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The structure of dispersed liquid crystal droplets is controlled by a balance of the bulk 
elasticity, surface tension. and surlace anchoring. For sufficiently large droplets with radius 
R > KI W,, where R is the bulk elastic constant and W. is the anchoring coefficient, the surface 
terms prevail. As a result, the equilibrium states of large droplets contain topologically stable 
defects. Application of topological theorems lo defect structurcs, e.g. monopoles, boojums 
and hedgehogs is reviewed. 

1. Introduction 
Thermotropic liquid crystals and dispersed-phase 

systems are two fields of active research in soft matter 
science usually considered as independent. Recent years 
have shown a growing interest in dispersions of liquid 
crystals where the dispersed phase is a thermotropic 
liquid crystal. 

Apparently, the first liquid crystalline dispersions were 
prepared in the 1890s by Otto Lehmann [ I ]  who mixed 
para-azoxyanisole with different fluids such as Canadian 
balsam, colophony, mineral oil, etc. The aim was nothing 
other than to decipher the nature of the liquid crystalline 
order. Observations with a polarizing microscope revealed 
floating spherical droplets with beautiful birefringent 
textures. Lehmann recognized that the birefringence was 
caused by an ordered alignment of elongated 'elementary 
units' (molecules) inside the droplets. In the simplest 
model, the molecules were supposed to orient along the 
meridians at the droplet surface. Thus the substance 
under study was really a 'liquid crystal': it formed 
spherical droplets like a fluid and at the same time 

. possessed an ordered structure like crystals. 
Lehmann's ordered droplets were practically forgotten 

as soon as it became clear that liquid crystals did really 
exist as distinctive phases. Even in the 1930-1970s, 
when Oparin and his followers developed ideas of the 
coacervate origin of life [?I  and when biochemists studied 
practically all the possible variations of dispersions to 
create 'protocells', liquid crystal droplets as plausible 
'protocells' attracted little attention. Nevertheless, obser- 
vations that some coacervate droplets are optically 
anisotropic have been reportcd 131. 

It was not until the last decade that there came a true 
revival of interest in liquid crystalline droplets. The 

invention of polymer dispersed liquid crystals (PDLCs) 
as a medium for electro-optical devices 14, 5 1  was a 
spectacular manifestation of the unique properties of 
anisotropic dispersions. Two basic features, i.e. (1) the 
ordered inner structure of the dispersed particles and 
(2,) the small scale of confinement in which bulk and 
surface interactions are in direct competition. make 
liquid crystalline dispersions distinctive and more com- 
plex than their isotropic counterparts or continuous 
liquid crystalline media. 

The equilibrium states of liquid crystal dispersions often 
contain topologically stable defects. Some of them are 
rather unusual, as, for example, monopoles in cholesteric 
and smectic C droplets which are analogues of the Dirac 
monopole, a hypothetical elementary magnetic charge. 
The aim of this short review is to present basic structural 
and topological properties of liquid crystal droplets and 
to recall some stimulating parallels with other fields 
of physics. 

2. Basic properties of Iiquid crystal droplets 
The equilibrium state of liquid crystal droplets, and 

similar objects such as isotropic droplets or mono- 
domain solid crystals bounded by an isotropic medium, 
is defined by the minimum of the free energy functional 
that can be formally decomposed into a volume and a 
surface part: 

Here V is the droplet's volume, f the bulk free energy 
density, S the area of the bounding surface and a the 
surface free energy per unit area. 

1998 Taylor & Francs Lld 
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For isotropic droplers, u is constant. If there is no 
exchange of molecules with the surrounding matrix ( V  is 
constant). the equilibrium shape is found by minimizing 
the surface energy. The droplet adopts a spherical shape 
of radius R = 13V/4n)18'. If the droplet nucleates during 
a first-order phase transition, ,/ should be understood 
as the difference in free energy density between the 
surrounding matrix (vapour, metastable phase) and the 
stable nucleating phase. Then the free energy (1)  is 
defined by the bulk term F, = $x,fR3 < 0 and by the 
surface te rn  F. = 4xoR2 > 0. A spherical embryo larger 
than R, = 2o// grows indefinitely since the bulk energy 
gain -R3 outweighs the surface energy penalty -R2. 

In solid crystals, the bulk energy of distortions that 
might be caused by the surface is prohibitively high and 
the variational problem for equation ( I )  is solved under 
the constraint that the crystal preserves its ideal lattice 
structure. The surface energy u depends on crystallo- 
graphic orientation. This dependence can contain 'cusps' 
at which the first derivative of o is discontinuous. The 
cusps lead to a faceted shape of a crystal that can be 
reconstructed through the well-known Wulff procedure. 

Liquid crystal droplets present the most difficult case 
of the minimization problem since, first, o depends on 
the surface orientation of the molecules and, second, 
surface and bulk energies are often comparable. In 
nematics, the amplitude W, of the angular dependent 
part of u ('anchoring energy') is usually much smaller 
than the energy o, needed to extend the area of the 
sutface preserving the equilibrium director orientation. 
Typical values for the liquid crystalline cyanobiphenyls- 
glycerin pairs are 0 , - ( 1 0 ~ ~ - 1 0 ~ ~ )  J m-2 [6] and 
M/, - (10-~-10- ' )  J m-2 [7]. Surfactants such as 
lecithin decrease a. by an order of magnitude 171. 

Representative estimates are uoRZ for the isotropic 
part of the surface energy, W , R 2  for the anisotropic 
surface energy, and, finally, KR for F,, where 
K - lo-" N is the bulk elastic constant. Note that the 
bulk elastic energy scales linearly with R rather than as 
R3. Thus, in contrast to nucleating drops, the surface 
energies outweigh the bulk elastic energy for large R. 

The first consequence of the estimates above is 
that realistic liquid crystal droplets are practically 
spherical: the length I, = Klo, is usually of the order of 
a molecular length. 

The second consequence is that for a given pair liquid 
crystal-isotropic fluid matrix, the structure of the drop- 
lets is greatly influenced by their size. Droplets with 
R << K/W, avoid spatial variations of the director n and 
set n(r) = const at the expense of violated boundary 
conditions. In contrast, large droplets satisfy boundary 
conditions by aligning molecules along the easy 
direction(s). Since the boundary of the droplet is curved, 
this anchoring effect leads to the distorted director in 

the bulk. figure I. For example, as shown by Williams 
[8] for tangentially anchored droplets with a Rapini- 
Papoular anchoring potential, the minimum of the total 
energy (F, + Fs) at R + m is the same as the minimum 
of the Frank-Oseen energy F, with the restriction that 
n is strictly tangential to the surface. 

With typical W, % lo-' J m-2 and K % lo-" N, the 
characteristic anchoring length 1, = K /  W, is of the order 
of 1 pm and normally much larger than 1,. Droplets 
with R >> 1, are 'large' and contain defects in equilibrium. 
A similar balance of surface and bulk energies in smectic A 
droplets results in focal-conic defects of characteristic 
size p > K/ W, that fit the boundary conditions and thus 
save sutface energy -p2  at the expense of the elastic 
energy - p  191; the difference is that W, should be 
understood as the surface energy difference for normal 
and tangential orientation. As discussed in the next 
section, nematic droplets with R >> 1, can be described 
on the basis of elementary topological properties of the 
bounding surface. 

3. Elements of topoIogica1 description of defects 
For R >>I,, the director of the interface makes an 

equilibrium polar angle a, with the surface normal k. 
Even without solving the minimization problem, one 
can establish general and useful topological properties 
of structures that occur inside these droplets as long as 
2, is fixed. This possibility stems from two theorems 
of differential geometry, i.e. the Gauss and Poincare 
theorems. The theorems connect the total topological 
charges ofpoint defects in the vector field to the so-called 
Euler characteristics E of the bounding surface. 

Topological charges play a key role in the classification 
of defects in condensed media as shown by Toulouse 
and Kleman [lo] and Volovik and Mineev [ I l l  on the 
basis of homotopy theory. The stability of the defect is 
guaranteed by the conservation of its topological charge. 
The laws of conservation of such charges, analogously 
to the laws of conservation of electric and other physical 
charges, regulate the decay and merging of defects, their 
creation, annihilation, and mutual transformation. The 
well-known example of the topological charge is the Frank 

Figure I .  Schematic structures ol nematic droplets with 
normal anchoring. Large droplets with R >> K/W, contain 
topological delects in equilibrium; in small droplets with 
R << K/W. the director tends to be uniform. 
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index of a linear disclination. Similar characteristics can 
be introduced for point defects. 

Analytically, the topological charge of a point defect 
in a t-dimensional vector field (n,, n,, ... n,), n2= l is 
defined as an integral (e.g. ref. [12]): 

., (2 )  

where u ,  . u L  are coordinates specified on the 
sphere S'- '  surrounding the defect, and a normalizing 
coefficient Q equals 4n for t = 3 and 2z for t = 2. For 
the case of r = 2, one has simply 

(3) 

where 1 is the natural parameter defined along the 
loop enclosing the defect point. For a bounded three- 
dimensional system, one can assign charges m to point 
defects in the surface vector field t = n - k(n . k) which 
is the projection of the director onto the surface. The 
number m shows how many times t rotates by the angle 
2rr when one moves once along a closed loop around 
the defect's centre. 

For point defects in three-dimensional vector fields, 
equation (2) yields 

If the vector field is parameterized as n(lr,r>)= 
(sin 0 cos yl; sin 8 sin yl: cos 8), with both the polar (0) 
and the azimuthal (yl) angles being functions of the 
coordinates u and u specified on a sphere S2 surrounding - 
the defect, then 

.='I( ----- 
4x 

") sin 0 du du. (51 au  al' at. au  
For example, for a radial hedgehog n = i in spherical 
coordinates, 

4 r r  

Note that in nematics, the sign of N is not defined: a 
substitution of o with n obviously changes the sign 
of N in equation (4), but this substitution does not 
change the nematic state. In the absence of topological 
disclinations one might consider the director n as a 
vector. 

The Euler characteristic E of the closed surface is a 
topological invariant that does not alter under smooth 
deformations. A practical way to calculate E is to draw 
a polygonal set a t  the surface and then calculate the 
number lTr of vertices, the number Ed of edges, and the 
number Fc of faces: 

E = V t - E d + F c .  ( 7 )  

As is easy to see, E does not depend on the particular 
choice of polygonal network; one always finds E = 2 for 
a sphere and E = 0 for a torus. The Euler characteristic 
can also be defined through the 'genus' g of the surface: 
E = 2(1 - g). The genus g is the number of handles one 
has to attach to a sphere to transform it into the surface 
under consideration. Obviously, any spherical surface is 
assigned g = 0; a torus has g = I; larger g's correspond 
to pretzels with g holes. 

The PoincarP theorem states that the sum of all charges 
m of the vector field r on the closed surface (a, f 0) is 
equal to the Euler characteristic of the surface, e.g. 2 in 
the case of a sphere: 

1 mj = E. 
j 

(8) 

Figure 2 shows two possible defect configurations of a 
director field on a sphere. 

The Gauss theorem states that if the vector field is 
normal to the closed surface, a, = 0, then the sum of the 
topological charges N of all point defects inside the 
bounded volume is 

1 N ;  = E/2, (9) 

i.e. 1 in the case of a sphere. A trivial illustration would 
be a radial hedgehog located in the centre of a sphere. 

N =  s i n u d u d u = l .  
4rr 9 (6) b 

Figure 2. Possible configurations of the director field on a The number N shows how many times one meets all spherical surface with one m = 2 (a) or two rn = I ( b )  point 
possible orientations of the vector field while moving singularities; topological charges obey the Poincare 
around a closed surface surrounding the point defect. theorem (8). 
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4. Monopoles and boojums 
The Dirac monopole [13], an elementary magnetic 

charge, is one of the most exciting illustrations of 
the topological theorems discussed above. Imagine a 
radial point defect in the magnetic field, BIr, and draw 
imaginary concentric spheres around the centre of this 
'hedgehog' so that the magnetic field is normal lo these 
spheres. Obviously, the magnetic hedgehog has a topo- 
logical charge N = 1. A vector-potential A that is normal 
to B is tangential to the imaginary spheres. Then in 
accordance with the Poincare theorem, there must be 
a1 least one singularity in the vector-potential field on 
each sphere. These point singularities form a line. or 
Dirac string, emerging from the centre of the charge. 
Thus the Dirac monopole is a combination of a point 
defect-hedgehog N = I in the B-field with the attached 
semi-infinite 'disclination' m = 2 in the A-field. 

Monopole defects similar to the Dirac monopole can 
occur in condensed matter. Soon after Osheroff, 
Richardson and Lee, see review 1141, discovered the 
superfluid 3He, Blaha 1151 suggested that a monopole 
can be observed in 3He-A. Unlike 4He which is com- 
posed of bosons, 3He atoms are fermions and should 
pair to form a superfluid. However, in contrast to Cooper 
pairs in superconductors, the angular momentum of the 
atomic pair in 3He is non-zero. The order parameter of 
the A phase is a triad of vectors (1, A', A"), where I is the 
quantization axis of the orbital angular momentum of 
Cooper pairs; A' and A" are perpendicular to I. In 
bounded volumes, I is always normal to the walls. Then 
in a spherical vessel one can hope to find a monopole: 
a radial point defect in the field I should be accompanied 
by disclinations in the A' and A" fields (figures 2 and 3). 

However, there is a way to reduce the energy of the 
system by moving the 1-hedgehog towards the surface, so 
reducing the length of the linear disclinations (figure 3). 
The resulting surface singularity is simultaneously a 

Figure 3. A monopole (a) and a boojum lc) in a spherical 
vessel filled wilh superfluid 3He-A phase (cross-sections). 
The monopole is a combination of a poinl defect N = 1 

hedgehog in the I-field and point defect with m = 2 in 
the A' and A" fields. The possibility for line defects to 
shrink into a surface point singularity in 3He-A was first 
recognized by Mermin 1161. Mermin called the point 
singularity 'boojum', inspired by Lewis Carroll's The 
Hunting of the Snark. In the poem, anyone encountering 
the imaginary creature 'boojum', softly and suddenly 
vanished away, just as disclinations do in the example 
above. The analogy is even deeper when one considers the 
superflow in 3He-A. We refer the reader willing to learn 
more about boojums and their way into modern physics 
to Mermin's book [17] Boojums All the Way Through. 

Mermin boojums can be observed in biaxial nematic 
liquid crystals where the order parameter is a triad of 
orthogonal directors. Let n be the director that charac- 
terizes both the uniaxial and the biaxial phases, and I 
the director that appears only in the biarial phase; I l n .  
Suppose the matrix sets normal the orientation of n at 
the surface so that a point defect N = 1 exists somewhere 
in the bulk in accordance with the Gauss theorem. 
Director I that appears during the uniaxial-biaxial phase 
transition is tangential to the spherical surface and 
gives rise to a surface boojum that is simultaneously an 
N = I in u and an m = 2 defect in I. 

Is there any mechanism in liquid crystals that might 
prevent a monopole from a decay into a boojum? Liquid 
crystals with layered structures such as cholesterics (Ch) 
and smectics C (SmC) offer such a stabilizing mechanism. 
Imagine, for example, a SmC droplet with concentric 
spherical packing of layers. The normal n to the layers 
forms a radial hedgehog. Since the molecules are tilted 
with respect to n, there is another vector field t of the 
projections of the long axes of the molecules. The field 
t is tangential to the SmC spherical layers and thus 
should contain disclinations (figure 2). In contrast to 
the biaxial nematic case, these lines are stable: any 
attempt to make them shorter violates the equidistance 
of the SmC layers [la,  191. During the SmC-SmA phase 
transition, the disclination lines disappear since the 
vector field t disappears. Figure 4 illustrates both isolated 
radial point defects in SmA droplets and corresponding 
monopoles in SmC droplets. Similarly, in Ch droplets, 
the monopole might be stable if the pitch of the 
cholesteric is much shorter than the droplet radius. The 
monopole structure of cholesteric droplets has been 
observed by Robinson and explained by Frank and 
Price, see ref. 1201. 

5. Continuously defined topological cbaracteristics . - 

in the vector field 1 (lhin lines) thal is normal lo the Topological charges such as Burgers vector of dis- 
boundary and a disclination line m = 2 (lhick wavy line) location or the strength of a disclination are quantum. 
in ihe vector fields A' and A" tangenlial lo ihe bounding 
surlace The mononole is unstable and transforms inlo The quantum nature of these charges as a . . . . - . . . . . . . . . . . . . . =... .. ~ ~~-~~~~~~ .... ...-. 
the booium (c): the disclination shrinks ( b )  inlo a poinl at ConsequencG of the fact that the order Parameter has 
the surface. freedom to change without affecting the thermodynamic 
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Figure 4. Spherical droplets ol' 
SmA (a) and SmC (c) liquid 
crystals suspended in a glycerin 
lecithin matrix. The radius of 
the droplets in the microphoto- 
graphs is about 15pm. SmA 
droplets show hedgehog defects 
in the director field; the cores 
of the hedgehogs are located in 
the centres of the droplets. b 
When the sample is cooled 
down and SmA transforms into 
SmC, these isolated point 
defects transform into mono- 
poles: pairs of m = 1 appear in 
the field t that describes the tilt 
of the molecules within the 
smectic layers. Configuration of 
t at the spherical surface is illus- 
trated by figure 2(h) .  Molecular 
schemes (6) and (d) show cross- 
sections of the SmA and SmC -.. ... 

droplets, respectively. 

potentials of the system [lo, 111. The manifold of corres- 
ponding states is called the order parameter space. For 
example, the director of a uniaxial nematic can take any 
orientation in space; all these orientations are energetic- 
ally identical if the nematic rotates as a whole. The order 
parameter space is then a sphere S2/Z, of a unit radius; 
any two antipodal points on this sphere are identical 
since the states n and -n are not distinguishable for the 
non-polar nematic phase. An example below illustrates 
how the concept of order parameter space leads to 
quantum topological charges. 

The director field n(r) on any surface enclosing an 
elementary hedgehog N = 1 produces a mapping from 
the real space onto the order parameter space that 
completely covers the sphere S2/Z2. In other words, by 
going once around the hedgehog one meets all the 
possible orientations of n. To destroy the hedgehog, one 
has to make a hole in this cover, or, in other words, 
to melt the nematic in the real space along a line 
terminating at the defect core; the process requires 
energies much larger than the energy of the defect itself. 
A mapping of an N = 2 hedgehog spans the sphere two 
times, etc. There is no way to get a stable hedgehog with 
a non-integral charge: the corresponding cover of the 
sphere is incomplete and shrinks into a point which 
means that the director relaxes into a uniform state or 
a state with an integral charge. 

Now consider a nematic droplet. Suppose there is a 
way to change continuously the boundary conditions 
on the surface of this droplet from, say, strictly tangential 
to strictly normal. Experimentally, it can be done by 
dispersing a nematic liquid crystal in a matrix composed 
of two components with opposite alignment tendencies 

and changing the temperature of the sample [21]. The 
droplet preserves the spherical shape since the aniso- 
tropic part of the nematic surface energy is smaller 
than the isotropic part, as already discussed. In the 
initial state with tangential anchoring, the droplet in 
equilibrium must contain two or one surface point 
defects-boojums with the total topological charge 
m =  2. In the final state, there should be no boojums 
(the director projection onto the surface vanishes), but 
the interior should contain a hedgehog with a charge 
N = 1. Under a smooth change in the surface angle a, 
from n/2 to 0, how do the boojums vanish and how does 
the hedgehog appear in their place? It is intuitively clear 
that the integer numbers m  and N are not sufficient, and 
some continuously defined characteristics are needed to 
describe smooth transformations of the director field [21]. 

Consider the behaviour of an isolated boojum at a 
surface under changing boundary conditions (figure 5). 
At a, = 4 2 ,  the boojum is characterized by the index 
m =  1 of the projection field t = n- k(n.k). In the 
interior, the boojum represents just one half of a hedge- 
hog. If one surrounds the boojum by a hemisphere 
with a unit radius, then the director marks all the points 
of this hemisphere. One can assign to the boojum a 'bulk' 
characteristic A = 112, since the area of the hemisphere 
is 112 of that of a sphere. When a, varies from 4 2  to 0, 
the boojum either disappears [figure 5 (a)-(c)], or trans- 
forms into a hedgehog [figure 5(d)-(f)]. Accordingly, 
A decreases to 0 or grows to 1. Quantitatively, A is 
defined as the integral (4) taken over the hemisphere 7: 
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defects on its surface and q hedgehogs in its interior. 
Some of the hedgehogs can be stretched out into dis- 
clination rings; these rings, however, do not change the 
analysis since they are topologically equivalent to ' I " 

hedgehogs with integer charges N = 0, + 1, + 2, . . . . 

0 ' ........... : ..... *.:.:.>.: -: ,..... :"' 0 
We surround all the defects in the bulk by a sur- 

face y1  and the entire surface of the droplet, together 
with the boojums, by a surface y ,  (figure 6). The total 

.,...... :':"".:.:.:.*<' . . topological charge of the hedgehogs enclosed by yl  is 
X i  Ni. The total charge enclosed by y, is equal to the 

b C sum of the boojums' characteristics X j  Aj and the charac- 
teristic of A, of the droplet surface itself, which differs 
from zero because of the curvature of the surface. Taking 
the integral (5) over the drop surface with the boojums 
punc1.1ed out, one finds A, = - n -  k. Now, since there are 

n/4 0 no defects in between y1  and y, ,  the two total topological 
charges (taken with opposite signs) are equal to each 
other, 

P ~ + 4  

C A , + A , = -  C N a .  

b=l a=p+l 
(11) 

The last equation is the conservation law for topo- 
logical charges in the closed droplet when the boundary 
conditions change. Some of the defects might vanish or 
appear, but the total charge is preserved by redistribution 

Figure 5. Two possible ways of boojum transformation under of A characteristics. It is easy to see that equation (11) 
changing boundary conditions. The scenario (a, b, c )  gives laws for types of discretely 
results in gradual disappearance of the defect, while defined charges. Really, for a bounding surface with the 
the scenario (d, e, f )  prdduces a point defect hedgehog. Euler characteristic E, 
The corresponding characteristics A are shown as the 
shadowed areas on a sphere of the order parameter space P 

below each boojum structure. 
b=l a=p+l 

Here we treat n as a vector, rather than as a director, 
which is justified when there are no disclinations in the 
nematic bulk. 

By using equation (lo),  one finds the topological 
'bulk' charge N of the boojum since m is defined 
independently from the distribution of the projection 
field. For example, consider axisymmetric boojums 
with m = 1 located at the surface with a 
fixed angle a,. The director field around a boojum 
can be parameterized in cylindrical coordinates as 
n, = sin O(u, v), q, = 0, v, = cos B(u, v), where 9 is the 
angle between the vectors k and n. Then for these 
boojums, 

where the first pair of signs is defined by the sign of hl 
and the second pair of signs is defined by the sign 
of aelau. 

Consider the role of continuous A's in the behaviour 
of the drop as a whole. Assume that there are p point 

P + 9  
therefore, Cf=, mb = E (for any a, # 0) and Na = El2 

a=l 
These equalities are nothing other than theorems (8) 
and (9). 

Figure 6. To find the conservation law for topological charges 
in the bounded volume, one uses two imaginary surfaces 
(dashed lines) to surround all the defects in the bulk and 
all the defects at the surface. 
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Relations above allow one to describe the 'topo- 
logical dynamics' of defects in a nematic volume as 
redistribution of the continuous A characteristics under 
restrictions on the total charge and charges m, N. 
Different scenarios have been described in reference [21]. 
Basically, when the boundary conditions change and the 
characteristics of some defects change, other defects in 
the system should accordingly adjust their structure and 
topological characteristics to satisfy the conservation 
laws. Sometimes the process results in appearance of 
new defects or disappearance of the initial ones. For 
example, figure 7 illustrates the experimentally observed 
[21] scenario in which the decrease of the polar angle 
from a, = n/2 [figure 7 (a)] to a, = 0 [figure 7 (e)] results 
first in the appearance of the surface equatorial dis- 
clination [figure 7(b)] and then in the disappearance of 
two boojums at the poles [figure 7 (c)]. After the boojums 
vanish away, the disclination ring shrinks into a point 
defect with N = 1 [figure 7 (d)] at the pole of the droplet. 
This state is topologically equivalent to a radial hedge- 
hog. The equivalence is manifested by the last stage of 
the 'topological dynamics': the N = 1 defect relocates 
from the pole [figure 7(d)] to the centre of the drop 
[figure 7 (e) 1. 

6. Phase ordering and stability of dispersions 
Confinement and anchoring create topological defects 

in the equilibrium state of large (R > K/Wa) liquid 
crystal droplets. Non-trivial topology of the liquid 
crystal droplets might lead to a number of interesting 
physical consequences. One example is phase ordering in 
quenched systems, e.g. the transition from the isotropic 
melt into the nematic phase caused by rapid temperature 
decrease. The first-order isotropic-nematic transition 
occurs as nucleation of rounded nematic droplets 
floating in the isotropic sea. The conventional Kibble 
mechanism [22] treats the appearance of topological 
defects during the quenching as a result of coalescence - - 
of domains-droplets with different (but uniform 
within each domain) orientation of the director. This 
scenario is certainly relevant for the initial stage of the 
coalescence. However, as the droplets grow, the seed 
defects should show up as intrinsic singularities in each 
droplet that reached the size - K/Wa. 

There is yet another aspect that makes the structural 
peculiarities of the droplets relevant to the problem 
of coalescence. As demonstrated experimentally by 
Terentjev [23], stability of nematic macroemulsions is 
greatly enhanced compared with that of their isotropic 
counterparts. The energy barrier for coalescence is 
defined mainly by the elastic constants of the liquid 
crystal and the surface tension (rather than by the 
anchoring energy). At the initial stage of coalescence, 

Figure 7. Topological dynamics of defects in nematic 
spherical droplets suspended in a glycerin-lecithin matrix. 
By changing the temperature of the sample, one changes 
the director orientation at  the surface of the droplets from 
strictly tangential (a) to strictly normal (e). Defects trans- 
form to accommodate the changing boundary conditions 
but always preserve the total topological charge. The 
process includes formation of equatorial disclination line 
(b),  gradual disappearance of boojums (b,  c), shrinkage of 
the disclination into a surface point hedgehog (d) and, 
finally, relocation of the hedgehog from the surface into 
the bulk (e). The radius of the largest droplet in the 
microphotographs is about 20pm. For more details, see 
the text and reference [21]. 
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the zone of contact of two droplets can be approximated 
by a disk of small radius a << R. The surface energy gain 
from the formation of such a contact area is -aoa2 
(reduction in the total surface area of the two contacting 
droplers i s  -af ), while the elastic penalty of additional 
distortions is at least of the order of - Ka. Figure 8 
illustrates two contacting droplets with normal boundary 
conditions and a surface disclination ring of radius a and 
elastic energy - K d .  Appearance of the ring is dictated 
by topological reasons. The ring provides transition 
between the initial state with a pair of isolated hedgehogs 
and N, + Nz = 1 + 1 = 2, aud the final state with one 
hedgehog and 1V = 1. The contact area of two droplets 
would grow only if the elastic penalty - K a  becomes 
smaller than the surface energy gain -u0aZ, i.e. when 
a > K/a,. The energy barrier of coalescence is - K2/ao. 
With K - I D - "  N and low (r, - lop4 J mp2, the 
energy barrier is high, - 10-lBJ, as, compared with the 
thermal energy - 4 x 10- J at room temperature. Thus 
the nematic droplets are much more stable against 
coagulation compared with their isotropic counterparts 
with no bulk elasticity. 

7. Conclusion 
The phenomenon of surface anchoring leads to 

important consequences, e.g. equilibrium defect struc- 
tures in liquid crystal dispersions. These defects are 
controlled by general topological laws and are similar 
to structures in other fields, such as magnetic monopoles 
or boojurns in superfluids. The defects greatly influence 
not only individual, but also cooperative properties of 
droplets. Studies of these cooperative phenomena are 
currently being performed on emulsions in whch isotropic 
droplets are surrounded by a nematic medium [24]. 
Here again the defects appear in the liquid crystalline 
matrix as a consequence of the anchoring phenomenon 
and topological constraints considered above. For 
example, for normal anchoring, each su£Eciently large 
isotropic droplet or ball immersed in the liquid crystal 
matrix is topologically equivalent to a point hedgehog, 
and brings the topological charge N = 1 that must be 
compensated by a defect in the nematic matrix. 

During many years, liquid crystal structures have 
inspired hopes of gaining insight into 111e mechanisms 
of structural organization in biological systems (see the 
book by Needham [25] and the review by Gray [ 2 6 ] ) .  
A remarkable comparison of biolopical and liquid crystal 
structures has been presented by Brown and Wvlken 
[27], and recent stuhes by Livolant [78 ] and by Van 
Winkle et a!. [29] reveal that some chromosomes can 
be considered as strongly elongated cholesteric droplets. 
Bouligand and Livolant [30] have found numerous 
biopolymers forming 'Dirac monopole' defects discussed 
above. One might hope that liquid crystal dispersions 
would be helpful as the simplest models for deciphering 
some properties of biologcal systems; note that the size 
of biological unit Mocks, the cells, is of the order of 
1 - 10 microns. However, the analogy between the liquid 
crystal dispersions and 'proto-organisms' remains quite 
remote: a 'proto-organism' should participate in the 
dissipation of energy; it must he 'semipermeable' to allow 
the flux of energy and or sorue selected forms of matter; 
there should be also some mechanism of division accom- 
panying growth to keep the surface-to-volume ratio 
relatively low and thus to Facilitate the interchange of 
energy and matter with the surrounding matrix. Although 
the liquid crystal droplets can possess non-trivial 
inner structures and a uon-spherical shape, they usually 
preserve their cohesiveness because of the positiveness 
of the surface-tension coefficient. Quite surprisingly, 
there is an exception: spontaneous division of chiral 
liquid crystal droplets has been observed during a 
specific sequence of phase transitions, during temperature 
rlrcrease [31]. This phenomenon illustrates another 
unusual Feature of liquid crystal dispersions that cannot 
be found in their isotropic counterparts. 

Anchoring phenomena at the liquid crystal-isotropic 
fluid interface per se are practically unexplored. Here 
one might expect orientational analogues of electro- 
capillarity, i.e. the dependence of the anchoring energy 
and 'easy orientations' on the concentration of ions 
or surfactants. Finally, both the confinement and the 
presence of defects make it necessary to explore the role 
of the so-called divergence elasticity of liquid crystals. 
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