Measurement of polar anchoring coefficient for nematic cell with high
pretilt angle
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A method to determine the surface anchoring energy of a nematic liquid crystal is proposed. The
technique implies the measurements of optical retardation of a nematic cell as a function of a
strength and direction of the applied magnetic field. It enables one to get both pretiltcangte
anchoring coefficienW, in the course of the same experiment. As an example, both parameters
(«=10.9° andW,=1.5x10"° J/n?) are measured at the interface between the nematic 5CB and
rubbed polyimide film. ©1995 American Institute of Physics.

Molecular interactions at the interface between a nemperimentally and theoretically. With knowh, x, and elastic
atic liquid crystal and an ambient medium establish a definiteonstants, the comparison of experimental and calculkated
orientation(so-called easy axiof the directom. Two basic  restores the whole surface anchoring energy as a function of
parameters characterize this anchoring phenomefdpmo-  both polar and azimuthal angles. Here, to illustrate the
lar tilt angle # betweem and the surface normél(or pretilt ~ method, we restrict ourselves only to the measuremends of
anglea=m/2—6); (2) anchoring coefficien®V, which mea- andW, that characterize the polar part of anchoring poten-
sures the work needed to deviatdrom 6=6. tial.

The values ofxr andW, are measured by different tech- Consider a nematic cell with plates locatedzad/2 and
niques which are based usually on dielectric or diamagneti&=—0d/2; n is confined to thex,z) plane of Cartesian coor-
anisotropy of liquid crystals-® The most popular method to dinates. The magnetic field is applied in theZ) plane at
define a is the magnetic “null” method. One rotates a flat Some angles (Fig. 1). The free-energy per unit area of the
cell with uniformn between the poles of a magnet and mea-Cell is
sures a response of the cell to the applied fidldThere is
only one orientationH|jn, which does not produce such a 1
responsgin most materials, the anisotropy of diamagnetic FZE
susceptibility is positive, x,=x—x,. >0, where the
subscripts refer ta1). The angle between the cell arl
definesa.

To determineW,, one usually uses the Yokoyama-—van

Sprang techniqu&;® which implies simultaneous measure-

ments of the birefringence and capacitance of a cell as g/here 0(z) describes director distortion$/(¢—0) is the

function of the applied electric field. Besides the necessity téetnchorlng energy,; andK gz are the splay and bend elastic

measure two parameters, the method is of practical use onf:onstants, respectively.
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If the field direction is close to the easy axig=~¥,

y
for rather thick cells,d=50 umZ3* However, many prac-
tical applications require thinner cellgy=5 um. This

the director deformations_are small and it is appropriate to
introduce small angles¥=60-8 and V¥(z)=6(z)—p

cwcumstgnce might be important, siné¢, can depend od <1. In this case, the anchoring energy is well represented
(Ref. 7). in the presence of long-range forces caused, e.g., bg - -

! 2 i
electric double layerS. \I}/(z)vi\é(;l(;u_ngz‘r_oralvlg(qgl_) Z:'B) » and the equilibrium
In many applicationsn is required to be slightly tilted 9
from the plane of a celle=1-10°. Differenta can be set by
adjusting the rubbing technigugubbing provides uniform
in-plane orientationor by choosing different orienting sub-
strates. Evidently, a practical method would be the one where )
both « andW, are determined within the course of the same
experiment. Such a method is described in this letter.
A magnetic fieldH is applied to the cell. Firsty is found
by the magnetic “null” method. Then H and n are mis-
aligned. The field sets spatially nonuniform director configu-
ration n(r) whiwch depends omd, x,, surface anchoring,
and elastic constants. The configuration) defines optical
retardationd of the cell, which can be determined both ex-

¥ (z)=W¥, coshqz/coshu, (2
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dAlso with the Institute of Physics, Kyyiv, Ukraine. FIG. 1. Cell geometry.
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FIG. 2. Experimental setup. 0.00
where Wo=(6—pg)lg, g=1+Iqtanhyu, |=K/W,, //
q2=xH?%K, u=qad/2, and K=Ky, sirf 8 .0.05 : , , , : ,
+Kg3 cOg B. 76 78 80 82 84 8 8 90
The field-induced distortions change the retardatoof B, deg
the cell. For a normally incider{alongz-axis) laser beam of
wavelengthi, FIG. 3. Phase retardatioAd® as a function of angle8 between the
magnetic fieldH and the normal to the cellH=8.5 kGs. (1) fitting
Amne (2N curve, W,=1.47x10"° Jin?; (2) W,=3.0x10° Jn?; and (3)
b= OJ (—e—l)dz (3)  W,=0.7x10"° Jnt.
A 0 n ’

grammable motion controllefmodel PMC200-Pwas used
to set different rotations of the cell with respect to the mag-
netic field.

where n[6(z)]=[nZ sir? &(z)+n2cos 6)]¥2, n, and

n. are the ordinary and extraordinary refractive indices, re

ip(;ctl\ieg. The_ char;ge; 'NI(; fcauseI(E:I bé thedflgld,ARQD The linearly polarized45° with respect to the rubbing

. .|H |H.:°’ IS calculated from q§( .) and (3). Re- direction He—Ne laser beam of diameter 1.5 mm was modu-

taining leading termglinear and quadratic in the small angle lated by a choppeif=400—800 Hz and directed normally to

V), one gets the cell. The retardation was determined by Senarmont tech-
nique. Elliptic polarization of the beam passing through the

AD= 47TA[B\I_I(tanhu—ug)+C\I_fz sample was transformed into the linear one by/4 plate;

AQg the angle of this linear polarization was defined by rotating
2u-+sinh A the analyzer to find the extinction position.
% ug—2tanhu+—> , (4) Figure 3 shows the measured and calculateb(g).
4g costt u Each point represents a separate measurement; for &ach
_ _ the fieldH was gradually increased t8=8.5 kGs and then
where A=ngng(n2—n3)2n®, B=n? sin 20, C=n2cos ¢ Ad was measureq3 was determined with accuracy of 0.1°,
—n2 sir? 6+ (n2—n3)cog ¢ sir? 9, and n=n(6). and A® with accuracy better than 18 rad. The pretilt

The anchoring coefficierV, can be obtained by fitting angle («=10.99 corresponded t&a®=0. The fitting of the
experimental values ad® with theoretical curve$Eqg. (4)] experimental data with EqQ(4) resulted in W,=1.47
in two independent ways; either from the dependencex10 ® J/n? (standard error 0.2810°° J/n?). We used
Ad(H) whengB=const or from the dependended(8) when the values oK,;, Ki3, andy, from Ref. 10 and refractive
H=const. indices from Ref. 11.

Experiments were performed for the liquid crystal 5CB Figure 4 showsA®(H) for fixed B=90°. The fitting
(K15, EM Industrie at fixed temperature 25.0 °C. Glass gives W,=(1.54+0.15)x10"° J/n?, which is in good
substrates were spin coated with polyimide SE-@d&san agreement withW, obtained fromAd(B). Comparison of
Chemical Ind., Ltd. solvent NMP/Butyl cellosolyevhich is  two independentW,’s provides an estimate of the goodness
used in display industry for high-pretilt orientation. The of the method. Note that the experimental conditi¢ascu-
plates were cured at 250 °Crfd h and rubbed with rotating racy in A®, chosen cell thicknessl and magnetic field
velvet wheel. The cells were formed by a pair of platesstrengthH) allow measurements diV, up to 103 J/nt.
treated in antiparallel directiongto set nondistortedh).  This limit can be exceeded by using, e.g., stronger magnetic
Variation in the rubbing force resulted in different pretilt field.

angles(a¢=3°-139. Here, we report results for the cell of To conclude, we illustrated the method to determine the
thicknessd=4.5 um (measured by interference methadth ~ angular and energetic parameters of anchoring potential. The
a=10.9°. basic advantages of the method include the followiflg:

The cell was placed between the poles of electromagndioth « andW, are measured?) W, is measured for anw
Varian V3400(Fig. 2. Newport rotary stage 495 with pro- and for any dielectric anistropy of liquid cryst&B) W, can
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FIG. 4. Phase retardatiod® as a function of the magnetic fielti
with fixed orientation 3=90°. (1) fitting curve W,=1.54x10"5 J/n?;

-

H, kGs

(2) W,=3.0x10"° J/n?; and (3) W,=0.7x10"° J/n?.

be measured for thin cell$4) two W,'s values can be ob-
tained independently to check the reliability of the result.
The technique can be expanded to yield the whole pro

10

sitive to the errors in the measured cell thicknds3o re-
duce this sensitivity, one can consider the rati®/®|,—q
rather thanA®; ®|,_, can be determined independently,
e.g., from the temperature dependence of phase retardation.
Another way to improve the accuracy is to use reflected
light'? or total internal reflection mod€. The reflection
modes allow one, in addition, to eliminate the influence of a
possible difference inx at the opposite plates; on the other
hand, a special setue.g., wedge-shaped samples or high-
index prizmg is required. The method of measurements
should be defined on the basis of particular practical or re-
search needs.
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