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Abstract Within the framework of so-called "first-order elastic theory" we 

consider distortions in a nematic cell with tilted molecular orientation subjected 
to a tilted magnetic field. The geometry has been suggested by Faetti to test the 
validity of different approaches to the problem of the divergence K,, elastic 

term. According to the first-order elastic theory, in which only the fxst and 
second derivatives in the elastic free energy are retained, the K,, term causes 

deformations at the cell sui-face when a magnetic field is applied along the initial 

director n.  We discuss conditions that should be satisfied in order to observe 

the instability. 

The leading Frank-Oseen part of the nematic elastic free energy, written in its modem 
form by Nehring and Saupe, 1 is quadratic in derivatives of the director n ,  

F2 = j d ~ ( f  ~ , , ( ~ . n ) ' + f  ~ , ( n . v x n f  + $ ~ ~ , ( n x ~ x n ) ~  
(1) 

+ ~ , , v [ n ( V  - n)] - K , J [ ~ ( v  - n )  + n  x V  x n]}.  

The elastic f m  energy functional F, contains three standard contributions with the 
elastic constants K,, (splay), K2, (twist) and K,, (bend), as well as two divergence 
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K,, and K,, terms. It is the divergence term K,,v[~(v. n)] that remains a 

controversial issue despite decades of  discussion^.^-I 1 The problem is that 
microscopic theories p~tdict finite K,,; 6912-14 however, when K,, # 0,  F2 has no 

minimum. To deal with a bounded free energy functional, higher order terms in the 

free energy expansion should be added to F,. The approaches suggested so far differ 

in the number of terms added to F,. The theories that restrict the expansion to a few 

higher order terms predict strong (molecular-scale) surface deformations.6*7~9 In the 

infinite-order theory, the defoimations are supposed to be bounded to the standard 

weak magnitude by all higher order terms.8 Since there are no strong deformations, 

the family of the director distributions in this approach can be assumed to satisfy the 
Euler-Lagrange equations for h e  functional F, alone.4-8 The theoretical approach in 

which only F2 functional is considered, is often called 10 the "first-order elastic 

theory" (to avoid confusion, note that F, contains squares of the first derivatives and 

the second-order derivatives of director). The equivalence of the infinite-order theoly 

and the first-order theory is not proven yet. 
The experimental situation with K,, is also murky: different authors have used 

different approaches in the interpretation of data. Is-21 Moreover, no physical effect 
caused solely by K,, has been reported. To resolve the K,, puzzle, one has to find 

such an effect. A possible expaimental test that allows one at least to discriminate the 

predictions of the first-order approach was suggested by Faetti. 10 The geometry of 

the problem implies a nematic cell with tilted boundary conditions. The cell is subjected 

to a magnetic field B directed along the initial n. There are two different predictions as 

to what happens in a finite tield. The model with molecular-scale subsurface 

deformations predicts that these molecular-scale deformations of n exist when B; when 

B # 0, no additional defo~~nn~ions occur. In contrast, the first-order theory which uses 
exclusively the functional F, predicts that the increase of the field results in long-range 

deformations with maximum at the bounding surface. These deformations occur only 
when K,, # 0 and only when the initial director orientation is tilted.10 

In this article we explore the possibility of the experimental detection of the K,,- 

induced deformations in a tilted nematic cell within the frame of the first-order theoly. 
Note that the predictions of this theory may not coincide with the theory in which all the 

high-order terms ale taken into account; the complete analysis would require a 

resummation of these high-order terms. The one-dimensional geometry of the problem 
makes another divergence KZ4 telm identically zero. We set K,, # K,, ( K,, and K,, 

were taken to be equal in the Faetti's articlelo), and analyze the optical phase 
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retardation of the cell as a filnction of the magnetic field, K,, value and anchoring 

strength. We also analyze the role of the possible cell hybiidity. 

Consider a nematic cell with plates located at z, = -d / 2 and z2 = d 1 2. The dii-ector is 

confined to the (x,z) plane of Cartesian coordinates and makes an angle 8 with the 

normal to the cell plates k . The magnetic field is applied in the (x,z) plane at some 

angle a with respect to k , Fig. 1. 

FIGURE 1 Cell geometry 

If one restricts the consideration by the Frank-Oseen functional without higher-order 

(fourth, etc.) terms, the fire energy per unit area of the cell is 

F, = +C'; d z [ ( ~ , ,  sin2 e + K, cos2 Q)(O l2 + sin2(B - a)]  
(2) 

+ j ~ , , ( o ; s i n 2 q  -eisin20,)+f w,(B, -q)'+f ~ ~ ( 6 ,  - ~ ) 1 ,  

where 8 = e(z) describes director distortions, 19 = dB / dz, subscripts 1 and 2 refer to 

the lower and upper plates, respectively. We consider first the case when the cell is 

uniform, i-e. the directions of the "easy axis" and the anchoring coefficients at the two - - 
plates coincide, 8, = 8, = 8 and W, = W, = W. 

If the field direction is close to the easy axis, 8 = a ,  the d i i t o r  deformations 
are weak, which justifies the form of the anchoring terms in Eq.(2). It is convenient to 
introduce small angles = 8 - a and ~ ( z )  = 8(z) -a << 1 and notations 
~ = ~ ~ , s i n ~ a + K ~ ~ c o s ~ a ,  K,=K-2KI3cos2a, q2 =x,B' /Kpo,  u = q d / 2 ,  

l = K I W .  



132 D. SUBACIUS et 01. 

If one follows the first-order theory, the equilibrium ~ ( z )  should be found 

from the Euler-Lagrange equation for the functional (2 )  alone. We do not discuss here 

the possible role of the higher-order terms that might completely change the whole 

analysis. 
For small ~ ( z ) ,  the solution can be found from the leading part of the Euler- 

Lagrange equation for the functional (2),  

w = Asinhqz+ Ncoshqz, ( 4 )  

where A and N a=, respectively, the amplitudes of the modes antisymmetric and 

symmetric about the middle plane z = 0 .  Substituting (4)  into (2 )  and retaining terms 

up to the second order in small A and N yield 

Minimization of F(A, N) with respect to A and N results in the equilibrium ~ ( z ) .  If 
) K , , I  < K,,  1 2, K3, I 2 ,  then A = 0 . 2 2  At the same time, the amplitude N of the 

symmetric mode is finite for any non-zero q - B. Namely, the surface value of the tilt 
yS = W, = y2 = Ncoshu is 

In the limit q = 0 the director is not distorted, ty, = 8 - a .  However, for 

q z 0 and any 0 < 8 < k I 2 ,  the distortions = K,, sin 2 8  appear (even for B parallel to 

n ): 

4 3  sin 2 a  
W,C = - 2Ka 1 +($)-I  coth(yd 12)' 

(7) 

Evidently, the optimal pwilt for the detection of the effect is 8 = 45". 
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The deviations of n can be detected by measuring the phase retardation 0 for 

light transmitted through the cell. For a normally incident (along z-axis) laser beam of 

the wavelength A ,  

where 

n[8(r)] = [n: sin' 8 ( ~ )  + n: COS' 8(~)31'~; (9) 

no and n, are the ordinary and extraordinary refractive indices, respectively. The 

change A@ in the phase I-etardation, A@ = (01, -@I,=,, 

is calculated using Eq. (6). Equation (10) can be used directly to fit numerically the 
experimental dependencies AO(B) at different a. Note that the transmittive technique 
is sensitive to the symmeuic modes associated with the possible Kl,-effect Small 

imperfections of the cell such as hybridity 8, # 8, or twist (difference in the azimuthal 
angles at the two plates, p, # p2) do not shadow the pure K13-effect Indeed, the K13- 

distortions are symmetric, while hybi-idity and twist correspond to antisymmetric 
modes. Therefore, even il' y, - 68, Sq,  the "imperfection" antisymmetric modes 

conhibute only to the order (68)'. (6q)2, since the integral @ above vanishes for an 

antisymmetric integrand. We consider the effect of hybridity in a greater detail in the 

next section. 
To clarify the effect of K,, on A@, it is convenient to expand A@, retaining 

terms linear in ya: 

A@ = noneni3(n: - $)(d 1 ~ ) s i n 2 a [ l ~ , ( ~ d ) - '  tanh(qd 12) - (8 - a)]. (1 1) 

112 
where n, = n(a)  = [na sin2 a + n: cos2 a] . For KI3 = 0, AO(B) is a monotonous 

function: as B grows, A@ incl-eases for a > 8, decreases for a < 8 and remains zero 
when a = 8 (Fig.2). This behavior drastically changes when K,, + 0: A@(B) is non- 
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FIGURE 2 Phase retardation as a function of the magnetic field and the angle - 
yl = 8 - a (shown in degrees) for K13 = 0 (above) and K,, = -3.1 x lo-'' N 

(below); other parameters are as follows: no = 1.4832 , n, = 1.5869, 

I. =633 nm; d =96pm, X, = 4 z x 0 . 6 1 ~ 1 0 - ~ ,  K,, =13.7x 10-12~, 
K3, = 1 8 . 3 ~ 1 0 - ' ~ ~ ,  8=80.4",and ~ = 1 . 4 x 1 0 ~ ~ / r n ~ .  
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monotonous with a minimurn for K,, < 0 (Fig. 2) and a maximum for K,, > 0. Only 
for B + - the phase retardation curves asymptotically apprcach those calculated - for 

K,, = 0. The non-monotonous behavior is especially pronounced for a = 8. 

The expected dependencies A@(B) are shown in Fig.2 for the following 

parameters: no = 1.4832 and n, = 1.5869 at ?. = 633 nrn; X,  = 4 n  x 0.61 x lo-', 

K , ,  = 13.7 x 10-12~,  K ,  = 18.3 x 1 0 - l ~ ~  (which are close to the material ZLI 4108- 

100)and d=96pm,  8=80.4", W=1.4x10"J/m2. Theamplitudeofphase 

retardation non-monotonity is about 0.1 rad at B = 0.1 Tesla and should be easily 

detected. Note that with h e  parameters given above the optical letadation changes ~ I E  

one order of magnitude stronger than those potentially caused by suppression of the 

nematic fluctuations in the magnetic field: As measured by Poggi and ~ i l i ~ ~ i n i , ~ 3  the 
phase retardation change is about 0.01 lad at B = 0.1 Tesla for a 150p m thick cell 

filled with the nematic matelial7CB. 

An important point is that tht: K,,-induced deformations can be detected only if the 

anchoring strength is sufficiently small. Figure 3 illustrates the role of the anchoring 

coefficient W in the behavior of the phase retardation, calculated from Eq. (1 1): A 
smaller W enhances the non-monotonity of A O ( B ) .  If W is larger than 

W = 1 J / m * , the effect becomes viitually undetectable (the amplitude of the non- 

monotonity is less than 10-2 rad and effects such as suppression of the nematic 

fluctuations in the magnetic field should be taken into account). 

Note that in the problem under consideration one deals with a tilted equilibrium 

orientation of the director and deteimination of the anchoring coefficient is a challenging 

problem itself. For example, a simple and reliable method recently suggested by Gu, 

Urarn and Rosenblatt 12, which is based on the dielectric F16edelick.s~ transition in the 

wedged cell, can be applied only to a strictly homeouopic or planar cells. When 

director is tilted with respect to the electric field, the Fr&delicksz transition has no 
threshold. 

In principle, W in the tilted cell can be defined from the fitting procedure for the 
phase retardation (10). together with K,,. The measured W value can be checked for 

reliability by using the fact that the K1,-effect, if it exists, should show up only in a 

narrow angular region la - 81 <- lo.  or la - 81 > 10 the function AO(B) becomes 

monotonous since the usual (diamagnetic) director reorientation along the field becomes 
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much stronger than the K, ,-effect. The last circumstance allows one to estimate W 

from the region, say, 2' 5 la - 81 5 6" where K, ,  has practically no influence. Another 

way to check the reliability ol' the measuixd W is to compare two independent W 

-0.45 
0 .O 0.2 0.4 0.6 0.8 1 .O 

B, Tesla 

FIGURE 3 Nonmonotonity in phase retardation at a = 8 fades as the 

anchoring strength W increases; other parameters are the same as in Fig.2.. 

values, calculated from the dependence AO(a) when B=const and from the 

dependence A@(B) when a=const. 26 The analytical expression for AO(B, W) can 
be obtained by expanding A@ in Eq.(lO) in terms of the small angle @, retaining now 
both the linear and quadratic terms, and neglecting K,, conuibution: 
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where g = 1 + lq tanhu and the constants a ,  b and c are defined by the indices of 

refraction and the direction of the magnetic field a: 

One can alternatively use a slightly different expression for A@ derived in Ref. [26] 

with a ,  b and c defined through 8; however, a can be defined more accurately than - 
8 .  

Another concern about the possible detection of the K,,-induced distortions in 

the light-transmission mode is the hyblidity of the cells. Below we consider the effect 
and show that small hybridity - lo does not affect the obseived phenomena for the 
parameters chosen above. However, when the hybridity becomes of the order of 
- 10'. it can mimic the Kl, effect. Galatola and Ziherl z4 wei-e the first to find this 

mimic effect in numerical calculations of the phase ratardation. 

The free energy per unit area of the hybrid cell is given by Eq.(2) where the surface 

angular and anchoring parameters are generally different. To simplify the analysis, we 
put Kl,=O and consider how the hybridity influences the phase retardation and the 

measurements of the anchoring coefficient. - - - - 
If the hybridity is small, 16 - &l,ld << 4, %,a, one can still employ the 

solution of type (4) of the equation (3). Substituting (4) into Eq. (2) and retaining terms 

up to the second order in small A and N yield 

F(A, N) with respect to A and N results in the equilibrium ~ ( z )  with amplitudes 
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FIGURE 4 Phasc ~.eiardation as a function of the magnetic field and the angle - - 
y = 8 - a (in degus) for a hyblid cell with 81 = 14", 82 = 6" (lines) and for 

a unifolm cell with 8 = 10.15" (dots); two different scales are shown. 
K,,=O, no =1.53, n, =1.708, ;1=633nm; d=60prn, K,, =6.2x10-"N, 

K,, = 8 . 2 ~  1 0 - " ~ ,  X ,  = 4ax1.13~10-', w = J / rn2. 
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Here r = 3.qKsinh2u + (w, + W,)cosh2 u, s = +qKsinh2u+ (w, + w2)sinh2 u. Note 

that the amplitude A is defined primarily by the difference in the tilt angles while N is 
defined by an average tilt angle (as easy to verify by assuming W, = W,). 

The change in the phase ietardation of the hybrid cell caused by the magnetic 
field can be found as an expansion in terms of small A and N: 

Note that the antisymmetric mode contributes only to the order ( S Z I ~ .  The leading 

term in the last equation is the term linear in N which is defined by the average tilt in 

the cell rather than by the difference in the tilt at the two plates. If, for example, - 
8, < a < q, the increase in the magnetic field would increase the polar angle at the 

lower plate and decrease it at the upper plate; the average value would change less than 

the diffe~tnce in the polar angles. This is why a small hybridity does not cause 
substantial non-monotonity of A@(B)  . For example, numerical calculations with 

68 = 2" (6 = 10" and '8; = IT) ,  d = 80p, and material parameters given above show 

that the amplitude of A@(B) non-monotonity is less than 0.01 rad and this non- 

monotonity appears only in a narrow region of about 0.2". Figure 4 gives another 

example for a material with parameters close to that of pentylcyanobiphenyl (SCB). 

CONCLUSION 

We analyzed the behavior of Lhe nematic cell with tilted boundary conditions under the 

action of the magnetic field. The formal use of the first-order theory leads to the 
conclusion that initial uniform director orientation becomes unstable when the magnetic 
field is applied along the di~ector. We do not consider the possible role of the higher- 

order terms; note that a iigorous analysis would require at least a resummation of all 
higher -order terms in the expansion of the nematic free elastic energy. According to 
the analysis performed within the framework of the fust order theory, if the K,,- 

instability exists, it shows up as a symmetry-breaking spontaneous deformations. The 
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deformations can be detected in the measurements of the optical phase retardation A 0  
for light transmitted through the cell; the distinctive feature of the K,,-instability is a 

non-monotonous behavior of A 0  when the applied field increases. If the field is 
dilected along the initial dhctor, the K,,-driven surface deviation occur at low field 

and decrease A@ when K,, is negative (or increase A 0  when K,, is positive); at 

higher fields, the diamagnetic reorientation of the molecules in the bulk tends to restore 
the initial value of A@. Provided the cell is uniformly aligned, the amplitude of non- 
monotonous changes in A 0  can reach 0.1 rad for (50 - 100) p m thick cell if K,, is of 

the order of (0.1 - 1) K. 

The instability can be hindered by surface a n c h o ~ g :  for example, the 
characteristic non-monotonity in A0(B) becomes practically undetectable when the 

anchoring coefficient is higher than lowS J I mZ . The second problem is the requirement 
of a high tilt angle 8 (optimally 45" ), since the amplitude of the Kl,-instability is 

proportional to sin 28  . Note also that the substrate should be also smooth enough to 

maintain a constant value of the actual surface angle 8. All these anchoring 

requirements are rather hard to satisfy simultaneously: the alignment methods that give 

a high pretilt (e.g., oblique evaporation of SiO) are known to provide strong anchoring, 
W > 10-'J / mZ , and also result in a rough profile of substrates. 
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