parametrization
 - Energy-dependent code requires unitarity and analyticity
 - Must fit all reactions with a consistent set of parameters
- Iterate process until a good energy-dependent fit of the observables is found
Energy-Dependent Solution

- Add in all two-body channels
 \[\pi N \rightarrow \pi \Delta \]
 \[\pi N \rightarrow \omega N \]
 \[\pi N \rightarrow \gamma N \]
 \[\pi N \rightarrow \rho N \]
 \[\pi N \rightarrow \eta N \]
 \[\pi N \rightarrow K \Lambda \]

- Missing Resonances
 - Even after adding these channels, some predicted resonances are not seen

- Look for resonances that couple weakly to \(\pi N \)
Energy-Dependent Fit

- Single-energy points are fitted rather than observables
 - Include all possible reactions
- Model dependent
 - Resonances are added by hand
 - Background added as needed
 - Dummy channels to saturate unitary bound
- Each partial wave analyzed separately
 - Lose interference effects between partial waves in approach
Difficulties of a Single-Energy PWA

- Inconsistent data
- Can’t directly use unitary and analytic constraints
- Global Phase Ambiguity
 - Global phase for a single reaction is determined from the energy-dependent fit
- Lose interference effects when moving to energy-dependent fits
- Insufficient data to determine amplitudes uniquely
 - Creates a noisy bin-to-bin solution
 - Handle this by truncating higher-order multipoles and small amplitudes
 - Penalty terms are added to constrain fits
 - May miss resonances
Importance of Complete Data Sets

\[\cos \theta = -0.4 \]

\[\cos \theta = -0.2 \]

\[\gamma p \rightarrow \eta p \]

\[\cos \theta = 0.4 \]

\[\cos \theta = 0.6 \]
Current World Database

<table>
<thead>
<tr>
<th>Observable</th>
<th>$\gamma p \rightarrow \eta p$</th>
<th>$\gamma p \rightarrow K^+ \Lambda$</th>
<th>$\gamma n \rightarrow \eta n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSG</td>
<td>4890</td>
<td>4545</td>
<td>879</td>
</tr>
<tr>
<td>T</td>
<td>358</td>
<td>458</td>
<td>96</td>
</tr>
<tr>
<td>Σ</td>
<td>295</td>
<td>438</td>
<td>88</td>
</tr>
<tr>
<td>P</td>
<td>7</td>
<td>1810</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>265</td>
<td>92</td>
<td>96</td>
</tr>
<tr>
<td>E</td>
<td>210</td>
<td>72</td>
<td>140</td>
</tr>
<tr>
<td>Ox/Oz</td>
<td>0</td>
<td>363/363</td>
<td>0</td>
</tr>
<tr>
<td>Cx/Cz</td>
<td>0</td>
<td>133/133</td>
<td>0</td>
</tr>
<tr>
<td>Other Data</td>
<td>296 (3 observables)</td>
<td>289</td>
<td></td>
</tr>
<tr>
<td>Bins With 8 independent obs</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Some data are preliminary
\[\gamma p \rightarrow \eta p \]

\[W = 1580 \text{ MeV} \]

\[\frac{d\sigma}{d\Omega} \]

\[\cos \Theta \]

\[W = 1580 \text{ MeV} \]

\[\sum \]
$\gamma p \rightarrow \eta p$

\[
\frac{d\sigma}{d\Omega}
\]

$W = 1670$ MeV

RSU Fit

Data of Fit: 2016-03-31 00:05:41 PM
\[\gamma p \rightarrow K^+ \Lambda \]
\[\gamma p \rightarrow K^+ \Lambda \]

\[W = 1830 \text{ MeV} \]
$\gamma p \rightarrow K^+ \Lambda$

$W = 1910 \text{ MeV}$
\[
\frac{d\sigma}{d\Omega} \quad \pi^- p \rightarrow \eta n \quad P
\]
\[\frac{d\sigma}{d\Omega} \quad \pi^- p \rightarrow K^0 \Lambda \quad P \]
Integrated Cross Section

\[\gamma p \rightarrow \eta p \]

\[\sigma_i (\text{MeV}) \]

\[W (\text{MeV}) \]

\[\text{Date of Fit: 2016-03-31} \]
Integrated Cross Section

$\gamma p \rightarrow K^+ \Lambda$

- ERBE 1969
- BOCKHORST 1994
- BRADFORD 2006

Legend:
- SX1
- SX1+PX1
- SX1+PX1+PX3E
- SX1+PX1+PX3E+PX3M
- SX1+PX1+PX3+DX3
- SX1+PX1+PX3+DX3+DX5
- SGT

Date of Fit: 2016-03-31

σ_{int} (mb) vs. W (MeV)
Integrated Cross Section
Integrated Cross Section

\[\gamma n \rightarrow \eta n \]

Werthmuller 2014

\(\sigma_\gamma (\mu b) \)

Date of Fit: 2016-03-31
Resonances and Argand Diagrams

Assume \(T_{ij} = \frac{\sqrt{\Gamma_i \Gamma_j}}{M - W - i \frac{1}{2}} \) near the resonance

\[
T_r^2 + \left(T_i - \frac{1}{2} \sqrt{x_i x_j} \right)^2 = \left(\frac{1}{2} \sqrt{x_i x_j} \right)^2 \text{ where } x_i \equiv \frac{\Gamma_i}{\Gamma}
\]

Reading an Argand Diagram
S11

<table>
<thead>
<tr>
<th>S11(1535) and S11(1650)</th>
<th>KSU</th>
<th>BnGa</th>
<th>SAID</th>
<th>PDG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (MeV) S11(1535)</td>
<td>1530</td>
<td>1519 ± 5</td>
<td>1547 ± 0.7</td>
<td>1525-1545</td>
</tr>
<tr>
<td>Width (MeV) S11(1535)</td>
<td>157</td>
<td>128 ± 14</td>
<td>188.4 ± 3.8</td>
<td>125-175</td>
</tr>
<tr>
<td>Mass (MeV) S11(1650)</td>
<td>1665</td>
<td>1651 ± 6</td>
<td>1634.7 ± 1.1</td>
<td>1645-1670</td>
</tr>
<tr>
<td>Width (MeV) S11(1650)</td>
<td>151</td>
<td>104 ± 14</td>
<td>115.4 ± 2.8</td>
<td>110-170</td>
</tr>
</tbody>
</table>
S11

Branching Ratios

<table>
<thead>
<tr>
<th>Branching Ratios</th>
<th>KSU</th>
<th>BnGa</th>
<th>SAID</th>
<th>PDG</th>
</tr>
</thead>
<tbody>
<tr>
<td>πN</td>
<td>41.4</td>
<td>54 ± 5</td>
<td>35.5 ± 0.2</td>
<td>35-55</td>
</tr>
<tr>
<td>ηN</td>
<td>51.1</td>
<td>33 ± 5</td>
<td>N/A</td>
<td>32-52</td>
</tr>
<tr>
<td>$K^+ \Lambda$</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>πN</td>
<td>53</td>
<td>51 ± 4</td>
<td>100</td>
<td>50-70</td>
</tr>
<tr>
<td>ηN</td>
<td>0.1</td>
<td>18 ± 4</td>
<td>N/A</td>
<td>5-15</td>
</tr>
<tr>
<td>$K^+ \Lambda$</td>
<td>10.5</td>
<td>10 ± 5</td>
<td>N/A</td>
<td>2.5-3.4</td>
</tr>
</tbody>
</table>
P13(1720) and P13(1900)

<table>
<thead>
<tr>
<th></th>
<th>KSU</th>
<th>BnGa</th>
<th>SAID</th>
<th>PDG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (MeV) P13(1720)</td>
<td>1721</td>
<td>1690 ± 70 -35</td>
<td>1763.8 ± 0.7</td>
<td>1700 - 1750</td>
</tr>
<tr>
<td>Width (MeV) P13(1720)</td>
<td>151</td>
<td>420 ± 100</td>
<td>210 ± 22</td>
<td>150 ± 400</td>
</tr>
<tr>
<td>Mass (MeV) P13(1900)</td>
<td>1912</td>
<td>1905 ± 30</td>
<td>N/A</td>
<td>1900 ± 30</td>
</tr>
<tr>
<td>Width (MeV) P13(1900)</td>
<td>423</td>
<td>250 +120 -50</td>
<td>N/A</td>
<td>200 ± 50</td>
</tr>
<tr>
<td>Br. Ratio</td>
<td>KSU</td>
<td>BnGa</td>
<td>SAID</td>
<td>PDG</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>πN</td>
<td>19</td>
<td>10 ± 5</td>
<td>9.4 ± .5</td>
<td>8-14</td>
</tr>
<tr>
<td>ηN</td>
<td>1.7</td>
<td>3 ± 2</td>
<td>N/A</td>
<td>.6 – 3.5</td>
</tr>
<tr>
<td>$K^+ \Lambda$</td>
<td>8</td>
<td>N/A</td>
<td>N/A</td>
<td>4-4.8</td>
</tr>
<tr>
<td>πN</td>
<td>7</td>
<td>3 ± 2</td>
<td>N/A</td>
<td>~5</td>
</tr>
<tr>
<td>ηN</td>
<td>6</td>
<td>10 ± 4</td>
<td>N/A</td>
<td>~12</td>
</tr>
<tr>
<td>$K^+ \Lambda$</td>
<td>24</td>
<td>16 ± 5</td>
<td>N/A</td>
<td>0 - 10</td>
</tr>
</tbody>
</table>
Summary

- Missing resonances problem is still an open question
- Knowing the resonance structure provides information about the quark degrees of freedom inside a hadron
- Added new S11, D13, and F15 resonances into our fits, and constrained the properties of other resonances, especially in the fourth resonance region
- We have increased maximum energy for the fits from 2100 to 2250 MeV because more data at higher energies are becoming available
Future Goals

- Improve fits of my photoproduction reactions, especially at higher energies
- Have a consistent explanation of bump in $\gamma n \rightarrow \eta n$ cross section
- Compare new fits of $\gamma N \rightarrow \pi N$ with observables
- Add in $K\Sigma$ final-state reactions (new Ph.D. project)
Acknowledgments

- This material is based upon work supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Numbers DE-FG02-01-ER41194 and DE-SC0014323
- Thanks to Kent State University Physics Department for partial support of my research
Properties of S and T

Using unitarity and the relationship $S_i = I + 2iT_i$

$$T^\dagger T = \frac{T - T^\dagger}{2i}$$

Considering time-reversal symmetry

$$T_{if} = T_{fi}$$

we can show for elastic scattering

$$(T^\dagger T)_{ii} = \frac{T_{ii} - T_{ii}^*}{2i} = \text{Im}T_{ii}$$

This is an expression of the Optical Theorem
Strengths of a Single-Energy PWA

- Starting point has little model dependence
- Get a feel for the resonance structure
- Focus on small number of parameters/data
BACKUP SLIDE – INELASTICITY PLOTS

- Show 4 plots of inelasticity
BACKUP SLIDE – INELASTICITY PLOTS

- Show 4 more plots of inelasticity
BACKUP – Another Single Angle set of Plots K Lambda
LHS particle Accelerator is 22 km in circumference

This material is based upon work supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-01-ER41194.