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The question of the filling of space by flexible layers of constant thickness is considered for the 
example of smecticd liquid crystals. The possibility of space filling by domains of two types 
(confocal and spherical) is proved experimentally. A general space-filling model is proposed. 
according to which, on scales exceeding a certain critical sizep*, the space filling is realized by 
an iterative system of confocal domains (the radius of the base of the smallest domain is b 
approximately q u a l  top*), and on scales smaller thanp* the remaining gaps are filled by P- 

spherical layers. An expression is obtained for the critical scalep*, which depends on the 
characteristic size of the system, the bending modulus of the layers, and also the anisotropy of 
the surface tension at the boundary of the liquid crystal. 

1. INTRODUCTION 

A great many physical systems, ofwhich the simplest is 
a smectic-A liquid crystal (SALC), possess a structure con- 
sisting of flexible layers of constant thickness. Each layer of 
an SALC consists of rodlike molecules oriented in the direc- 
tion normal to the layer. The layer thicknessa is close to the 
length of the molecule ( a  - m), and to change it usual- 
ly requires energies considerably greater than the energy of 
bending deformations of the layers. The maintenance of a 
constant distance between the layers implies that the field 
lines of the normal n to the layers are everywhere straight 
lines; in other words, the conditions 

n .curln = 0, n xcur ln  = 0 (1)  

are fulfilled. 
If the layer system is situated in a bounded volume, the 

distribution of n should satisfy not only the conditions ( 1 ) 
but also conditions on the boundary. Simultaneous fulfill- 
ment of these conditions in the general case can be ensured 
only by the appearance in the system of a certain number of 
defects-singularities of the field n. In principle, in a three- 
dimensional medium such defects can be two-dimensional 
(walls), onedimensional (lines), and zero-dimensional 
(points). It is obvious (and this is confirmed both by calcu- 
lations and experimentally) that line and point singularities 
are more favored energetically. To  these singularities there 
correspond only two classes of equidistant surfaces-name- 
ly, Dupin cyclides and concentric spheres (the latter can be 
considered as a particular Dupin cyclide). The first to show 
this was Maxwell in 1868, when solving the problem (similar 
in many respects to that considered here) of the propagation 
of wave surfaces when rectilinear wave rays pass through an 
isotropic medium. ' 

In an SALC, which is an optically uniaxial medium, the 
distribution of the field n and the defects in it are compara- 
tively easily displayed by means of polarization-microscope 
studies, since the optical axis coincides with the direction of 
n. As was established by Friedel and GrandjeanZ on the basis 
of such observations, for planar SALC samples the most 
characteristic texture is a so-called texture of confocal do- 

mains, in which line defects of regular shape, in the fonn of 
ellipses and hyperbolas, are clearly distinguishable. Asso- 
ciated with each pair of lines is a distinct confocal domain, in 
the form of a cone of revolution whose base is the ellipse and 
whose apex lies on the hyperbola. The layers within a d s  
main have the shape of Dupin cyclides and are everywhere 
perpendicular to the straight lines joining any point of the 
hyperbola to any point of the ellipse (Fig. 1). Usually one 
observes a whole family of domains that have a common 
apex and are contiguous along generators. Despite the long 
history of the question, until now it has not been finally clari- 
Eed how a system of domains in the form of cones of revolu- 
tion ensures continuous filling of space and how it is possible 
for layers to cross smoothly from domain to domain in a 
manner that does not require the introduction of defects 
with dimensionality higher than unity into the system. 

Two theoretical models are known. In the Bragg model 
of iterative space filling.'." the gaps between large domains 
are occupied by smaller domains, and so on down to molecu- 
lar scales (Fig. 2 ) .  However, the situation in a real experi- 
ment is not always like this, and between domains it is possi- 
ble that gaps free from defects can be preserved. In the 
second model, recently proposed by Sethna and Kliman,' a 
smooth transition between domains within one family is re- 
alized by a system of spherical layers. However, there is no 
adequate experimental confirmation of this model either. 

In the present paper, on the basis of an experimental 
study ofSALC textures in different geometries, we propose a 
general space-filling model that is, in essence, a combination 
of the two previously known models. It is shown that the 
pattern of the space filling is different for scales greater and 
smaller than a certain critical size. The dependence of this 
size on the parameters of the system is found. 

2. FILLING O F  SPHERICAL VOLUMES 

We consider first of all the character of the filling of the 
simplest model object-a spherical SALC drop freely sus- 
pended in an isotropic matrix. The choice of such an object 
makes it possible to investigate in detail the dependence of 
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the pattern of the space filling on theorientation of the layen 
the surface; as will be shown below, the principal features 

of the filling of a spherical drop are preserved for other ex- 
perimental geometries too. 

We investigated several liquid crystals, but because of 
their qualitative similarity all the results given in this section 

just to 4-n-octyloxy4n-heptyl-a-cyanostilbene, 
which possesses a smectic-A phase in the temperature range 
52-63 "C. The liquid crystal was dispersed in the form of 
drops of diameter of the order of 0.1 mm in three isotropic 
matrices: glycerine, which gives rise to tangential boundary 
conditions for n (the matrix M,); glycerine with excess le- 
cithin solution ( 10 wt%), which gives rise to normal bound- 
ary conditions (the matrix MI,); and, finally, glycerine with 
a moderate ( 1 % )  content of lecithin solution (the matrix 
.U,). The orienting properties of the matrix MI  were de- 
scribed earlier in Ref. 6 and differ from those of the matrices 
.\.I, and ;U,, in the comparatively low value of the anisotropy 
of the surface tension. 

In the indicated matrices, respectively, three types of 
structures were observed in the drops: I )  disordered struc- 
tures with a large number of defects and bends, 11) strongly 
radial structures with only one defect (a point "hedgehog") 
at the center of the drop,' and finally, 111) intermediate 
structures containing both a point defect at thecenter and a 
certain number of line defects, namely, circles on the surface 
of the drop and straight lines passing through the centers of 
these circles and the center of the drop (Fig. 3). It is the 
intermediate structures 111 that are of greatest interest for 
discussion. 

Indhe structure of type I11 two types of regions, with 
different packings of the layers, can be clearly distinguished. 
The behavior of the textures under observation in crossed 
Nicols, and also upon introduction ofa quartz wedge, makes 
it possible to conclude that regions of the first type have a 
spherical packing of layers, while regions of the second type, 
in the form of circular cones of revolution, contain layen 
with the shape of Dupin cyclides and are confocal domains 
of toroidal configuration (Fig. Ib), built into a ball. 

Apart from the indicated pair of lines and the point at 
the center, there are no other defects in drops with a struc- 
ture of the type 111; the layers pass smoothly between the 
confocal domains and the regions with spherical packing 
(Fig. 3b). This is understandable, since the layers intersect 
the conical surface of contiguity at a right angle. In fact. the 

FIG. 1. Smectic-A h y m  in the form of Dupin cyclida with line 
defects in the form of a c~nfocol ellipse arid hyperbola (a) and a 
circk-straight-line pair (b). The put of the volume occupied by 
cycliduand bounded by a surfice in the form ofa wne of revolu- 
tion is an Lohtcd w n f d  do& whox bast is the ellipse 
(circle) and whox apex l i e  on the hyperbola (straight l i e ) .  

experimental results prove that it is possible in principle to 
have smooth filling of the gaps between the confocal do- 
mains by spherical layers with center of curvature at the 
point at which the apices of the domains meet. 

As a rule, drops in the matrix MI contain not two confo- 
cal domains, as in Figs. 3a and 3b, but a whole system of 
contiguous domains (Fig. 3c), the radii p of the bases of 
which are unequal and vary fromp S R  (R is the drop radi- 
us) top  =p* a R  /lo. Here the smallest domains are found 
to be built into the gaps between the larger domains, while 
the remaining gaps, of sizes smaller than p*, are filled by a 
single system of spherical layers. We shall consider the phys- 
ical nature of this filling. 

For a qualitative understanding it is sufficient to point 
to two factors, the competition between which determines 
the equilibrium value ofp* [at a constant temperature, this 
quantity (for drops) remains unchanged for many hours]. 
The first factor is the difference in the surface energy of re- 
gions with spherical packing (the molecules are perpendicu- 
lar to the surface) and confocal packing (the molecules are 
parallel to the surface). The second factor is the difference in 
the energy of elastic distortions of the two types of region, 
the energy density being determined by the values of the 
principal radii of curvature of the layers: f- (l /Rl  + I /  
R,12. For spherical layers R ,  = R, > 0, while for Dupin cy- 
clides R,  and R2 have opposite signs (R,R, <0),  and as a 
consequence the elastic energy can be reduced. Thus, to de- 
terminep* it is necessary to consider the total drop energy, 
consisting of a volume contribution 9, and a surface con- 

FIG. 2. Iterative filling of a region of space in the form of r pyramid by a 
family of contiguous confocal domains with a common apex at the apex of 
the pyramid. 
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FIG. 3. Structure of spherical smectic-A drops ow 
pended in the glycerine-lecithin matrix MI: 4 b )  mi- 
crophotographs of drops in transmitted polarized light 
(the analyzer is absent); c )  scheme, corresponding to 
microphotograph (a),  of the packing of the layers in 
the drop (section through the center of the drop). 

tribution 7,. To calculate Fv and 9, it is necessary to 
find a number of functions characterizing the filling of a 
spherical surface by an iterative system ofcontiguous circles 
of different radii p. 

The initial stage of the interation consists in specifying a 
regular arrangement, on the sphere, of several equal conti- 
guous circles of large radius. The problem is solved most 
simply for four, six, or  twelve initial circles.' Then, in the 
gaps between the large circles, smaller ones are inscribed, 
and so on. 

It is most important to know the total number m ( p )  of 
circles occupying the sphere after each successive stage of 
the iterations. It is obvious that the number m ( p )  is a func- 
tion of the ratio R /p of the drop radius R to the radiusp of 
the smallest circle. The determination of this function is a 
nontrivial problem not only for a spherical surface but even 
for a plane (the so-called Apollonius problem; see, e.g., Ref. 
9). In the approximationp (L, where L is the characteristic 
size of the region being filled, it has been shown by comput- 
er-modeling methods that in planar ge~metry' .~ 

m (p) - 4  (LIP) ", (2 )  

where A and n are numerical constants; the scaling index n 
takes the value n 1.3 (for convenience of the calculations 
we take' n = 4/3). Since the character of the dependence is 
determined principally by the final stages of the iterative 
filling (p  4 L ) ,  we can regard formula (2) as being valid also 
for the filling of a spherical surface: Forp  (R the geometry 
of a sphere differs little from the geometry o fa  plane. There- 
fore, we shall assume that the value n = 4/3 of the scaling 
index will also be applicable for a sphere. 

This makes it possible to use, for the subsequent calcu- 
lations, the results obtained for planar geometry in Ref. 4, in 
which it was shown that the elastic energy of the iterative 
system of confocal domains, written with allowance for the 
energy of the cores of the line defects is .FozzKl ,Lnp '  - " , 
and the residual area not occupied by the bases of domains 
after the next iteration is So=Lnp2-" .  Consequently, the 
volume energy 9, can be represented in the form of the sum 
of Yo and the energy associated with bending of the regions 
with spherical layers: 

Fv=K,,Rmp'-"+2KI,Rn-'p2-", 

and the surface energy can be represented as 

In writing this expression for 7, we have taken into ac- 
count that on the boundaries of regions with spherical pack- 
ing the surface tension is a,, and on the boundaries of confo- 
cal domains the surface tension is o,, (we neglect small 
deviations of the molecular orientation from the tangential 
direction at the bases o f the  domains); in addition, L has 
been replaced by R, and K ,  , denotes the Frank bend modu- 
lus. ~ i n i m i z i n g t h e  sum 7. + Y,, we obtain the equilibri- 
um value ofp: 

As can be Ken from formula (31, the pattern of the 
space filling depends in an essential way on the magnitude of 
the anisotropy Ao = u, - a,, of the surface tension. Despite 
the fact that formula (3) was obtained with neglect of cer- 
tain numerical coefficients, it correctly reflects the character 
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FIG. 4. f exmre of a smectic-A liquid crystal (4-n-octyloxy4n-hcptyl-a- 
cyanostilbcne) in a planar sample witb two glass surfaces. 

of the dependence ofp* on the parameters Au, R, and K,,. If 
hg 51 - K,  ,/R the iterative system does not arise and the 
drop hasa structure ofthe type 11, in which the moleculesare 
oriented along the normal to the surface. For Au >, - K, ,/R 
the appearance in the drop of an iterative system of confocal 
domains, the smallest of which has a base of radiusp*, be- 
comes energetically favored. As Au increase, the critical ra- 
dius gradually decreases fromp;,, - R top;, -a. The esti- 
mate&,, -a follows from the fact that we have no grounds 
to assume that the energy of the interaction of the SALC 
molecules with the molecules of the matrix is appreciably 
greater than the energy of the intermolecular interaction in 
the SALC, and this implies that Au also cannot be apprecia- 
bly greater than K ,  ,/a. 

If the values ofp*,  R, and K, ,  are known from experi- 
ment, the formula ( 3 )  can be used to estimate the quantity 
Au, which is an important characteristic of the surface of the 
SALC. For the investigated drops with the type-I11 struc- 
ture in the glycerine-lecithin matrix M I  (Fig. 3c), p*  = 10 
pm, R zr 100 p m ,  and K,,  ss lo-" N, and, consequently, 
A u z ~ 3 .  lo-' N/m. In drops with the type-I structure, sus- 
pended in the pure glycerine matrix, it appears that the itera- 
tive process is truncated at  much smaller valuesp* < I pm, 
and, consequently, on the boundary of the SALC with the 
glycerine, Au > 5 -  N/m. 

We now turn to the most frequently encountered ex- 
perimental situation, in which the SALC has a planar shape, 
and show that the principal features of the space-filling pat- 
tern for drops are preserved in this case too. 

3. TEXTURES OF PLANAR SAMPLES 

The model for the filling of drops can be carried over 
most obvious1 y to the geometry of an SALC sample enclosed 
between two cover glasses and containing three air bubbles 
(Fig. 4). It can be seen that the confocal domains are com- 
bined into three families around each of the bubbles. Here 
the domains of each of the families are oriented in such a way 
that the continuations of all the hyperbolas converge to the 
same point-namely, the center of the corresponding air 

bubble. Thus, the given structure is a part of the structure of 
the type-I11 drops considered above. - 

We shall consider the character of the space filling in 
the most frequently encountered SALC t e x t ~ r - ~ ~ ] ~ ,  a 
polygonal texture (Fig. 5a). This figure shows a tu rh re  of 
the liquid crystal CF,-C,H,-CH = N-C&,-C,H, ( fluor- 
inated MBBA), which forms a smectic-A phase in the range 
43-49 'C. The substance was placed between cover glasses, 
onto which a thin layer of the glycerine-lecithin matrix M, 
had first been deposited. The layer thickness was L = 200 
pm. The use of this way of preparing the cover glasses made 
it possible to obtain, in a reproducible manner, qualitative 
polygonal textures in which most of the confocal domains 
had a toroidal configuration (the latter is evidently connect- 
ed with the creation ofconditions for the degenerate orienta- 
tion of the SALC molecule at the surface, and with the low- 
ering of the azimuthal part of the energy of cohesion). We 
note that for planar surfaces prepared in a different way, the 
polygonal textures preserve their main features; only the 
quantity p *  is subject to changes. The sizes of the polygons 
are close to the sample thickness. Theu edges are slightly 
curved and are formed by segments of lines ofconfocal pain. 
The families of polygons in the texture are localized both on 
the upper and on the lower surface of the sample. 

Each polygon is the base of a pyramid whose apex lies 
on the opposite bounding surface. Here the apices of the 
pyramids whose bases lie in the lower plane coincide with the 
apices of polygons lying in the upper plane, and vice versa. 

A general scheme for the filling of a planar sample by 
such pyramids was proposed by ~ r a ~ ~ . '  If for simplicity we 
choose pyramids with square bases, then the wholespace can 
be divided into two sets of pyramids (of the type H(ABCD) 
and A (EFGH) in Fig. 6a), with apices on opposite surfaces 
of the sample, and also into a complementary family of tetra- 
hedra of the types ABGH and ADEH in Fig. 6a, which fill the 
regions between the pyramids. The upper and lower edges of 
each tetrahedron are simultaneously edges of polygons in 
the bases of the pyramids. They can be regarded as parts of 
lines of a confocal pair; the layers within each tetrahedron 
have the shape of Dupin ~yclides.'.~ By definition, the 
straight lines joining any points of a confocal pair are normal 
to the Dupin cyclides. Consequently, each tetrahedron is a 
part of a confocal domain (Fig. 6b), and the smectic-A lay- 
ers intersect its faces at a right angle (for more detail, see 
Ref. 31." 

From the above account it follows that the problem of 
the space filling in a polygonal texture reduces to the prob- 
lem of the filling of pyramids. As can be seen from Fig. 5% 
the filling of pyramids takes place analogously to the filling 
of drops. In the polygons (the bases of the ~ ~ r a m i d s )  are 
inscribed the ellipses of an iterative family of confocal do- 
mains: one or more at the center, and smaller ones in the 
corners of the polygons and in the gaps between the large 
domains, and so on. The hyperbolas of all domains converge 
at the apex of a pyramid. As in the situations considered 
above, the iterative filling is truncated at domains with a 
certain minimum sizep*. The  remaining gaps inside the pyr- 
amid are occupied by spherical layers with a common center 
ofcurvature at  the apex of the pyramid. The latter statement 
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FIG. 5. Polygonal smectic texturein a sampleof thickn- 
200pm: a) microphotograph of the upper surface of the 

. texture, in transmitted polarired light with one analyzer, 
b) the corresponding scheme of the packing of the bases of 
the confocal domains into polygons-the bases of the pyr- 
amids. The distribution of the optical axes on the surface 
is indicated by the thin straight lines, and the regions of 
darkening, in which theoptical axis is parallel to the plane 
of polarization of the analyzer, are shaded by dots. 

can be checked by studying the pattern of the extinction in a 
polygonal texture in observation in a microscope with one 
analyzer. It is known that the regions ofextinction should be 
localized in those parts of the texture where the optical axis 
(the normal n to the layers) is parallel to the plane of polar- 
ization of the analyzer (see, e.g., Ref. 3 ) .  The distribution of 
the optical axes for a system of layers in the plane of the 
polygons in Fig. 5a is presented in Fig. 5b. The optical axes in 
each confocal domain in this plane converge at one of the 
poles of the ellipse, and the.projections of the optical axes of 
the free parts converge at  the point of the projection of the 
apex of the pyramid on the plane, if these parts are occupied 
by spherical layers. This arrangement of the optical axes is 
indeed observed experimentally. From a comparison of Fig. 
5a and Fig. 5b it can be seen that the character of the space 
filling on the microphotograph corresponds to the scheme of 
filling by spherical layers. The individual deviations in the 
degree of darkening in the upper part of the microphoto- 
graph aredue tolight ovals caused. apparently, by variations 
of the glycerine layer. The critical scale of the iterative space 
filling is determined analogously to the expression ( 3 ) ,  if R 

is replaced by the characteristic size L of a polygon. 
It remains to convince ourselves that the smectic layers 

can cross smoothly from pyramid to pyramid through re- 
gions of tetrahedra, without creating defect walls on the 
way. This is in fact the case. First, in the above-described 
filling of a pyramid, the side faces of the pyramid are inter- 
sected by a family of spherical layers at a right angle; the 
layers of a family of Dupin cyclides, belonging to the neigh- 
boring tetrahedron, also approach the faces of the pyramid 
at a right angle. Secondly, in the region of the crossing, e.g., 
in the planeABH (Fig. 6d) the layenofboth families have a 
common ce+er of curvature at  the apex ofthe pyramid (the 
point H for the plane ABH in Fig. 6d). 

The above examples of the filling of spherical drops and 
polygonal textures permit us to conclude that in other ex- 
perimental geometries the general features of the proposed 
model will be.preserved. In particular, in the fan textures 
that are formed.in thin samples (L- IOpm), it is possible to 
observe how the hyperbolas lying in the plane of the sample 
converge at the same point-the center of the spherical do- 
main whose layers fill the gaps between the confocal do- 
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FIG. 6. General scheme of space filling by smectic layers: a )  division of a 
parallelepiped (which can be wd to fill  space by means of parallel tans- 
Iations) into a pair of pyramids H(ABCD) and A(EFGH) and a pair of 
fetrahedraA BGH and ADEH; b) filling ofa tetrahedron ABGH by asingle 
family ofDupin cyclida intersecting the facaofthe tetrahedron at a right 
~ngle; c )  filling of a pyramid by a single family of spherical layers, into 
which confocal domains are built smoothly; d)  scheme of a smooth cross- 
ing of layers from a pyramid to a tetrahedron within one parallelepiped. 

mains. The only exceptions, evidently, are textures of para- 
bolic domains, in which the space filling can be produced by 
a regular lattice of domains of the same size.'' 

4. CONCLUSION 

For the examples of a number of SALC textures we 
have considered the pattern of the space filling by flexible 
layers of constant thickness when this pattern satisfies con- 
ditions on the orientation of the layers at the surface. The 
principal features of the pattern reduce to the following. 

On largescales, comparable with the characteristic size 
of the system, the space filling is realized by an iterative sys- 
tem of contiguous confocal domains of successively decreas- 
ing sizes. The size of the base of the smallest domains is 
determined principally by the conditions on the orientation 
of the layers at the surface of the system. On smaller scales 
the hierarchy of confocal domains is replaced by a new type 
of packing; all the remaining free gaps are filled by spherical 
layers. 

As follows from the above account, in space filling by 
smectic layers the only defectsare point radial "hedgehogs" 
and pairs of lines in the form of an ellipse and a hyperbola 
(the latter, strictly speaking, are not topologically stable sin- 
gularities). At the same time, in real experimental condi- 
tions the structure of the confocal and spherical domains can 

be distorted, first because of violation of the conditions ( 1 ) 
requiring equal spacing of the layers (this corresponds to the 
appearance ofedge and screw dislocations'O."), and second- 
ly because the Dupin cyclides tend to adopt the shape of 
minimal surfaces (R, = - R,), as has probably been ob- 
served in certain cases for lyotropic" and cholesteric ther- 
motropicI4 phases. However, these distortions do not intro- 
duck great changes into the large-scale pattern of the space 
filling. 

The problem of space filling by flexible layers has a 
number of analogies, noted previously in Refs. 4 and 5. In 
connection with the distinguishing feature of the proposed 
model (the presence of a characteristic critical scalep* sub- 
stantially exceeding, in the general case, the molecular 
sizes), it is of interest to give a further brief discussion of 
some of these analogies. 

The situation closest to the model under consideration 
is the situation with "branching" of domains of the normal 
phase in the intermediate state ofsuperconductors, in which, 
as they approach the boundary of the sample, the domains 
experience a series of successive branchings into domains of 
smaller sizes." However, this process. like the iterative 
space filling in a smectic, is not infinite and ceases at scales 
much larger than the coherence length. The cessation of the 
branching is caused by the decrease in the magnitude of the 
critical field when the domain sizes decrease.'' A compari- 
son that is becoming better founded is that between the pack- 
ing of smectic layers in space and the pattern of turbulent 
flow, in which pulsations of different sizes, from the largest, 
of the order of the characteristic size of the system. to the 
smallest, determined by the so-called internal scale of the 
t~urbulence," are present. 

Finally, a nontrivial analogy is that between the filling 
of space by confocal domains of a spherical drop and the 
faceted structure of the eyes of  insect^.^ The role of the con- 
focal domains in the latter case is played by the conical for- 
mations (ommatidia), which emergeonto thealmost spheri- 
cal surface along the sides of the insect's head.'' For a 
number of physical reasons, described in detail by Feynman 
er al. in Ref. 18 and associated principally with features of 
the refraction of light, there exists a critical ommatidium 
radius that ensures optimal sharpness of vision. It is interest- 
ing that this size (30-35 p m )  is close to the characteristic 
radius in the drops with structure of type 111 described in 
Sec. 2. It seems logical to assume that the simplest way for 
forming a faceted structure is to create conditions similar to 
those described for drops in Sec. 2. 

The author is grateful to M. V. Kurik and S. V. Shiyan- 
ovskiT for reading the manuscript and for useful comments. 
and also to N. S. Pivovarova for providing the fluorinated 
MBBA for the investigations. 

"Opposite sides of polygons can also be two hyperbolas; such a pair of 
sides is not confocal, and in the filling of thecorraponding tetrahedron 
a system of screw dislocations arises." 

'The Scient$c Papers of James Clerk Maxicell. Vol. 11 (ed. W. D. Ni- 
ven). Librairie Scientifique. I. Hennann. Paris ( 1927). p. 144. 
'G. Friedel and F. Grandjean. Bull. Soc. Fr. Min. Crist. 33.409 ( 1910); 
G. Friedel. Ann. Phys. (Paris) 18.273 ( 1922). 
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