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Three-dimensional director structures of defects in Grandjean-Cano wedges of cholesteric liquid
crystals studied by fluorescence confocal polarizing microscopy

I. I. Smalyukh and O. D. Lavrentovich*
Chemical Physics Interdisciplinary Program and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242

~Received 19 July 2002; published 11 November 2002!

We use a nondestructive technique of fluorescence confocal polarizing microscopy to visualize three-
dimensional director patterns of defects in Grandjean-Cano wedges filled with a cholesteric liquid crystal of
pitch p55 mm. Strong surface anchoring of the director causes a stable lattice of dislocations in the bulk.
Optical slicing in the vertical cross sections of the wedges allows us to establish the detailed structure of
dislocations and their kinks. Dislocations of Burgers vectorb5p/2 are located in the thin part of the sample,
very close to the bisector plane. Their cores are split into a pair oft21/2 andl11/2 disclinations. Pairs ofl21/2

and t11/2 disclinations are observed when theb5p/2 dislocation forms a kink. The kinks along theb5p/2
dislocations change the level of dislocations by6p/4 and6p/2; these kinks are confined to the glide plane
and are very long,~5–10! p. Above some critical thicknesshc of the wedge sample, the dislocations are of
Burgers vectorb5p. They are often found away from the bisector plane. The core ofb5p dislocations is split
into a pair of nonsingularl21/2 andl11/2 disclinations. The kinks along theb5p dislocation are of a typical
sizep and form cusps in the direction perpendicular to the glide plane. At the cusp,l21/2 andl11/2 disclina-
tions interchange ends. Other defect structures inlude ‘‘Lehmann clusters,’’ i.e., dislocations of zero Burgers
vector formed by twol21/2 and twol11/2 disclinations and dislocations of nonzero Burgers vector with a core
split into more than two disclinations. We employ the coarse-grained Lubensky–de Gennes model of the
cholesteric phase to describe some of the observed features. We calculate the elastic energy of a dislocation
away from the core, estimate the energy of the core split into disclinations of different types, study the effect
of finite sample thickness on the dislocations energy, and calculate the Peach-Koehler elastic forces that occur
when a dislocation is shifted from its equilibrium position. Balance of the dilation/compression energy in the
wedge and the energy of dislocations defines the value ofhc and allows to estimate the core energy of the
dislocations. Finally, we consider the Peierls-Nabarro mechanisms hindering glide of dislocations across the
cholesteric layers. Because of the split disclination character of the core, glide is difficult as compared to climb,
especially forb5p dislocations.

DOI: 10.1103/PhysRevE.66.051703 PACS number~s!: 61.30.Jf, 87.64.Tt, 61.72.Ff, 61.30.2v
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I. INTRODUCTION

Cholesteric liquid crystals~CLCs! have a twisted ground
state with helical configuration of the directorn, which
specifies the average local orientation of molecules. Exte
fields and surface interactions can easily deform the id
helicoidal configuration. When the spatial scale of distortio
is much larger than the cholesteric pitchp ~corresponding to
the director twist by 2p), elastic properties of CLCs ar
similar to those of smectic phases with a one-dimensio
periodic structure@1,2#. If a CLC is confined within a finite
volume, the equilibrium structure is determined by bulk el
ticity and boundary effects, such as surface tension and
face anchoring. Very often, the boundary conditions are
isfied by the appearance of large-scale defects such as
conic domains, curvature walls, dislocations, etc.@3–6#.

Confinement-induced distortions in cholesterics are u
ally studied in the so-called Grandjean-Cano wedges. A C
fills a dihedron with a small angle, formed, for example, b
pair of mica or glass plates. As first observed by Grandj
@7#, a lattice of defect lines forms parallel to the edge. T
lines separate different Grandjean zones, the regions of
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with a different numberN of the director rotations byp. The
defect lattice is apparently stabilized by~a! stresses cause
by dihedron geometry and~b! strong surface anchoring at th
plates. Subsequent polarizing-microscopy observations
analysis@8–16# have established three types of lines in t
Grandjean lattice. The line closest to the edge is a ‘‘Moeb
disclination’’ with a planar director twist, separating a no
twisted region from a region twisted byp @15#. It is followed
by ‘‘thin lines’’ that are edge dislocations with Burgers ve
tors b5p/2. Farther away, for thicknesses larger than so
critical valuehc , one finds ‘‘thick lines’’ representing edg
dislocations withb5p. Thin and thick dislocations are spl
into pairs of disclinations. Geometry dictates two differe
ways of splitting@13#: a thin lineb5p/2 splits intot andl
disclinations and a thick lineb5p splits into all or tt pair
of disclinations. The nomenclature here, introduced by K
man and Friedel@13#, is based on the notationl for the local
director n, x for the direction of the helical axis, andt5l
3x. In l disclinations, the materiall director field is non-
singular, while int disclinations,l is singular andt is not.
Both types of lines are parallel to the cholesteric layers,
cept near the kinks, which change the level of the edge
locations along the helicoid axis@15#. Generally, at least for
the small-molecular-weight LCs, the pair representingb
5p/2 dislocation ist21/2l11/2, andb5p is represented by
©2002 The American Physical Society03-1
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l21/2l11/2 pair @15,16#; the first symbol refers to the discli
nation closer to the thin end of the sample. However, th
are also reports that the pairs might be ofl21/2t11/2 and
event21/2t11/2 type, see, e.g., Ref.@17#. The superscripts in
notations such ast21/2 andl11/2 correspond to the directo
winding number around the disclination. In terms of the V
terra process ‘‘2’’ sign corresponds to adding material b
tween the lips separated by an anglep, and ‘‘1’’ sign cor-
responds to material removal@3,5,6#.

Although there have been a great deal of studies on c
fined cholesteric samples, there are still problems to expl
such as the detailed core structure of split dislocations,
relationship betweenhc and the energy of elastic distortion
around dislocations, the structure and elastic propertie
kinks along the dislocations, the role of the boundary con
tions in the stability and the location of dislocation lin
within the bounded sample, etc. Recent findings@18# indicate
that when the confining plates set in-plane degenerate a
ment, then the defect lines are not observed at all. Studie
smectic samples with free surfaces, see, for example,
review paper by Holyst and Oswald@19#, demonstrate tha
surface tension at the smectic-air interface can dramatic
influence the equilibrium location of the dislocation. Th
value of the critical sample thicknesshc has been related
@12# to the distanceL between two thick lines ashc5kL.
The numerical constant has been originally reported ak
5260.3 @12#; however, this constant might be in fa
smaller,k50.1260.03, according to Durand@20#; see also
recent estimates by Pieranski and Oswald@21#. A model by
Nallet and Prost@22# establishes how the Burgers vector
dislocations changes with the local thicknessh in smectic
A(Sm-A) wedges. Although the cholesteric case is forma
similar to the smectic case as long as the coarse-gra
model @1,2# is valid, the properties of the Grandjean-Ca
lattices in CLC and Sm-A wedges should be different, as~1!
the core structure of elementary dislocations is differ
~core size of the order of lamellar spacing, or one molecu
length, ;1 nm in thermotropic smectics and 1–10mm in
CLC, depending on the pitch!; ~2! surface anchoring energie
are different~tilted orientation of Sm-A layers is associated
with the anchoring energy;(1022–1023) J/m2 @23# much
larger than the corresponding values;(1024–1026) J/m2

for CLCs with p in the range~0.5–15)mm @24–26#!.
An adequate experimental technique to study the pr

lems listed above seems to be fluorescence confocal pol
ing microscopy~FCPM! @27,28#. The advantage of FCPM
technique over the regular polarizing microscopy~PM! is
that it allows to reconstruct a three-dimensional~3D! director
structure by visualizing thin (;1 mm) optical slices of the
sample in both horizontal and vertical planes. The techni
is nondestructive, unlike the electron microscopy@29,17# of
polymerized or otherwise modified samples. Although
sample in FCPM studies is stained with a fluorescent dye,
concentration of dopant is extremely small, about 0.01%

In this paper we employ the FCPM technique to explo
the structural properties of dislocation patterns in Grandje
Cano cholesteric wedges. We present optical slices of
textures and establish the 3D director patterns correspon
to local ~core structure! and global ~location within the
05170
e

-

n-
e,
e

of
i-

n-
or
he

lly

ed

t
r

-
iz-

e

e
e

e
n-
e

ng

sample, layers distortions! features of dislocations and ass
ciated kinks. Experiments are performed for we
equilibrated samples and for transient textures. Using
coarse-grained model@1,2# of CLCs, we analyze the stability
of thick and thin lines and their interaction with the su
strates. We calculate the far-field energy of layer distort
around an edge dislocation, and confinement-induced cor
tions to this energy~in approximation of infinitely strong
anchoring!. These results allow one to determine the relat
stability of dislocations withb5p/2 and b5p, their line
energy, explain the difference in the shape of kinks~which
are long when formed along theb5p/2 dislocations and
short along theb5p dislocations!, analyze the Peierls
Nabarro friction energies, and to find the critical thickne
hc . The calculations are in good agreement with the exp
mental data.

II. EXPERIMENTAL TECHNIQUES

A. Materials and cell preparation

To form a CLC, we mixed a nematic LC materia
ZLI2806 with a chiral dopant CB15~both purchased from
EM Industries!. The nematic matrix has the following prop
erties: dielectric anisotropyD«524.8, Frank elastic con-
stants K1514.9 pN ~splay!, K257.9 pN ~twist!, K33
515.4 pN~bend!, clearing pointTNI5101 °C, and birefrin-
genceDn'0.045. For the FCPM observations, the chole
teric mixture is doped with a very small amount~0.01 wt %!
of fluorescent dye n,n8-bis(2,5-di-tert-butylphenyl)-
3,4,9,10-perylenedicarboximide~BTBP!, purchased from
Molecular Probes@27,28#.

CLC samples of maximum thickness 100mm were con-
fined between pairs of glass plates with transparent ind
tin oxide ~ITO! electrodes to enable application of the ele
tric field. The thicknessh of cells was measured by interfe
ence method. The dihedron anglea of wedge cells was mea
sured using reflected laser beam for empty cells~in all
experimentsa,2 °). To minimize spherical aberrations i
FCPM observations with an immersion oil objectives, w
used glass substrates of thickness 0.15 mm with refrac
index 1.52.

Planar alignment was set by a unidirectionally rubb
~along the thickness gradient, Fig. 1! polyimide PI-2555~HD
MicroSystems! film spin coated over the ITO layers. Th
director is in the plane of the substrate with a possible sm
pretilt angle &1 °. The polar anchoring coefficientWp ,
characterizing the work needed to deviaten from the easy
axis in the vertical plane, is expected to be of the order
1024 J/m2, as this is a typical value measured for PI2555
contact to a variety of nematic mixtures with a positive d
electric anisotropy, see Ref.@30#; azimuthal anchoring coef
ficient is smaller,Wa;1025 J/m2 @31#.

B. Fluorescence confocal polarizing microscopy

The FCPM technique links the director orientation to t
intensity of measured fluorescent signal@27,28#. Compared
to the well-known fluorescence confocal microscopy~FCM!,
FCPM has two distinctive features:~a! the specimen is
3-2
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FIG. 1. Grandjean-Cano cholestetric wed
with a lattice of~a! dislocationsb5p/2 stable at
h,hc and ~b! dislocationsb5p at h.hc ; ~c!
introduces notations used in text and shows clim
of a dislocation toward its equilibrium position in
the bisector plane.
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stained withanisometricdye molecules~in this case, BTBP!
that follow the director orientation;~b! the excitation light is
polarized, usually linearly.

The FCPM setup was assembled on the basis of Olym
Fluoview BX-50 reflective-mode confocal microscope, F
2. The excitation beam~488 nm, Ar laser! is focused by an
objective into a small (,1 mm3) volume within the CLC
slab. The fluorescent light from this volume is detected b
photomultiplier tube in the spectral region 510–550 nm
pinhole discriminates against the regions above and be
the selected volume@32#. The pinhole sizeD is adjusted
according to magnification and numerical aperture~NA! of
the objective;D5100 mm for an immersion oil 603 objec-
tive with NA51.4. The polarizerP determines polarization
of both the excitation beamPe , and the detected fluoresce
light Pf : Pf iPeiP. The beam power is small,'120 nW, to
avoid light-induced reorientation of the dye-doped LC@33#.

For BTBP dye, the fluorescence lifetimetF5(3.7–
3.9) ns @34# is smaller than the characteristic time of rot
tional diffusion tD;10 ns, and dye orientations during a
sorption and emission can be assumed to be close to
other @28#. The FCPM signal, resulting from a sequence
absorption and emission, strongly depends on the angb
between the transition dipole~parallel to the local directorn
in our system! and P: I;cos4b @27,28#, as both absorption
and emission follow the dependency cos2b. The strongest
FCPM signal corresponds toniP (b50), and sharply de-

FIG. 2. Setup for the fluorescence confocal polarizing micr
copy.
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creases whenb becomes nonzero.
The focused beam scans the sample at a fixed de

2h/2<z<h/2, creating a ‘‘horizontal’’ optical sliceI (x,y).
The scanning is repeated at different depths, to obtain a s
of optical slices, i.e., a 3D patternI (x,y,z), related to the 3D
patternn(x,y,z) through the dependenceI;cos4b. Note that
the correspondenceI (x,y,z)↔n(x,y,z) is not unique when
only one fixed direction of linear polarizationP is used, as
the angular parameterb defines a cone of directions. T
avoid ambiguity, we use different directions of the line
polarizationP @e.g.,P5(P,0,0) andP5(0,P,0)] and also a
circularly polarized light. In the latter case, only the chang

-

FIG. 3. Polarizing microscopy textures of unstable and sta
defects in cholesteric cells:~a! a flat sample,h510 mm; p
51 mm; defects in the area coated by the electrodes are remo
by an ac field~50 V!; ~b! a wedge sample,p55 mm, a50.45 °;
stable lattice ofb5p/2 andb5p dislocations. A vertical cross sec
tion along the line dd is shown in Fig. 4~d!.
3-3
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FIG. 4. FCPM textures of verticalx-z cross sections of Grandjean-Cano wedge with right-handed CLC,p55 mm, strong planar
anchoring: ~a! twist disclination separating 0p and 1p Grandjean zones;~b! b5p/2 dislocation with a core split into at21/2l11/2

disclination pair, separating 2p and 3p Grandjean zones;~c! the same, between 13p and 14p zones;~d! b5p dislocation with a core split
into al21/2l11/2 disclination pair, 22p and 24p zones, the slice obtained along the bb line in Fig. 3~b!. PolarizerP is parallel to they axis.
The rubbing direction is along thex axis. Bright regions correspond tonuuP, darker regions correspond ton'P or bounding glass plates.
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in the vertical componentnz of the director are detected;nx
andny are not discriminated against each other. Using co
puter software, the 3D patternI (x,y,z) can be cut by vertica
planes such as (x-z) and (y-z) to visualize n across the
sample.

Low birefringenceDn'0.045 of the nematic host miti
gates two problems that one encounters in FCPM imagin
CLCs: ~1! relative defocusing of extraordinary versus ord
nary modes@27# and~2! the Mauguin effect~polarization of
light follows the twisted director! @28#. To maintain both
axial and radial resolution within 1mm, we used relatively
shallow (<60 mm) depth of scanning@28#. Furthermore,
with p.5 mm, the Mauguin parameterDnp/2l'0.2 is
small, so that light propagates in the so-called sho
wavelength circular regime with almost circularly polariz
eigenmodes@35#; their interference produces a wave with
polarization state close to that of the excitation beam, so
the relationshipI;cos4b remains valid@28#. Finally, note
that in the FCPM images of thick (.30 mm) samples, the
registered fluorescence signal from the bottom of the ce
somewhat weaker than from the top, as a result of finite li
absorption, depolarization, and defocusing.

III. EXPERIMENTAL RESULTS

Usually, in a flat cell, defects such as oily streaks a
dislocations are metastable objects caused by the mat
05170
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flow during the cell filling. These defects eventually relax
the equilibrium planar statexuuz; the relaxation is slow~can
take months!. To reduce the relaxation time, we used a ch
lesteric LC withD«,0 so that the applied electric fieldEuuz
facilitates the equilibrium planar statexuuz, Fig. 3~a!. In the
Grandjean-Cano wedge with strong surface anchoring,
defects correspond to the equilibrium state and persist e
when an external field is applied, Fig. 3~b!. The dislocation
lines are aligned along they axis, their Burgers vectors ar
along thez axis, thus the glide plane is they-z plane. Note
that in order to present the experimental and theoretical
sults in the most compact form, we use two Cartesian co
dinate frames, rotated with respect to each other by the a
a/2 around they axis: (x,y,z) and (x8,y,z8), where thex
axis is along the bisector of the wedge and thex8 axis is
along the bottom plate;x85x50 at the edge.

A. Equilibrated samples

The whole 3D director structure can be understood
combining the regular PM textures, Fig. 3~b!, and the FCPM
cross sections in the vertical planex-z that contains the
thickness gradient direction, Fig. 4. The thin part of t
wedge contains thin dislocations parallel to they axis and
separated by distancesl'p/(2 tana), as measured in the
(x8,y,z8) frame. Forh.hc , one observes a lattice of thic
FIG. 5. Director configurations
corresponding to~a! twist discli-
nations in Fig. 4~a!; ~b! t21/2l11/2

disclination pair in Figs. 4~b,c!;
~c! l21/2l11/2 disclination pair in
Fig. 4~d!.
3-4
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THREE-DIMENSIONAL DIRECTOR STRUCTURES OF . . . PHYSICAL REVIEW E 66, 051703 ~2002!
lines with a period 2l . The distance between the last thin a
the first thick line is 1.5l , Fig. 3~b!. The corresponding ver
tical cross sections reveal the basic features of the def
listed below.

~1! The first line separating 0p and 1p Grandjean zones
is a twist disclination, Figs. 4~a! and 5~a!, typical of a nem-
atic, as the director experiences a slight splay remainin
the (x-z) plane to the left of the core and twists byp around
the z axis in the region to the right of the core.

~2! The thin lines separating Grandjean zones in the t
part of the sample,h,hc , @such as zones 2p and 3p, Fig.
4~b!; 13p and 14p, Fig. 4~c!# are all separated by disloca
tions with the Burgers vectorb5(0,0,1)p/2. Their core is
split into disclination pairst21/2l11/2, Fig. 5~b!. Another
possible splitting, intol21/2t11/2 pairs, is observed in tran
sient structures when the dislocationb5p/2 forms a kink,
i.e., a step that brings the dislocation to a differentz level,
see point~1! in the following subsection. Predominance
t21/2l11/2 pairs overl21/2t11/2 pairs has been explained b
Kleman@3#: the singular core int11/2 line is less spread an
thus costs more energy as compared tot21/2 singular core.

~3! The thick lines ath.hc are dislocations of Burger
vectorb5b(0,0,1); b5p, Fig. 4~d!, with the core split into
a l21/2l11/2 pair with a continuousn. Their singular coun-
terparts,t21/2t11/2 pairs, are never observed, as the singu
core would carry an additional elastic energy;K ln (p/rc),
whereK is an average Frank constant andr c!p is the core
size of the order of few molecular sizes@5#.

~4! The critical thicknesshc of the wedge at which the
lattice of b5p/2 dislocations is replaced withb5p disloca-
tions depends on the wedge dihedral anglea. Experimen-
tally, for the studied range 5 mrad,a,20 mrad, k
5ahc /p'0.08, Fig. 6, close to the Durand’s datak'0.12
@20#.

FIG. 6. Stability diagram oft21/2l11/2 andl21/2l11/2 pairs as
determined by locations of dislocations in wedge samples of dif
ent anglea. The squares denote the lastt21/2l11/2 pair met as one
moves towards the thick part of the wedge; the circles mark the
l21/2l11/2 pair. The solid line shows the theoretical dependen
a(p/hc) obtained by comparing the energies Eqs.~31!, ~32! of the
two dislocation structures, with the following parameters:C1

50.4, C251, r c56 nm, K257.9 pN, K33515.4 pN.
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B. Metastable structures: Kinks

Below we describe the defect textures that are not par
the equilibrium defect lattice and appear only as metasta
features.

~1! Kinks along b5p/2 dislocations. In the studied
wedges with a strong surface anchoring, both thin and th
lines are located in the bulk of the cell and never at
surfaces. Moreover, theb5p/2 dislocations accumulate in
the bisector plane or not farther thanp/2 from it. Initial fill-
ing of the cell might formb5p/2 dislocations in other loca
tions, but they relatively quickly move to the middle plan
The lines do not glide as the whole, but via kinks, Figs. 7 a
8. There are two types of kinks: kinks of height6p/4, Fig.
7, and kinks of height6p/2, Fig. 8. The6p/4 kinks are
more frequent; they are involved in the most common s
nario of dislocation glide, in which one6p/4 kink moves
along the dislocation line~along they axis! thus changing its
z coordinate by p/4 and transformingt21/2l11/2 into
l21/2t11/2, and then a second kink propagates in the sa
direction to restore the pairt21/2l11/2 that is now shifted by
p/2 with respect to the originalt21/2l11/2. The core struc-
ture of 6p/4 kink is intermediate between that of pu
t21/2l11/2 andl21/2t11/2 states, Fig. 7. The6p/2 kinks can
be seen near the nodes whereb5p/2 dislocations join other
line defects located at a differentz level in the sample, e.g.
b50 dislocations, as described in more detail below in po
~4!. Such a6p/2 kink can be stable for hours, as the glide
defects withbÞp/2 is very difficult. Figure 8~b! reveals the
core structure of ap/2 kink in the glide plane; the core struc
ture changes fromt21/2l11/2 into l21/2t11/2 and then back
to t21/2l11/2 state along they axis, Figs. 8~c,d,e!.

There are two distinct features of both6p/4 and6p/2
kinks along theb5p/2 dislocations as compared to the kin
along b5p dislocations@see point~2! below#. First, theb
5p/2 kinks make a very small angle with they axis; their
characteristic lengthw is thus large, about~5–10!p, Figs. 7
and 8. Second, the kinks are confined to the glide plane
the parentb5p/2 dislocation, Fig. 8~b!.

~2! Kinks along b5p dislocations. The glide of
l21/2l11/2 pairs withb5p , Fig. 4~d!, is much more difficult
as compared tob5p/2 dislocations; these pairs can rema
in the locations away from the bisector plane for mont
The kinks alongb5p dislocations were observed only in th
specially prepared samples withweaksurface anchoring~un-
rubbed polyisoprene coating! and with an applied electric
field. When a voltage pulse of amplitudeV>Vc and duration
;1 sec is applied, ab5p kink is generated~at the wedge of
cell or at a spacer! and propagates along the edge dislocati
shifting its position by a distancep towards the middle plane
Theb5p kinks are relatively short and depart from the glid
plane of the parent dislocation, Figs. 9–12.

Figure 9 presents a series of vertical FCPM slices take
the vicinity of the kink, in the planex-z normal to the dislo-
cation. The planes of the vertical cross sections 1x-z–5x-z
are marked by straight lines on the optical slice 4y-z
~marked alsoABCD!, which contains the core of al21/2

disclination. The polarizer is along they axis. Far from the
kink ~planes 1x-z and 5x-z), the core is a well-defined

r-

st
e

3-5



I. I. SMALYUKH AND O. D. LAVRENTOVICH PHYSICAL REVIEW E 66, 051703 ~2002!
FIG. 7. FCPM textures of a kink of heightp/4
along the dislocationb5p/2; the coret21/2l11/2

~a! transforms into thel21/2t11/2 core ~d!.
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l21/2l11/2 pair. The vertical cross sections 2–4y-z in the
vicinity of kink show a complex 3D structure in which th
director at the core region is titled rather than normal to
planes 2x-z–4x-z.

FIG. 8. FCPM textures of a kink of heightp/2 along the dislo-
cationb5p/2; ~b! vertical cross section along the glide plane; t
kink is only slightly tilted with respect to the parent dislocation, t
horizontal arrows indicate thez levels where the kink ends;~c!–~e!
vertical cross sections perpendicular to the glide plane that s
how the coret21/2l11/2 ~c! transforms first into thel21/2t11/2 core
~d! and then back into thet21/2l11/2 core ~e!.
05170
e

In Fig. 10, the vertical optical slices 1y-z–9y-z are par-
allel to the glide plane. The orthogonal cross sections 10x-z
and 11x-z are normal to the dislocation and demonstrate th
the kink shifts the dislocation byp along thez axis. The
plane 2y-z contains thel11/2 disclination of the splitted
core. The slices 2y-z–8y-z show that near the kink, the dis
location deviates from they direction toward the thinner par
of the wedge, Fig. 10, thus forming a cusp first noticed
Bouligand@15#. Using the principles described in Sec. II B
we reconstruct the 3D director field near the kink, Figs.
and 12, to visualize the details hidden for ordinary micro
copy ~the l11/2 and l21/2 lines are aligned on top of eac
other at the center of the cusp rather than side by side
they normally are!.

At the kink, bothl disclinations deviate from they axis
by p/2 and align along thex axis, each forming a cusp. Th
director in the core of eachl disclination remains parallel to
the disclination axis, and thus thep/2 rotation of the discli-
nation also means a shift of the core byp/4 along thez axis.
The tilt preserves the nonsingularity of director field; witho

w
FIG. 9. FCPM textures of a kink of heightp/2 along the dislo-

cationb5p as seen in the vertical planes 1x-z–5x-z normal to the
dislocation; the planeABCD4y-z contains the core ofl21/2 discli-
nation.
3-6
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tilt, l21/2l11/2 would transform into a singulart21/2t11/2

core. At the cusp, thel21/2 disclination entering the kink
from one side transforms into al11/2 disclination leaving the
kink on the other side, Fig. 12. The kink atb5p dislocation,
therefore, has a complex structure with a cusp and in
change of thel11/2 andl21/2 disclinations; its size is of the
order ofp along all three coordinate axes, Fig. 12.

~3! Thick lines with b5p/2. The thinner part of the wedg
might contain transient structures of the total Burgers vec
b5p/2 that appear as ‘‘thick’’ lines in standard PM observ
tions. These configurations are in fact very different from
equilibrium pairsl21/2l11/2 observed in the thick part of th
sample, as their core is composed of more than two dis
nations. For example, Figs. 13~a! and 13~b! shows two close
dislocations with the Burgers vectorsb152p/2 ~pair
t11/2l21/2) and b25p ~pair l21/2l11/2), respectively. This
structure quickly~within a few hours! relaxes into the equi-
librium single dislocationb5p/2 ~pair t21/2l11/2) shown in
Figs. 4~c!, 5~b!, and 13~e!. Another example, Figs. 13~c! and
13~f!, is also a combination of the same four disclinatio
~one l11/2, two l21/2’s, and one t11/2), topologically
equivalent to a dislocationb5p/2. The structure relaxes t
an equilibrium pairt21/2l11/2 preserving the valueb5p/2,
Figs. 13~d! and 13~e! ~the relaxation was accelerated by a
sec ac voltage pulse of 15 V!. Restructuring usually starts a
spacers or at the edge of cell and propagates along the d
bundle.

FIG. 10. FCPM textures of the same kink as in Fig. 9, as see
the vertical planes 1y-z–9y-z parallel to the planeABCD 4y-z. In
the right top corner, a horizontal slicex-y demonstrates a cus
associated with the kink.
05170
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~4! Defects of zero Burgers vector b50. One often finds
thick lines that areperpendicularto the equilibrium disloca-
tions and parallel to the thickness gradient of the wedge,
14. FCPM clearly shows that these thick lines are either p
of dislocations with opposite signs of the Burgers vect
Figs. 15~a! and 15~b!, or symmetric oily streaks that separa
parts of the very same Grandjean zones, Figs. 15~c! and
15~d!. The oily streaks ofb50 are most commonly ‘‘qua-
drupoles’’ composed of twol21/2 and two l11/2 disclina-
tions, sometimes called ‘‘Lehmann clusters’’@36#. Note that
in nonequilibrated freshly prepared samples, theb50 de-
fects can also run parallel to the equilibrium dislocationy
axis! or in some tilted direction.

Theb50 lines parallel to the thickness gradient can co
nect eitherb5p/2 dislocations@Fig. 14~a!#, b5p lines @Fig.
14~b!#, or oneb5p/2 and oneb5p line @Fig. 14~c!#. The
dislocationsb5p/2 andb5p deviate from they axis near
the node. Deviation ofb5p dislocation causes its tilt and
shift to a differentz level, which preserves the nonsingul

in

FIG. 11. Reconstructed director field of a kink along the dis
cationb5p shown in Figs. 9 and 10, as seen iny-z cross sections.
3-7
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l21/2l11/2 geometry of the core, similarly to the kink de
scribed in point~2!.

In mechanical equilibrium, the sum of line tensions
individual dislocationsT i ’s at the dislocation node is zero
S iT i50, see, e.g., Ref.@6#. Thez shift is small~a fraction of
p) as compared to the radius of curvature of the dislocat
so that thez components ofT i ’s can be assumed to be muc
smaller than thex,y components. In this case, mechanic
equilibrium dictatesT0 /Tp/252 cosfp/2 , T0 /Tp52 cosfp

FIG. 12. 3D director field around and at the core ofl21/2, l11/2

disclinations in the kink shown in Figs. 9–11, as seen in~a! x-y
projection,~b! x-z projection,~c!, ~d! general 3D prospective.

FIG. 13. FCPM vertical cross sections and corresponding di
tor structures of defects with the total Burgers vectorb5p/2 com-
posed of~a!, ~b! closely locatedt11/2l21/2 and l21/2l11/2 pairs;
~c!, ~d!, ~e! transformation of the complex core into thet21/2l11/2

pair ~e! in the middle of the cell under application of the electr
field; ~f! shows the director structure in~c!.
05170
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andTp /Tp/25cosfp/2 /cosfp ; the angles are defined in Fig
14. Experimentally,T0 /Tp/2'0.760.2, T0 /Tp'1.760.2,
and Tp /Tp/2'0.460.2. The inequalityTp,Tp/2 is directly
related to the split core structures of the defects, as we s
see in the following section.

IV. ELASTICITY OF DEFECT STRUCTURES

In what follows, we construct an elastic model of defe
structures in cholesteric Grandjean-Cano wedge. We trea
CLC as a lamellar mesophase and use the Lubensk
Gennes coarse-grained theory@1,2#, in which the free energy
density of layers displacements is of the form

f nl5
1

2
KS ]2u

]x2D 2

1
1

2
BF]u

]z
2

1

2 S ]u

]xD 2G2

, ~1!

where the compression elastic modulusB5K2(2p/p)2 and
the curvature modulusK53K3/8 are related to the Fran
moduli of twist (K2) and bend (K3), respectively. The two
constants define an important ‘‘penetration’’ lengthl
5AK/B, that equals (p/2p)A3K3/8K2 in the Lubensky–de
Gennes model. Experimental values ofl in CLC with p of
the order of few microns are indeed close to the theoret
value l5(p/2p)A3K3/8K2 @37#; for our material withp
55 mm, this theoretical value isl'0.7 mm. The contribu-

c-

FIG. 14. PM textures of the Grandjean-Cano wedge with defe
b50 connecting~a! b5p/2; ~b! b5p; ~c! one b5p/2 and oneb
5p dislocations.
3-8
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tion 1
2 (]u/]x)2 in the compressibility term in Eq.~1! makes

the theory nonlinear; in linear approximation,

f l5
1

2
KS ]2u

]x2D 2

1
1

2
BS ]u

]zD 2

. ~2!

We consider elastic properties of an isolated edge di
cation first in an infinitely large volume~Sec. IV A!, and then
in the spatially restricted film, in the approximation of infi
nitely large surface anchoring~Sec. IV B!. We use these re
sults to analyze glide and climb of defects~Sec. IV C! and
equilibrium Grandjean-Cano lattice of dislocations~Sec.
IV D !.

A. Isolated dislocation in an infinitely large sample

Using the nonlinear model, Brener and Marchenko fou
the equilibrium displacement field around a straight edge
location of Burgers vectorb in an infinite medium@38#

unl~x,z!52l lnH 11
eb/4l21

2 F11erfS x

2Alz
D G J , ~3!

where erf (•••) is the error function, defined as erf (t)
5(2/Ap)*0

t exp(2v2)dv; x andz are Cartesian coordinates
the plane perpendicular to the dislocation centered at (0
In the limit b!l, Eq. ~3! reduces to the classical result
the linear theory@39,3#,

ul~x,z!5
b

4 F11erf S x

2Alz
D G . ~4!

FIG. 15. FCPM vertical cross sections and corresponding di
tor structures of defects with the total Burgers vectorb50: ~a!,~b!
two dislocations ofb152b25p dissociated intol21/2, l11/2 pairs;
~c!,~d! Lehmann cluster consisting of fourl disclinations.
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In CLCs, even the smallest value of the Burgers vectorb
5p/2, is larger thanl and the nonlinear theory is bette
suited to describe the layer displacement@37#. The nonlinear
term in Eq.~1! makes a rigorous analysis of dislocations
CLCs difficult. Fortunately, as shown below, the energies
unit length of edge dislocations calculated in linear and n
linear models do not differ much for not-so-large values
b/l (p/l'7 in the experiment!, and one can employ the
linear model for approximate analytical description.

Substituting Eq.~4! in Eq. ~2!, we calculate the free en
ergy density for an edge dislocation in the linear model,

f d,l5
Kb2e2x2/2zlx2

64pz3l3
. ~5!

The energyE per unit lengthLy of the edge dislocation in
a 1D lamellar phase,

E5E
2`

` E
2`

`

f d,ldzdx5Ef f1Ec , ~6!

is a sum of the ‘‘far-field’’ energyEf f of distortions away
from the defect core~in which the cholesteric helicoid is
strongly distorted!, and the core energyEc that cannot be
determined within the coarse-grained model, as the scal
distortions isp. Ef f can be calculated in two ways that diffe
in the order of integration overx andz.

~a! If the integration is performed first overx in the entire
range (2`,`), then integration overz should be performed
in the range6(jz ,`), as one needs to introduce a cuto
lengthjz nearz→0 to avoid energy divergencies. The resu

E52E
jz

` Kb2

32A2pl3/2z3/2
dz1Ez2band5

Kb2

8A2pjzl
3/2

1Ez-band ~7!

contains the energyEz-band of deformations inside an infi-
nitely long band of widthuzu<jz . In its turn,Ez-band can be
represented as a sum of the core energyEc of deformations
within a rectangle (uxu<jx ,uzu<jz), where jx is some
‘‘horizontal’’ cutoff length, and the energy of two band
(jx<uxu,`,uzu<jz) in which the deformations are rela
tively weak:

Ez-band52E
2jz

jz
dzE

jx

`

f d,ldz1Ec5
Kb2

8A2pjzl
3/2

3F211A 2

pb
exp~22b!1erf A2bG1Ec , ~8!

whereb5jx
2/(4ljz ).

~b! With the reverse order of integration, the cutoff leng
jx ~generallydifferent from jz), is introduced first along the
x axis,

E52E
jx

` Kb2

8plx2
dx1Ex-band5

Kb2

4pjxl
1Ex-band, ~9!

c-
3-9
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whereEx-band is the energy of deformations within the infi
nitely long banduxu<jx ,

Ex-band52E
2jx

jx
dxE

jz

`

f ddz1Ec

5
Kb2

4pjxl
F211exp~22b!1Apb

2
erfA2bG1Ec.

~10!

Therefore, the far-field energyEf f can be written in two
equivalent forms,

Ef f5
Kb2

8A2pjzl
3/2FA 2

pb
exp~22b!1erf A2bG

[
Kb2

4pjxl
Fexp~22b!1Apb

2
erf A2bG . ~11!

Note that the relationship between the two forms is that
identity type and cannot be used to determine the core
rameterb5jx

2/(4ljz ).
The far-field energyEf f derived above depends on tw

core sizesjx andjz along the two axesx andz, rather than
on one as in the classic Kleman model@3#, in which the
far-field energy has been calculated outside a stripeuxu
<jx , 2`,z,`. The two quantitiesjx and jz might be
related in a nontrivial way, depending onl andb; their val-
ues cannot be established on the basis of the coarse-gr
model. If one assumesjx

254ljz , following the idea that
perturbation of lengthdx along the layers propagates over t
distancedz;dx

2/(4l) along thez axis, thenb51, and

Ef f'1.06
Kb2

8A2pjzl
3/2

'1.33
Kb2

4pjxl
'

Kb2

3pjxl
. ~12!

Furthermore, if jx
2@4ljz , b→`, then @A2/(pb) exp

(22b)1erf A2b#→1 and Ef f5Kb2/(8A2pjzl
3/2); if jx

2

!4ljz , b→0, then@exp(22b)1Apb/2 erf A2b#→1 and
Ef f5Kb2/(4pjxl). Note that the leading termEf f
5Kb2/(4pjxl) in the far-field energy~11! transforms into
the result derived by Kleman@3#, Ef f5Kb2/(2jxl), with a
rescaled cutoff radius 2pjx→jx .

The functionEf f(b), formally quadratic in Eq.~11!, is in
fact dependent on the model of the dislocation core. As s
gested by Kleman@3#, if the dislocation core is split into a
pair of disclinations, then the horizontal cutoffjx scales asb;
roughly,jx'b/2; at the same timejz , being a distance along
the z-axis, at which the semiwidthx of the parabolasx2

54lz reachesp/2, is taken as independent ofb. With jx
'b/2, the far-field energyEf f'Kb2/(3pjxl)'2Kb/(3pl)
is a linear function ofb; the result implies that dislocation
with large Burgers vector are stable against splitting into t
or more dislocations with smallerb’s.

Following the same procedure with Eqs.~1! and ~3!, we
numerically calculate the differenceEf f5E2Ec of the edge
dislocation in the framework of nonlinear theory. In th
05170
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range of b/l51 –8, with the same cutoff parametersjx
5b/2 andb51, the difference between the linear and no
linear results is small, within 2% ofEf f ; uncertainties in
core energiesEc are expected to be much larger. In the e
periment, the largest value ofb/l5p/l is about 7, so that
we can use the linear approximation for further analysis.

The experiments clearly show that the dislocation co
are split into pairs of disclinations. The core energy of t
split dislocations is estimated@3# as a sum Ec(b)
5Epair(b)1Ec8 of ~I! the energyEpair(b) of a pair of dis-
clinations separated by distance 2jx;b/2; ~II ! core energy
Ec8 of the disclination lines themselves; this quantity depen
little on b, but is extremely sensitive to whether the disclin
tion is singular~largeEc8) or not ~smallEc8). As compared to
the l21/2l11/2 pair, the core energy of thet21/2l11/2 pair
should contain an additional term;K ln(p/rc) that reflects
the singular nature oft21/2 disclination with the core sizer c
of the order of 1–10 molecular sizes@5#.

For thet21/2l11/2 pair, integrating the typical distortion
energy density, 1

2 (K/r 2), between r 5r c and r 5b/25
p/4, one obtains

Ec,tl5Epair1Ec8'
p

2
K lnS p

4r c
D1C1K, ~13!

whereC1 is a number of the order of unity.Ec8 should not
differ much from the estimateEc85C1K5(p/8)K suggested
by Oswald and Pieranski@21# for the singular core of a nem
atic disclination of winding number61/2, which implies
C15p/8'0.4. For typical p'5 mm and r c'5 nm, the
logarithmic factor in Eq.~13! is relatively large, ln(p/4r c)
'6.

In the core of dislocationb5p split into a l21/2l11/2

pair, the twist structure is distorted over the area;p2, and
the core energy is roughly

Ec,ll5C2K, ~14!

whereC2 is another number of the order of unity; therefor
one expectsEc,ll to be about one order of magnitud
smaller thanEc,tl whenp'5 mm andr c'5 nm.

Remember that the quantitiesEc,tl , Ec,ll and thusE
considered above are elastic energies per unit length of
defect butnot the line tensions of defects. The line tensionT,
defined as the ratio of the variation of elastic energydE
5Td l to the variation in its lengthd l , depends on the ori-
entation of edge dislocation in the cholesteric matrix,T
'@E(g)1]2E(g)/]g2#g50, whereg is the angular devia-
tion of dislocation from they axis ~see, e.g., Ref.@6#, Chaps.
8 and 9!. If the dislocation stays in the samex-y plane, then
reorientation implies a change in the core structure. For
ample, g5p/2 transformst21/2l11/2 into l21/2t11/2 and
l21/2l11/2 into t21/2t11/2, with a corresponding energ
increase that is especially pronounced in the second c
Estimating the core energy increase under the transforma
l21/2l11/2→t21/2t11/2 as (p/2)K ln (p/2r c), one finds the
core contribution to the line tension ofl21/2l11/2 pair
curved in the samex-y plane as Ec,ll1pK ln(p/2r c)
@Ec,ll . A curved dislocation line thus should experience
3-10
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torque tending to deviate it from thex-y plane, i.e., to avoid
the singulart21/2t11/2 core. The same mechanism is respo
sible for the geometry of kinks along theb5p dislocations,
Fig. 12.

As the l21/2l11/2 dislocations preserve their core stru
ture upon deviations from they-axis and shift along thez
axis, their actual line tension is close to the energy per u
length, i.e, Tp'Ef f(b5p)1Ec,ll'2Kp/(3pl)1C2K or
Tp'3K whenC2'1. For theb5p/2 dislocation, one of the
disclinations in the core remains always singular, thus
rough estimate of its line tension isTp/2'Ef f(b5p/2)
1Ec,tl'Kp/(3pl)1(p/2)K ln(p/4r c)1C1K'10 K with
the parameters specified above. Therefore,Tp /Tp/2'0.3,
comparable to the experimental value 0.460.2.

Why thenb5p/2 dislocations with a very large core en
ergy appear in the thin part of sample? Qualitatively,
reason is that inserting a slab of thicknessb5p/2 into the
wedge requires less compression energy as compared
slab of thicknessb5p. Obviously, the difference is signifi
cant only when the numberN of layers in the wedge is smal
and gradually decreases with an increase ofN. Therefore,
dislocationsb5p/2 should be replaced byb5p dislocations
at h.hc . We discuss the stability ofb5p/2 versusb5p
dislocations andhc in a greater detail in Sec. IV D.

B. Isolated dislocation in a confined sample

The bounding surfaces can dramatically change layer
files and other properties of dislocations. So far, the eff
has been studied for thermotropic smectic liquid crystal a
block copolymer samples with a free surface, in which c
the relevant factor is a finite surface tension@19,40–42#. If
the coefficient of surface tension is large,s.AKB, the dis-
location is pushed away from the bounding surface.
Grandjean-Cano wedges bounded by rigid glass plates
relevant factor is surface anchoring, which is sufficien
strong to keep the dislocations in the bulk. The choleste
layers adjacent to the glass plates, Figs. 4, 7–10, are pr
cally ~but not exactly! parallel to the substratesz56h/2,
i.e., one can assume]u/]xuz56h/250. The layers displace
ment around a dislocation centered atz50 can be modeled
by placing an infinite set of image dislocations outside
sample, atz56mh, m51,2,3, . . . ; their Burgers vectors
equal that of the real dislocationb @43#. To estimate the ef-
fects of confinement on the dislocation energy, we cons
only the first two images closest to the substrates. In
linear model, the displacement fielducon f(x,z) of a confined
dislocation is a superposition of displacements caused by
defect and its images,

ucon f~x,z!.
b

4 (
m521,0,1

z1mh

uz1mhu F11erfS x

2Aluz1mhu
D G .

~15!

Proceeding as above for an unbounded dislocation,
can calculate the energyEcon f ~per unit length! of the
bounded dislocation,Econ f52*0

h/2dz*2`
` f d,l@ucon f(x,z)#dx

5Ef f1Eh1Ez-band, whereEh is the correction to the far
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field energy caused by confinement. In the limitjz /h!1, the
leading term of the confinement correction is

Eh'2
Kb2

8A2pjzl
3/2S 5

2A2
1

1

A3
21DA2jz

h

'2
Kb2

4A2phl3/2
. ~16!

The correction is significant only for relatively thin sample
for example,Eh'20.4Ef f for jz /h50.1. AsEh;b2, image
forces in a strongly anchored sample facilitate splitting
dislocations into defects with a smallerb. Finally, we keep
the core energiesEc the same as above; as long as the d
locations are not very close to the boundaries, their c
structures areh independent, as confirmed by FCPM obs
vations.

C. Peach and Koehler forces on edge dislocations

Location of dislocations in a confined sample can be a
lyzed in terms of configurational~Peach and Koehler! force
@6#,

F i
E5« i jkbls l j

Etk , ~17!

where « i jk is the Levi-Chivita tensor,t is the unit vector
along the dislocation line,sE is the elastic stress tensor, re
lated to the layer displacements caused by stresses other
that of the dislocation under consideration. In the linear
proximation, the nonvanishing stress tensor components
evant to the 2D caseu5u(x,z) are

szz
E 5B

]u

]z
, szx

E 52K
]3u

]x3
. ~18!

For an edge dislocation withbÄb(0,0,1) andtÄ(0,1,0),

F x
E52szz

E b5Bb
]u

]z
, F y

E50, F z
E5szx

E b52Kb
]3u

]x3
.

~19!

1. Climb

Let a dislocation be located atxd8 , wherex8 is measured
from the end of the wedge;xde8 is a position of equilibrium,
Fig. 1. To simplify the notations, in this section we use t
coordinate system (x8,z8), in which thex8 axis is directed
along the bottom plate; this plate is located atz850. Dislo-
cations at equilibrium separate the regions of compress
and dilation of layers. The stressszz

E vanishes atx85xde8 and
at some location between two neighboring dislocatio
where the thickness of the wedge ishN5Np/2; N is an in-
teger. To findxde8 , we calculate theB term in Eq.~2! in a part
of the wedge of lengthb/tana, and heighthN on the left side
andhN1b on the right side:
3-11
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EB~xd!5
B

2 F E
hN /tana

xd8 dxE
0

x tanaS ]u2

]z D 2

dz

1E
xd8

(hN1b)/tana

dxE
0

x tanaS ]u1

]z D 2

dzG . ~20!

Here, ]u2/]z5x tana/hN21 and ]u1/]z5x tana/(hN

1b)21. The energy is minimized,]FB(xd8)/]xd850, when
the dislocation is in the equilibrium position

xde8 ~N!5
2hN~hN1b!

~2hN1b!tana
5

Np~Np12b!

2~Np1b!tana
. ~21!

The same result follows from a direct calculation of t
Peach-Koehler force,F x

E52Bb(]u2/]z1]u1/]z)ux
d8

that

vanishes atxd85xde8 . The distances between two neighbori
dislocations at equilibrium are

l 5
2~N11!2p

~2N11!~2N13!tana
, L5

~N12!2p

~N11!~N13!tana
~22!

for b5p/2 andb5p types, respectively; hereN refers to the
number of cholesteric layersp/2 to the left of the dislocation
located in the thinner part of the wedge. The separation
weak function ofN; it quickly approachesb/tana when N
→`; even forN as small as 5, the relative difference b
tweenb/tana and the exact separating distances in Eq.~22!
are negligible, less than 2%. In the well-equilibrat
samples, dislocations are indeed close to their locati
specified by Eq.~21! with separations as in Eq.~22!.

A dislocation slightly shifted from its equilibrium positio
along thex8 axis, bydx5xd82xde8 , udxu!b/2a, experiences
a restoring force F x

E(dx)52szz
E b52]EB(xde8 1dx)/]dx

with the direction opposite to the direction ofdx ,

F x
E~dx!'2

Bbdxtana

hN

2hN1b

2~hN1b!
; ~23!

this force causes dislocation to climbing back tox85xde8 .
Note here that climb parallel to the layers is easier than g
across the layers, as it preserves the essential geometry o
core and is associated with twist deformations near the c
Because the stresses imposed by the wedge geometr
thickness dependent and small, and because real-time F
experiments at this stage are difficult, we leave the disc
sion of the mobility of dislocations to a future study.

2. Glide

Consider now a case when the dislocation is shifted al
the verticalz axis fromz50 to somedz5” 0. Here we return
to the coordinate system with thex axis along the midplane
of the wedge. Because of the boundary conditio
]u/]xuz56h/250, the dislocation is repelled by the bounda
towards the midplane. The corresponding Peach-Koe
forceF z

E(zd)5bszx
E uz5dz

can be calculated by placing imag
dislocations of the same Burgers vectorb at both sides of the
slab, z52mh1(21)mdz and z5mh1(21)mdz @43#,
05170
a

s

e
the
e.
are
M

s-

g

s

er

where m51,2, . . . ,̀ . The neighboring dislocations to th
left and to the right can be neglected, as long as the dihe
anglea and the cell thickness are sufficiently small so th
the parabolic regionsx2<4luzu of layers distortions around
neighboring dislocations do not overlap. In the linear a
proximation, the displacement fielduzi caused by the image
dislocations is

uzi~x,z!5
b

4 (
m51

` Ferf S x

2Al~mh2~21!mdz1z!
D

2erf S x

2Al~mh1~21!mdz2z!
D G . ~24!

The repelling forceF z
E(dz)52bK(]3uzi /]x3)uz5dz ;x50 is

then @43#

F z
E~dz!5

Kb2

8Apl3/2h3/2 (
m51.

` H Fm1
dz

h
@12~21!m#G23/2

2Fm2
dz

h
@12~21!m#G23/2J . ~25!

The force vanishes fordz50. When the displacement
from the middle plane are small,dz!h, series expansion an
summation on the right hand part of the last equation yiel
simple formula for the force,

F z
E~dz!'2

3~82A2!

4
§S 5

2D Kb2

8Apl3/2h3/2

dz

h
1OS dz

3

h3D
'2

0.47Kb2

l3/2h3/2

dz

h
, ~26!

where§(•••) is the Riemann zeta function, and stress,

szx
E ~dz!'

0.47Kb

l3/2h3/2

dz

h
. ~27!

The forceF z
E(dz) is always directed to drive the dislocatio

to the midplane of a strongly-anchored wedge; this fo
quickly decreases when the thickness of the slab increa
F z

E;h25/2.
We recall now that in the experiments,b5p dislocations

are often found away from the bisector plane, whileb5p/2
dislocations are close to it. The apparent discrepancy w
the model predictionF z

E(dz);b2 is explained by the fact
that glide of dislocations is hindered by periodic structure
the cholesteric.

In solid-state physics, the phenomenon is known as
Peierls-Nabarro friction@44,45#. As the dislocation glides
across the crystal lattice, the core structure changes per
cally; atomic reconstructions lead to periodic changes of
potential energy of the crystal. The applied stress neede
overcome the energy barriers is called the Peierls-Nab
stress. This stress is determined by the core structure
thus cannot be given a universal analytical expression.
3-12
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original Peierls-Nabarro model assumes a sinusoidal fo
between the atomic planes on the two sides of the slip pla
Lejcek @46# has applied the model to edge dislocations
Sm-A and calculated the Peierls-Nabarro stress that read
our notations as

sPNL'
3ApKb

4l3/2jz
1/2

expS 2
2pjz

b D . ~28!

It is easy to see that the ratio

sPNL

szx
E '

3Ap

2 exp~2pjz /b!

h5/2

bjz
1/2dz

can be of the order of 1 with estimatesb5dz5jz5p, l
50.2p, h510p. The ratiosPNL /szx

E decreases whenh de-
creases, which, in principle, might explain the fact thatb
5p/2 dislocations in the thin part of the sample are loca
near the bisector plane, while theb5p lines in the thick part
are found at differentz levels. Note, however, that the stee
dependence ofsPNL on the model core parameterjz makes
the estimates rough. Moreover, the model~28! refers to a
dislocation that is not split into a pair of disclinations. Belo
we discuss the Peierls-Nabarro stress for the split disloca
and show that the dependence of the split core energy on
position along the helix axis might lead to Peierls-Naba
stresses higher thansPNL .

When an edge dislocation with a split core moves a
whole in z direction, the structure of the two disclination
changes periodically. Upon a shift byp/4, the pair
l21/2l11/2 transforms intot21/2t11/2 and the pairt21/2l11/2

transforms intol21/2t11/2, Fig. 16. The main contribution to
the energy changes comes from the energy of the cores

FIG. 16. Potential energies of straight dislocationsb5p/2 and
dislocationb5p with the split cores as the functions of their pos
tion aling thez axis; see text.
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far-field energy can be assumed constant. As discus
above, the core energy of thel21/2l11/2 pair is relatively
small, Ec,ll5C2K;K, Eq. ~14!. The transformation
l21/2l11/2→t21/2t11/2 implies a large increase in the cor
energy, of the order ofEPN

p 'Ec,tt2Ec,ll'K ln(p/rc)
@Ec,ll . In contrast, the minimum core energy o
the t21/2l11/2 pair is already large, Ec,tl

'(p/2)K ln(p/4r c)1C1K, according to Eq.~13!, see Fig.
16. The alternativel21/2t11/2 core apparently corresponds
a local minimum in the potential energy as one does obse
kinks that transformt21/2l11/2 into l21/2t11/2 and back,
Fig. 7. The transformationt21/2l11/2→l21/2t11/2 implies
an increase in the core energy byEPN

p/2'(p/2)K ln(rc /rc8)
1(C182C1)K'cK, where primed values correspond to th
pair l21/2t11/2; the numerical constantc is most probably
less than 1~an estimate is given at the end of this section!.

The excess free energy as the function of dislocation
placementdz along the helix axis can be written phenomen
logically as

DE~dz!'
EPN

2 S 12cos
4pb

p

dz

b D5EPN sin2
2pdz

p
,

~29!

similarly to the phenomenological model for solid crysta
@44,45#; EPN is the Peierls-Nabarro energy, Fig. 16. Note th
we approximate the two-minima potential for thet21/2l11/2

pair with a single-minimum cosinusoidal function, shown
a thin line in Fig. 16. The corresponding stre

1

b2

]DE~dz /b!

]~dz /b!
5

2pEPN

pb
sinS 4pdz

p D
has the amplitudesPNcore52pEPN /(pb), or, when written
for the two types of dislocations separately,

sPNcore
p '

2pK lnS p

r c
D

pb
, sPNcore

p/2 '
2pcK

pb
. ~30!

For the l21/2l11/2 pair, with b5dz5p, l50.2p,
h510p,p'5 mm, and r c'5 nm, one findsszx

E /sPNcore
p

'43106; therefore, the model predicts thatl21/2l11/2 pair
cannot glide as a straight line. For thet21/2l11/2 pair, with
b5dz5p/2, l50.2p, h510p, one findsszx

E /sPNcore
p/2 '4

3105c; unlessc is anomalously small~as estimated below,c
is of the order of 1022), the Peierls-Nabarro barrier is to
high to allow the dislocationb5p/2 to glide as well.

The considerations above are in a good agreement
the experimental data. We have never observed glide of
locations as a whole. Instead, the change inz coordinate
occurs via kinks. The kinks have completely different stru
ture for the case ofb5p/2 and b5p dislocations, as pre-
sented in the experimental part and discussed below.

The kinks that occur along theb5p/2 dislocations are
usually of heightp/4 or p/2 each, Figs. 7 and 8. The lengt
of the kink, measured along they axis, is large,w;(5 –10!
p, i.e., the anglec between the kink and they axis is small.
3-13
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This experimental feature indicates that the Peierls-Nab
energy barrier is relatively small as compared to the l
tension of the dislocation itself. Imagine a dislocation co
necting two points in the bulk of the sample,A(xA ,zA) and
B(xB ,zB). The smaller the Peierls-Nabarro energy as co
pared to the line energy of the dislocation, the smaller isc:
in the limiting caseEPN /E→0, the kink is infinitely long, as
the dislocation simply tilts as a whole and preserves the fo
of a straight line to minimize its length
A(xB2xA)21(zB2zA)2. When the Peierls-Nabarro energ
associated with the kink is larger than the line tension, th
c is large and the kink tends to be short; in the lim
EPN/E→`, the kink is vertical, of the lengthuzB2zAu, it
connects two horizontal dislocation segments of total len
uxB2xAu.

For smallc, one can directly apply the kink model de
veloped for solid crystals@44,45#, in which c is determined
by the ~constant! line tension of the edge dislocationEp/2
'Ec,tl'(p/2)K ln(p/4r c), Eq. ~13!, and the Peierls-
Nabarro energyEPN

p/2'cK, as c5A2EPN
p/2/Ep/2. As c

5p/(4w) for the p/4 kink, one obtains

w'
p

4
A Ep/2

2EPN
p/2 '

p

4
Ap

4c
ln

p

4r c
.

Using the estimatesp'5 mm andr c'5 nm, and the experi-
mental resultw;(5 –10!p, one obtainsc;(0.3–1)31022.
In other words, the core energy variation for thet21/2l11/2

pair along the kink is only a small fraction of the Fran
elastic constantK, which is a reasonable conclusion as t
b5p/2 dislocation can never get rid of the singular core.

In contrast, for a kink along theb5p dislocation, the
l21/2l11/2 pair simply twists with the local cholesteric d
rector to preserve the nonsingular core, Fig. 12; the ene
density of the kink is of the order ofK and is not very
different from the line tensionEp;K of the dislocation it-
self; therefore, the kinks are expected to be short,w;p, as
in the experiments.

Note also that the total elastic energyU of the kinks in
cholesterics with a micron-scale pitch is expected to be m
larger than the thermal energy (kBT'4310221 J at room
temperature!, which makes their thermal nucleation unlikel
the situation is thus different from the typical Sm-A materi-
als, in which the kinks are mostly of molecular height. F
the kinks along the cholestericb5p dislocation, the discus
sion above leads toUp;(K/p2)p3;pK;5310217 J.
For the ‘‘long’’ kinks along theb5p/2 dislocation, the en-
ergy is Ub/2;Ep/2b

2/w, i.e., Ub/2;(p/2)Kp2 ln(p/4r c)/
(4w);10217 J. The observed kinks can be introduced d
ing the filling of the samples and by mechanical inhomo
neities, including the edges of the cholesteric sample.

D. Lattice of dislocation in an equilibrated confined sample:
Critical thickness

We follow the approach of Nallet and Prost@22#, in which
the energy of the wedge is represented as the sum of
independent compression/dilation energyEB and the energy
of dislocations. The strain field due to the presence of dis
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cation is significant only within the parabolax254luzu. In
the wedge of small anglea, the dislocations are separated b
distancesl @2A4lh and practically do not interact. There
fore, the free energy per unit length iny direction can be
represented as a sumE5EB1F f f1Eh1Ecore , where EB
is the B term energy of the type~20!, Ef f is the far-field
energy due to the strain field inside the parabolae~5!, Eh is
the correction to the far-field energy that accounts for c
finement effects~16!, and Ecore is the core energy~14! or
~13!. The defects are in their equilibrium positionsxde8 (N),
Eq. ~21!, in the bisector plane;x8 axis is along the bottom
plate. We compare the energies of the two types of lattic
one with b5p/2 and one withb5p. Calculations are per-
formed for a trapezium of lengthb/tana and heighthN on
the left side andhN1p on the right side. The trapezium
contains either two dislocations withb5p/2 or one withb
5p.

TheB term is calculated using the symmetry of the stre
szz

E that vanishes atx85xde8 (N) and at any location of the
type hN5Np/2 between dislocations. For the lattice com
posed ofb5p dislocations,

EB
p5B/2F E

hN /tana

xde8 (N,b5p)
dxE

0

x tana

~x tana/hN21!2dz

1E
xde8 (N,b5p)

(hN1p)/tana

dxE
0

x tana

~x tana/hN1p21!2dzG
5

Bp2

24 tana

2N214N11

@11N#3

'
Bp2

12 tana S 1

N
2

1

N2D . ~31!

In a similar way, for theb5p/2 dislocations,

EB
p/25B/2F E

hN /tana

xde8 (N,b5p/2)
dxE

0

x tana

~x tana/hN21!2dz

1E
xde8 (N,b5p/2)

xde8 (N11,b5p/2)
dxE

0

x tana

~x tana/hN1p/221!2dz

1E
xde8 (N11,b5p/2)

(hN1p)/tana

dxE
0

x tana

~x tanahN1p21!2dzG
5

Bp2

24 tana

32N51160N41300N31260N2199N111

@4N218N13#3

'
Bp2

48 tana S 1

N
2

1

N2D . ~32!

The far-field energy of dislocation withjx5b/2 is Ef f
'2Kb/(3pl), Eq. ~12!; the confinement correction i
roughly Eh'2Kb2/(4A2phl3/2)'2Kb2/(4ApNpl3/2),
Eq. ~16!; and the core energies are specified either asEc,tl

'(p/2)K ln(p/4r c)1C1K, Eq. ~13! or asEc,ll5C2K, Eq.
3-14
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~14!, depending on the dislocation type. Therefore, the to
elastic energies of the two structures are

Ep/2

K
'

p2

48l2 tana
S 1

N
2

1

N2D 1
2p

3pl
2

p3/2

8ApNl3/2

1p lnS p

4r c
D12C1 , ~33!

Ep

K
5

p2

12l2 tana
S 1

N
2

1

N2D 1
2p

3pl
2

p3/2

4ApNl3/2
1C2 .

~34!

The leading contributions are produced by theB terms
~31!,~32!, and the core energies~13!,~14!. Comparing these
two, see also Fig. 6, one finds the critical number of chol
teric half layersNc and the thicknesshc of the cell above
which the lattice is composed ofb5p dislocations,

aNc'
1

16Fp lnS p

4r c
D12C12C2G S p

l D 2

or

ahc

p
'

1

32Fp lnS p

4r c
D12C12C2G S p

l D 2

. ~35!

For the material under study, Frank constants of bend
twist areK3515.4 pN andK257.9 pN, respectively, so tha
l/p5(1/2p)A3K3/8K2'0.14. Furthermore, experimen
tally, k5ahc /p50.08. Therefore, Eq. ~35! predicts
p ln(p/4r c)12C12C2'21. The latter estimate is in a goo
agreement with the energies expected by the model of
split dislocation core. Really, according to this model, E
~13! and Eq.~14!, for typical p'5 mm andr c'5 nm, and
for the expected C1'0.4 and C2;1, one obtains
p ln(p/4r c)12C12C2'17, close to the value 21 deduce
from Eq. ~35!.

V. CONCLUSIONS

We visualized the 3D director patterns associated w
defects in cholesteric Grandjean-Cano wedges with str
surface anchoring. The FCPM technique allows to estab
the fine details of the dislocation structures. The dislocat
of Burgers vectorb5p/2 ~the ‘‘thin line’’ ! splits into
t21/2l11/2 disclination pair; whileb5p ~the ‘‘thick’’ line !
splits into a l21/2l11/2 pair. In equilibrium, a lattice of
b5p/2 dislocations is stable ath,hc . At h.hc it is re-
-
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placed by a lattice ofb5p dislocations. Metastable struc
tures are also observed, such as apparent ‘‘thick’’ lines
total Burgers vectorb5p/2 split into four disclinations
l21/2l11/2t11/2l21/2 and dislocations of zero Burgers ve
tor, commonly composed of twol21/2 and twol11/2 discli-
nations. Kinks are different forb5p/2 and b5p disloca-
tions. In theb5p/2 case, the kink is only slightly tiled with
respect to the dislocation; it is confined to the glide plane a
is relatively long,w;(5 –10! p, as the core energy per un
length oft21/2l11/2 pair is large as compared to the Peier
Nabarro barrier associated with modifications of t
t21/2l11/2 core into al21/2t11/2 core. In theb5p case, the
kinks are short,w;p; both l disclinations deviate from the
glide plane, to preserve a nonsingular director structu
Thermal nucleation of kinks in cholesteric samples withp in
the micron range is unlikely; kinks can be introduced
mechanical irregularities and during the filling of the samp
Kinks are responsible for glide of dislocations that nev
glide as straight lines. In contrast, climb occurs easily; d
locations in equilibrium are separated by well-defined d
tances along the bisector.

We employed the coarse-grained linear elastic mode
cholesteric phase to calculate~a! the energy of layer distor-
tions around the dislocations, which is valid for other cas
such as Sm-A; ~b! corrections to the energy caused by fin
thickness of the sample;~c! Peach-Koehler forces acting on
dislocation shifted from its equilibrium positions;~d! the
Peierls-Nabarro friction associated with the split core of
cholesteric dislocations;~e! the critical thicknesshc . Com-
parison with the experimental data shows that the mode
dislocation core split into a pair of disclination is adequate
describe the observed properties of defects.

Note finally that the features of dislocations described
this paper are specific for strong planar surface anchorin
the director at the bounding plates; under weak anchor
the dislocation structures and behavior are completely dif
ent; in particular, dislocations are always of a nonsingu
core and can be pushed away from the sample@47#.
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