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ROLE OF THE DIVERGENCE ELASTICITY
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Abstract Energetic stability of loop defects in nematic liquid crystal is analyzed
using Mori-Nakanishi ansatz and Frank-Oseen theory with non-zero Kjy divergence
term. The ratio of the bulk and divergence elastic constants defines a characteristic
mazterial length, which is the equilibrium radins a* of the disclination ring. Positive
K>, forces the ring to shrink.

Nematic liquid .crystals show a rich variety of defects, including point (“hedgehog”
or “monopole”} and line (“disclination™) singularities'. Important peculiarities of
nematic defects are brought about by the identity —n = n; n is the director that
describes molecular orientation. The identity makes it topologically possible for a
monepole to transform into a disclination ring of strength 1/2777. For a large vol-
ume the stability of the hedgehog vs. loop should be defined by inirinsic nematic
parameters such as Frank elastic constants.

Mori and Nakanishi® considered how the hedgehog vs. loop stability depends
on the splay and bend elastic constants. In this article we analyze how their results
would be modified by the divergence elastic term K4. Although the Ky term does
oot change the bulk equilibrium equations, it has to be taken into account when
there are topological changes, such as transformation of the spherical-like core of the
hedgehog into a forus-like core of the disclination ring with a macroscopic radius
much larger than the nematic coherence length £ .

The Frank-Oseen free elastic energy density®

f= %K ((divn)’ + (curln)’) + K2V (ndivn) - K34V (ndivn + {0 x curin})(1)
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contains the standard contribution with elastic constant K (represented here in the
one-constant approximation')} as well as two divergence terms with constauts X3 and .
K1,. We consider only K¢ term, assuming K3 = 0.

The status of the K,, term as compared to that of the bulk K terms can be
illustrated with an equilibrium radial hedgehog, n = # in spherical coordinates. To
calculate the energy of the hedgehog, one needs to integrate f over r. < r < R, where
R >» ¢ is the radius of the system and r, ~ { is the core radins of the defect; in the
core, f does not represent the true energy density. Both K and K3, contributions to

the hedgehog's energy are linear in R:
Fi = 82(R — ro)(K — Kza) + Eear®; (2

kete E.5 ~ K/£ is the hedgehog’s core energy density with some effective elastic
constant K ~ K. The r-terms are neg]igiblé as sgainst R-terms. Eq.(2) shows
that K3, should profoundly influence the stability of defects. The mechanism can he
illustrated by differential geometry theorems®. If & is normal to a family of surfaces
S, then the K;, distortion is nothing else but twice the Gauss curvature G of §

(G = gy03, where 0:1 and o, are the two principal cumtutes)g:
V(ndivn + [n x curln]) = 2G. (3)

For the radial hedgehog G = 1/r?, and one immediately obtains the K, energy in
Eq.(2). The appearance of a loop would mean that G in the region enclosed by the
loop is reduced. For example, G = D on the equatorial disc of radine a. The difference
in elastic energy between the ring and the hedgehog would be ~ aK»,, forcing the
ring to expand if Kpy < 0, and to shrink if K4 > 0.

For the guantitative consideration, we follow the Mori-Nakanishi ansatz? of
the disclination loop: n = (1,0,0) in ellipsoidal coordinates (4,7, 9‘5) connected to
the Cartesian ones by z? = a?(1 + ?)(1 — 7%) cos’ ¢; y* = a*(1 + #*)(1 — 7%)sin’ ¢;
z = acr. The ansatz asymptotically satisfies boundary conditions m = # and the
equilibrium condition Vn = 0 as B — co. The limit a = 0 is the radial hedgehog
which eatisfies exactly the two conditions sbove. With ¢ # 0, the ansatz describes
a circular wedge loop of radius a with n perpendicular to the surface of the oblate

ellipsoids of revolution (Fig.1}. Since with a # 0 the ansatz satisfies the equilibrium
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condition only asymptotically, the corresponding energy Froop represcnts the upper
limit of minimum energy of the loop’.

2

Fig.1 Loop of disclination 1/2

To find the equilibrium radius a° of the loop, one has to find the integral Fi
of f and then minimize it. The volume of integration should not include the torus-
like core of the loop with meridional radius ~ r., where deformations are large. The
excluded volume can be chosen as? ¢ < o < p,0 < |r| £ ¢, where p = m
and ¢ = m. Any other geometry of the corc cross-section changes the
energy by ~ r.K, which is negligible in comparison with terms ~ aK and RK, when
¢ 3 7.; the last inequality sets the limit of validity of our consideration.

We first obiain the energy Fy caused by the divergence term:

Foa = —8x K0 R + 41'4[(24[% +pq- q’% +(7* +¢*)tan ™" E]. (4)

Az it was expected, the core p, g-terms bring only small corrections r Ky, The leading
terms (—8x K R) and 2x?a K, are core-profile-independent and do not vanish even
when r./a — 0, their origin being putely topological, as discussed above. Of course,
this topological argument holds only for a 3> { when the region inside the ring is
composed of uniaxial nematic phase.

The total energy Fi., of the loop includes also the K-term and the core energy
~ ¥xak,y where £ = E..£*/K . In the limit r.fa — 0,

2
Fioop = BrR(K — K() + 2x7aKau + oK) - 5+ 4.0/, 5)
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Within the framewotk of Frank-Oseen theory, r. should be estimated as r, ~ ¢
and its scaled energy as £, ~ 1. The same order of £ ; follows from the models
of biaxial core, where r, is larger but E,; is smaller'%!!. Note that the usual bulk

terms produce divergent factors such as K'In (a/r.). In contrast, K;4 integrals bring -

no divergence, Eq.(4); the same behavior was found for mmectic focal conic defects'®.
This peculierity brings rather strong cxponential depeundence of the loop radius on

the ratio of elastic constants. Minimization of Fi, gives
a* = dr.exp [4 ~ 4K /K — 48},;/:] re 30€ exp[ 4K,/ K). (6)

This value of a* wonld be modified by the inclusion of different values of splay
K|, and bend K,; elastic constants. In the first approximation of small anisotoropy
a = (K ~ Kn)/{K\ + Ky) the factor is exp(l + a), and thus Ky; > K favors a
larger loop.

As recent experiments'? '3 and molecular theories'® suggest, K4 can be of the
order of K. According to the Ericksen’s stability criteria, K2, should be positive'”.
Thercfore the appearance of the loop instead of the radial hedgehog increases the
clastic energy. We conclude that with positive Ky, the macroscopic loop is unlikely
to be stable as against a radial hedgehog: in Eq.(6), the radius of the loop is the order
of few tens of { when Ko, = 0, buf quickly decreases to a* ~ § when Ky, — K. Of
vourse, for a* ~ £ the Frank-Oseen approach gives only indicative resulis; a rigorous
treatment should include the gradients of the degree of order and possibility of biaxial
regions at the defect core,

The situation can be different for hyperbolic hedgehogs, n = {~z/r, —y/r, z/7),
r = V2% + y¥ + 22. li is easy to see that the elastic energy of the hyperbolic hedgehog
containe Ky, term with a sign opposite to that of radial hedgehogs:

K K.
FM =8I'R(3+—32—1)+E=‘M1“:‘h (T)
The difference in the sign of the K;, term is because of predominantly negetive
Gaussian curvature of surfaces normal to n; for the radial hedgehog these surfaces
are spheres with a positive curvature. Transformalior of the hyperbolic hedgehog into
a loop of m = —1/2 and radius s should decrease the energy by a quantity ~ aKy,.

Therefore, the increase of a positive constant K, would increase the radius of the
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loop, o8* ~ uf exp(AK2/K); here 4 ~ 10 and A ~ 1 are the two positive numerical
coeflicients with values that can be determined within the Frank-Oseen approach.
In summary, using the Mori-Nakanishi ansatz, we have shown that the saddle-
splay elastic term in Frank-Oseen theory with a positive elastic constant Ky should
force a loop m = 1/2 and large macroscopic radius (shown in Fig.1) to shrink inio 2

radial-like structure with a microscopic core.
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