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Undulations in a confined lamellar system with surface anchoring
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~Received 16 February 2000; published 27 February 2001!

We visualize undulations in layered systems using a cholesteric stripe phase with a macroscopic suprami-
cron periodicity. The wave vector of stripe pattern is in the cell’s plane. The undulation is induced by an
in-plane magnetic field normal to the stripes. The observed displacement of layers is much larger than the value
predicted by the Helfrich-Hurault classic theory. We propose a model of undulations that explains the data by
finite surface anchoring of layers.
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I. INTRODUCTION

A variety of condensed phases possess reduced
dimensional~1D! ~smectic! or 2D ~columnar phases! trans-
lational order that allows long-range curvature deformatio
~splay in smectic, bend in columnar phases! @1#. Curvature
deformations are capable of relaxing dilation or field-induc
stress. In many systems~smecticA @2,3#, cholesteric@4# and
columnar@5,6# liquid crystals, diblock copolymers@7,8#, pe-
riodic patterns in ferrofluids@9#, and ferrimagnets@10,11#,
etc.!, the dilation-curvature coupling shows up as the un
lation instability, often also called buckling or Helfrich
Hurault effect@12#. The mechanism of the phenomenon is
follows. The lamellar phase is confined between two
plates; the layers are parallel to these plates. The magn
field is applied normally to the plates and tends to reori
the layers. If there were no bounding plates, the layers wo
uniformly tilt and realign along the field. In reality, the su
face anchoring at the plates does not allow the adjacent
ers to rotate freely. As a result, the layers undulate with
tilt angle changing sign periodically in the plane of the ce
Undulations can be caused by other means, e.g., by mec
cal tension@1#. The classic Helfrich-Hurault theory of th
phenomenon@1,12# and all subsequent modifications@13–
15# assume that the undulations vanish at the cell bounda
i.e., the layers are clamped by an infinitely strong surfa
anchoring.

To determine the actual pattern of layers displaceme
and to verify the predictions of the theory we design a ‘‘u
form fingerprint’’ cholesteric texture as the model of und
lating lamellar structure. The cholesteric pitch is lar
enough (P'15 mm) to visualize the layers under a polari
ing microscope, but small as compared to the character
radius of distortions. The last feature allows us to treat
cholesteric phase as a 1D periodic lamellar phase within
Lubensky–de Gennes coarse-grained model@1#. Experi-
ments reveal that the layers displacements are much la
than one would expect from the classic Helfrich-Hura
theory and do not vanish at the bounding surfaces. We re
the theory by adding a finite surface anchoring term to
free energy functional; soft anchoring explains why the d
placements are larger than in the Helfrich-Hurault mod
Fitting of the experimental data allows us to determine
strength of the surface anchoring.
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II. EXPERIMENT

The model system with an undulating stripe pattern
created in two steps:~i! obtaining a uniform cholesteric fin
gerprint texture@16#; ~ii ! generation of undulations by a mag
netic field in the plane of the cell.

~i! The cell is assembled from a pair of glass plates coa
with transparent~ITO! electrodes and an alignment mater
JALS 214 ~Japan Synthetic Rubber! that sets homeotropic
boundary conditions. Two mylar strips are placed betwe
the glass plates parallel to each other, separated by a
tancea51.7 mm in the plane of the cell. The mylar film
fix the distance l 5(15.7216) mm ('P) between the
glass plates~along the y axis in Fig. 1! and serve as
‘‘walls’’ for the uniform fingerprint texture of the cholesteri
liquid crystal filling the gap between the glass plat
and the mylar strips. We used the cholesteric mixture
4-n-pentyl -48cyanobiphenyl~5CB! and 4-(2-methylbutyl)
212cyanobiphenyl ~CB15! in weight proportion
99.07:0.93. Uniform orientation of the cholesteric strip
parallel to the mylar strips~thex axis in Fig. 1! is achieved in
two steps. First, an electric field is applied to the indium
oxide ~ITO! electrodes to unwind the cholesteric helix, a

FIG. 1. Geometry of a sample.
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then it is switched off to allow the cholesteric fingers to gro
parallel to the magnetic field acting along thex axis. The
stipe periodicityw516.5mm is close toP ~and not toP/2;
see@17#!.

~ii ! Once the stripes are grown, the magnetic field is
plied in the directionz perpendicularto the cholesteric
stripes to cause undulations along thex axis; see Fig. 2. The
number of layers remains constant. The field was raised w
the increment of 0.05 T and kept constant until the syst
shows no signs of evolution (>1 hr!.

III. RESULTS AND DISCUSSION

Figure 3 shows the field dependence of the displacem
amplitudeu0 ~along thez axis! of the layer initially in the
middle of the cell,z50. According to the classic theory, jus
above the threshold fieldHc @18#,

u05
8l

3 S H2

Hc
2

21D 1/2

, ~1!

FIG. 2. Experimental setup.

FIG. 3. Comparison of the measured displacement amplit
with the theory. Dotted line showsu0 predicted by the classica
theory, Eq.~1!. The measured displacement falls between the
lines, Eq.~9! with h52.5 and 3.5. With the valueB50.44 J/m3

estimated from the coarse-grained theory, the upper and the l
curves correspond toW52.2 and 2.431026 J/m2, respectively.
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i.e., the functionu0(H/Hc) depends only on one materia
parameter, the elastic lengthl5AK/B defined by the ratio
of the curvature constantK to the compression modulusB of
the stripe phase; the threshold field

Hc5
2pK

aluxau

depends also on the diamagnetic anisotropyxa of the mate-
rial. The experimental datau0(H/Hc) can be approximated
by Eq. ~1! only whenl5~8.561.7! mm. On the other hand
according to the Lubensky–de Gennes theory,K'3K3/8
and B'(2p/w)2K2, so that with the known bendK3
'10211N and twist K2'0.3310211N elastic constants o
5CB @19#, one expects much smaller lengthl'2.9 mm. In-
trigued by the discrepancy, we measuredl independently, by
fitting the profile of an elementary dislocation, as describ
in @16#, and found that for our systeml5~2.960.1! mm, i.e.,
l is indeed too small to allow Eq.~1! to describe the data in
Fig. 3. Thus, the most plausible source of discrepancies
tween the experiment and the theory is the form of Eq.~1!
itself.

Equation ~1! was derived in the approximation that th
layers displacement is strictly zero at the boundaries@1,12#.
Closer examination of the undulations reveals that the
placement is actually nonzero, Fig. 4. Below we refine
theory by taking into account the finite surface anchoring
the walls.

The free energy of the system, assumed periodic along
x-direction,u(x);sinqxx, writes ~per one period 2p/qx) as

F5E
0

2p/qx
dxE

2a/2

a/2

dzH B

2 F]zu2
1

2
~]xu!2G2

1
K

2
~]xxu!21

xaH2

2
~]xu!2J

1
W

2 E0

2p/qx
dx@~]xu!z52a/2

2 1~]xu!z5a/2
2 #, ~2!

where the surface term with the anchoring coefficientW is
taken proportional to (]xu)2[(]u/]x)2 @1#. It is a legitimate
assumption since the tilt]xu of layers is small and change
sign periodically along thex axis. A coherent tilt with]xu
5const would require a lattice of dislocation and a surfa
term ;u]xuu.
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FIG. 4. Undulation pattern near the mylar wall (H51.05Hc).
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We first deriveHc and the undulation wavelength 2p/qxc
at Hc ; for these calculations, the fourth order term inu in
Eq. ~2! can be disregarded@12#. We relax the condition
u(z56a/2)50 and solve the Euler-Lagrange equation w
boundary conditions following from Eq.~2!. This yields the
standard solution

u~x,z!5u0cosqzz sinqxx, ~3!

with constraints on the wave vectorsqx andqz ,

qz5qxAk2l2qx
2, ~4!

B

W
5

qxcot~aqxAk2l2qx
2/2!

Ak2l2qx
2

[g~qx!, ~5!

wherek5uxauH2/B. The functiong(qx) is even inqx with
two minima. When the abscissa of the two minima isB/W,
the coordinates of the minima are6qxc . Minimization of
g(qx) gives the conditionkc5(l2a/a)qxc

2 , which allows us
to find the critical field

Hc
25

l2aB

auxau
qxc

2 , ~6!

and the relationship betweenqxc andqzc from Eq. ~4!,

qxc
2 5

qzc

l
Ab

a
, ~7!

where

a5aS 12
sinqzca

qzca
D Y2 b5aS 11

sinqzca

qxca
D Y2

.

For W→`, Eqs. ~5!–~7! recover the results of the class
theory @1,12#: Hc52pK/aluxau, qxc

2 5p/al, andqz5p/a.
In order to calculate the displacement immediately abo

Hc , we retain the fourth order term in Eq.~2!. With Eq. ~3!,
the energy density per one period of undulation reads

f̃ 5F
qx

2pa
5

qzuxau
4la

Aab$Hc
22H2%u0

21
3Kqzar

1024l4ba
u0

4 , ~8!

wherer56aqzc18 sinqzca1sin 2qzca. Minimization of Eq.
~8! yields the dependenceu0(H) aboveHc Eq. ~6!,

u05
8lh

3 S H2

Hc
2

21D 1/2

; h5qxcS 6la

r D 1/2S b

a D 3/4

. ~9!

The last expression reduces to the Helfrich-Hurault res
Eq. ~1!, h51, whenW→` ~as easy to see by calculatingr,
a, andb with qzc5p/a).
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The coefficienth in Eq. ~9! depends onl, a, and W/B
@through the dependencies ofr, a, andb on qzc , which are
the functions ofW/B, see Eqs.~5!, ~7!#. A good fit of the data
in Fig. 3 is obtained forh5~3.060.5!, and measured inde
pendentlyl52.9 mm anda51.7 mm in Eq.~9!.

The fitted values of h correspond to W/B5(5.2
60.3) mm, which is of the order of the characteristic leng
of the cholesteric phase. The correspondence is establi
in the following way. First, we chose some value ofW/B,
and obtain the corresponding numerical values ofqxc , qzc ,
a, b, andr from Eqs.~5!–~7! and then calculateh from Eq.
~9! and compare it to the fitted valueh5~3.060.5!. Using
the coarse-grained value of the modulusB'K2(2p/w)2

'0.44 J/m3 and the resultW/B5(5.260.3) mm, we deter-
mine the anchoring strengthW5(2.360.1)31026 J/m2.
The value ofW agrees in the order of magnitude with
dimensional estimateW'K2(2p/w).1026 J/m2 that treats
the surface anchoring as the ‘‘intrinsic’’ anchoring of
lamellar system@20,21# caused by a violation of layer
equidistance near the surface. The same estimateW
'K2(2p/w) follows from the studies of cholesteric oil
streaks@22#. Note also that the finiteW calculated above
reduces the threshold fieldHc @see Eq.~6!# by a factor of
'0.8 as compared to its classical value atW→`.

In summary, we have determined the pattern of displa
ments in an undulating 1D periodic system, both in the b
and at the bounding surfaces. The displacement amplitud
few times larger than the one predicted by the classic the
@1,12#; it does not vanish at the boundaries. The pattern
explained by taking into account that the anchoring ene
penalty for layers tilt is finite. Finite surface anchoring al
decreases the threshold of undulations. The model can
applied to other undulating system to determine, for e
ample, the strength of surface anchoring for materials w
various elastic lengthsl. Furthermore, the present stud
should be extended from the immediate vicinity of the und
lation threshold to the region of high fields~stresses!, where
the weakness of the surface anchoring becomes even m
important. For example, our preliminary studies indicate t
at H>1.6Hc the tilt of the layers at the boundaries becom
practically equal to the tilt in the bulk, i.e., the approximatio
of the infinite anchoring fails completely. Analytical trea
ment of the high-stress region should take into acco
higher harmonics of undulations, since the layers acquir
saw-tooth profile.
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