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Weconsider predictions of the so-called "first-order elastic theory" with non-zero elastic constant 
K,, for a nematic cell with tilted molecular orientation. The geometry has been suggested by 
Faetti to test the validity ofdifferent theoretical approaches to the problem of the divergence K,, 
elastic term. According to the first-order elastic theory, in which only the first and second 
derivatives in the elastic free energy are retained, the K,, term causes deformations at the cell 
surface when a magnetic field is applied along the initial director n. These deformations can be 
observed in the measurements of the optical phase retardation; the distinctive feature of the K,, 
effect is non-monotonous behavior of the phase retardation when the magnetic field increases. 
Despite a number of difficulties, the effect can be tested experimentally. We report experimental 
data on the behavior of the nematic cell with a high pretilt angle and weak anchoring in a tilted 
magnetic field. These results show no significant deviation in the monotonous behavior of the 
phase retardation; therefore, the experiment does not confirm the predictions of the first-order 
theory when K,, # 0. 

Keywords: Nematic liquid crystals; elastic constants; splay-bend elasticity; magneto-optics; K,,; 
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INTRODUCTION 

The fundamental formula of the elastic theory of liquid crystals, so-called 
Frank-Oseen elastic energy functional, has been written in its modern form by 
Nehring and Saupe [I] more than twenty years ago, but still remains a subject 
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of discussions. The functional is quadratic in derivatives of the director n, 

and contains three standard contributions with the elastic constants K11, K22, 
and K33, as well as two divergence Kl3 and Kz4 terms. It is the divergence term 
K13V[n(V.n)] that remains a controversial issue [I-l I]. The problem is that 
microscopic theories predict finite K13 [6,12-141; however, when K13 # 0, F 2  
has no minimum. Note that F, is nothing else but the leading part of the 
expansion of the true nematic elastic energy in terms ofdirector derivatives; F, 
contains squares of the first derivatives and the second-order derivatives of n. 
A natural idea to bound the free energy functional is to add higher order terms 
in the free energy expansionC6-91. The approaches suggested so far differ in 
the number of terms added to F,. The theories that restrict the expansion to a 
few higher order terms predict strong (molecular-scale) surface deformations 
[6,7,9]. In the infinite-order theory, the deformations are supposed to be 
bounded to the standard weak magnitude by all higher order terms [S]. 
Obviously, the director distribution cannot be found analytically from the 
infinite-order functional. However, one might assume, since there are no 
strong deformations, that the family of the director distributions satisfies the 
Euler-Lagrang: equations for the functional F, alone [4,8]. The theoretical 
approach in which only F, functional is considered, is often called [lo] the 
"first-order elastic theory". Note that the equivalence of the infinite-order 
theory and the first-order theory is not proven. 

The experimental situation with KI  J is also murky: different authors have 
used different approaches in the interpretation of data [15-211. Moreover, no 
physical effect caused solely by KI  3 has been reported. To resolve the KI 
puzzle, one has to find such an effect. A possible experimental test that allows 
one at least to discriminate the predictions of the first-order approach was 
suggested by Faetti [lo]. The test implies a nematic cell with tilted boundary 
conditions subjected to a magnetic field B directed along n. There are two 
different predictions as to what happens in a finite field. 

The model with molecular-scale deformations (in which the K13-term is 
counterbalanced by one positive-definite fourth-order term) predicts that 
these strong molecular-scale distortions at the boundaries represent the 
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ground state of the system when B = 0. Since the deformations are strong, 
non-zero B of a reasonable strength changes nothing and no experimentally 
observed features are expected, Figure la, b. 

The first-order theory which uses exclusively the functional F ,  and the 
Euler-Lagrange equation based on F, ,  predicts that the initial state is strictly 
uniform (Fig. lc); there are no spontaneous deformations when B = 0. The 
increase of the field results in long-range deformations with maximum at the 
bounding surface (Fig. Id). These deformations occur only when K 1  3 # 0 and 
only when the initial director orientation is tilted [lo]. 

In this article we explore the possiblity of the experimental detection of the 
K13-induced deformations in a tilted nematic cell within the frame of the 
first-order theory. Note that the predictions of this theory may not coincide 
with the theory in which all the high-order terms are taken into account by 
rigorous resummation; it might happen that in some geometries a naive 
approach based on the first-order theory would lead to qualitatively correct 
results while in other situations it would not. We analyze the predictions of the 
first-order theory and conditions under which the experimental detection of 
the effect predicted by this theory is possible. Experimental results show no 
significant manifestation of the effect predicted by the first-order theory. 

FIGURE 1 A nematic cell with tilted boundary conditions in zero (a,c) and non-zero (b,d) 
magnetic field applied parallel to the easy axis. Director distribution is shown schematically as 
predicted by the theory with strong molecular deformations (a,b) and by the first-order theory 
(c,d). The scale of deformation 6 in (a) is molecular; the scale of deformations in (d) is 
macroscopic. 
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FIRST-ORDER THEORY 

Consider a nematic cell with plates located at z, = -d/2 and z ,  = d/2. The 
director is confined to the (x,z) plane of Cartesian coordinates and makes an 
angle 8 with the normal k to the cell plates. The magnetic field is applied in the 
(x,z) plane at some angle a with respect to k. The one-dimensional geometry 
makes the twist and divergence K24 terms identically zero. In the first-order 
theory, the free energy per unit area of the cell is 

d z [ ( ~ ,  sin28 + K 3 3 ~ ~ ~ 2 8 ) ( 8 ' ) 2  + pG ' ~ ~ ~ ~ s i n ~ ( 8  - a)] 

where p0 is the magnetic constant, xa is the anisotropy of diamagnetic 
susceptibility, W is the anchoring coefficient, 8 = 8(z) describes director 
distortions, 9' = d8/dz, finally, the subscripts 1 and 2 refer to the lower and 
upper plates, respectively. We consider a uniform cell, in which the directions 
of the "easy axis" and the anchoring coefficients at the two plates coincide, 
8, = 8 , = 8 a n d  W, = W2=W 

If the field direction is close to the easy axis, 8% a, the deformations are 
weak, which justifies the form of the anchoring terms in Eq.(2). It is convenient 
to introduce small angles $ = 8- a and $(z) = 8(z)- a < < 1 and notations 

If one follows the first-order theory, the equilibrium $(z)  should be found 
from the Euler-Lagrange equation for the functional (2) alone. We do not 
discuss here the possible role of the higher-order terms that might completely 
change the whole analysis. For small $(z), the solution is found from the 
leading part of the Euler-Lagrange equation for the functional (2), 
$" - q2 $ = 0, as 

$ = Asinhqz + Ncoshqz, (3) 

where A and N are, respectively, the amplitudes of the modes antisymmetric 
and symmetric about the middle plane z = 0. Substituting (3) into (2) and 
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retaining terms up to the second order in small A and N yield 

Minimization of F(A,N) with respect to A and N results in the equilibrium 
*(z) If JK13) < K1 I /2,K33/2, then A = O[22]. At the same time, the amplitude 
N of the symmetric mode is finite for any non-zero q - B. Namely, the surface 
value of the tilt $, = $, = I), = Ncoshu is 

In the limit q = 0 the director is not distorted, $, = 8- x.  However, for q # 0 
and any 0 < B< n/2, the distortions cc KI  Jsin28appear (even for B parallel to 
n). Evidently, the optimal pretilt for the detection of the effect is 8= 45'. 

The deviations of n can be detected by measuring the phase retardation 0 
for light transmitted through the cell. For a normally incident (along the 
z-axis) laser beam of the wavelength A, 

where n[B(z)] = [n$j sin28(z) + n: c~s~O(z ) ] "~ ;  no and n, are the ordinary and 
extraordinary refractive indices, respectively. The field-induced change of the 
phase retardation, A 0  = @I, - @JB=o, is 

The expected dependencies A@(B) are shown in Figure 2 for the following 
parameters (taken for the typical nematic material SCB): no = 1.530 and 
n,= 1.708 at 1 =633 nm 1231; x,= 113.5 x 10-''kg-'m3, K I I  = 6.2 x 
10-l2 N, = 8.2 x 10- l 2  N[24] and d = 68.0 pm, g= 73.3', W= 4.5 x 

J/m2. For K13 = 0, A@(B) is a monotonous function: as B grows, A 0  
increases for a > 8, decreases for a < B and remains zero when a = 8. This 
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behavior drastically changes when K13 # 0: A@(B) is non-monotonous with a 
minimum for K1 < 0 and a maximum for K13 > 0. Only for B -r co the phase 
retardation curves asymptotically approach those calculated for K13 = 0.   he 
non-monotonous behaviour is especially pronounced for a x  8. The ampli- 
tude of non-monotonity is about 0.1 rad at B = 0.1 Tesla. Note that with the 
parameters given above the changes in A@ are one order of magnitude 
stronger than those potentially caused by suppression of the nematic fluctu- 
ations in the magnetic field: As measured by Poggi and Filippini [25]  the 
phase retardation change in about 0.01 rad at B = 0.1 Tesla for a 150pm thick 
cell filled with the nematic 7CB. 

An important point is that the KI~-induced deformations can be detected 
only if the anchoring strength is sufficiently small. If W is larger than 
W= 10- J/m2, the amplitude of the non-monotonity becomes less than 

FIGURE 2 
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FIGURE 2 Phase retardation as a function of the magnetic field and the angle $ = - a (shown 
in degrees on the right side) for K , ,  = O(a) and K,, = - 0.2 K, , (b); other parameters are indicated 
in the text. 

rad and other subtle effects such as suppression of fluctuations in the field 
should be taken into account. 

Another concern about the possible detection of the Kl3-induced distor- 
tions is the hybridity of the cells, 68= 8, - 8, # 0. When the hybridity is large, 
(681 - lo0, it can mimic the K13 effect. Galatola and Ziherl [26] found this 
mimic effect in numerical calculations. However, smaller hybridity, of the 
order of few degrees, does not shadow the possible K13 effect, because the 
transmittive technique is sensitive to the symmetric modes. This observation is 
quite important, since the Kls-distortions are symmetric, while hybridity or 
small twist between the plates correspond to antisymmetric modes. Therefore, 
even if $, - 68,6q, the "imperfection" antisymmetric modes contribute only to 
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the order ( ~ 5 8 ) ~ , ( 6 q ) ~  (the integral @ above vanishes for an antisymmetric 
integrand). As shown in Ref.[27], the change in the phase retardation of the 
hybrid cell caused by the magnetic field reads as 

where a, a, and a, are some coefficients depending on the refractive indices, 
easy direction and field orientation, and N - (8, + B2)/2, A - B2 - Bl are small 
amplitudes of the symmetric and antisymmetric modes, respectively. Note that 
the antisymmetric mode contributes only to the order (82 - BJ2. The leading 
term in Eq.(8) is the term linear in N which is defined by the average tilt rather 
than by the difference in the tilt at the two plates. If, for example, 81 < a < 82, 
the increase in the magnetic field would increase the polar angle at the lower 
plate and decrease it at the upper plate; the average value would change less 
than the difference in the polar angles. This is why a small hybridity does not 
cause substantial non-monotonity of A@(B). For example, numerical calcula- 
tions, with 6B= 2'(B1 = 80' and 8, = 7g0), d = 80p, and material parameters 
given above show that the amplitude of A@(B) non-monotonity is less than 
0.01 rad and this non-monotonity appears only in a narrow region of about 
0.2' [27]. 

EXPERIMENT 

To favor detection of the predicted effect the cell should satisfy the following 
requirements: (1) small anchoring coefficient, preferably less than 10- J/m2; 
(2) high tilt angle B(optimal1y 45", since the amplitude of the K I  3-instability is 
proportional to sin 28); (3) smooth substrate to maintain a constant value of 
the actual surface angle Band to prevent suppression of the K I 3-deformations 
by profile-induced distortions. Taken together, these requirements represent 
an extraordinary difficult challenge, to say the least. Our initial results [28] 
performed for cells with rather small 17- 10" gave an ambiguity in the 
discrimination of the possible K13 and hybridity [26] mechanisms. The 
alignment methods that give higher pretilt (e.g., oblique evaporation of SiO) 
are known to provide strong anchoring, W >  10-5J/m2, and also result in a 
rough profile of substrates. We did not observe non-monotonous behavior at 
these SiO-coated substrates, even with B- 60°, but these results were not 
conclusive since the roughness of the substrate was of the order of 100 A or 
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larger. The results were also negative for polyimides coatings (e.g., material SE 
610, Nissan Chemical Ind.) with 8- 75-85'; here again the results might not 
be conclusive since the anchoring energy was rather high, W >  10- 5J/m2. 
Finally, we found the photoalignment technique to be the most suitable 
method of surface coating to favor the appearence of the possible K13-effect. 
Two alignment materials based on polysiloxane and polyvinylcinnamate were 
used. The polymers were spin-coated onto glass plates and subjected to 
polarized UV-illumination. As defined by atomic force microscopy, the poly- 
mer coatings were rather smooth (roughness amplitude less than 30A at the 
wavelength 600 A). Pairs of identically treated plates separated by distan- 
ces - 30- 80pm were used to assemble the cells with uniform director tilt. The 
cells were filled with 5CB (pentylcyanobiphenyl, EM Industries) and cemented 
with a high temperature epoxy. 

We report our results for two cells with tilted boundary conditions: No.1 
and No.2. The cells were initially characterized by a crystal rotation method to 
determine both the tilt angle and the thickness of the filled cell 
[29]: 8= (73.3 + 0.1)', d = (68.0 f 0.9) pm for No.1 and 8= (68.85 + O.l)O,d = . 

(54.5 + 0.9) pm for No.2. The cells were placed in oven (temperature control 
better than 30mK), which in turn was mounted on an automatic rotary stage 
(angular positioning better than 0.01") between the poles of an electromagnet. 
The cell were set in such a manner that the easy axis, the normal to the cell, and 
B formed a plane. The accuracy of the angular settings was better than O.lO. A 
linearly polarized laser beam (He-Ne, = 632.8nm, modulated at 400-800 Hz) 
was used to measure the phase retardation. 

The optical response of the cells to the magnetic field applied closely to the 
easy axis is shown in Figures 3 and 4. For fixed (a - 8), A@(B) was defined 
using the experimental set-up described in Ref. [30]. The technique [30] allows 
also an independent measurement of the anchoring coefficient. We found 
W= (4.5 + 2.0) x lop6  J/m2 for the cell No.1 and W = (2 + 1) x J /mZ for 
the cell No.2. 

As already stressed, if K13 = 0 and cr = 8, the first-order theory predicts that 
there are no director deviations for any value of the magnetic field and thus 
A@ = 0; the position cr = 19 corresponds to the classical "magnetic null" 
position used in measurements of the pretilt angles [31]. If B is tilted away 
from the easy axis, A@(B) should be monotonous (Fig. 2a). Experimental 
data, Figure 3,4, are consistent with the monotonous behavior of A@(B). 
Figure 3 shows A@(B) measured in cell No.1 for different angles a. Figure 4 
illustrates A@(B) for the smallest possible misalignment between the field and 
the easy axis for both cells tested. In Figure 4a, solid lines correspond to the 
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FIGURE 3 Phase retardation vs. magnetic field oriented at different angles with respect to the 
"easy direction" as measured for the cell No. 1. 

expected A@(B) for two non-zero K13 values, K13 = -0.05Kl1, and 
Kl3  = -0.2Kll. In Figure 4b the solid lines correspond to the expected 
A@@) for different (a - 8) when K13 = 0.05Kll. The absence of significant 
deviations in A@(B) (larger than - 10-2rad) was additionally verified for 
different directions of the testing light beam, including the directions normal 
and parallel to the magnetic field. 

The results presented above lead us to the conclusion that the experiment 
does not show any clear manifestation of the spontaneous director deforma- 
tions predicted by the first-order theory with non-zero elastic constant Ki3. 
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FIGURE4 Experimental dependence (dots) of the phase retardation as a function of the 
magnetic field oriented as close to the "easy direction" as possible: (a) cell No. 1; solid lines are 
theoretical predictions of the first-order theory for two different values of K13 and fixed angle 
IJ = B- a = 0 between the "easy axis" and the magnetic field; (b) cell No. 2; solid lines are 
theoretical predictions of the first-order theory for different IJ = 8- a (shown in degrees on the 
right side) and fixed K13 = 0.05Kl ,. 
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CONCLUSION 

Formal application of the first-order theory to a cell with tilted n predicts that 
the initial uniform structure becomes unstable when the magnetic field is 
applied along n provided Kl # 0. The deformations can be detected in optical 
retardation Aaexperiments; the distinctive feature is a non-monotonous 
behavior of A@(B).  

We prepared nematic cells using different alignment techniques to satisfy 
rather challenging requirements of the experimental test: high surface tilt, 
weak surface anchoring, and smooth orienting coating. No significant devi- 
ations that might have been caused by the Kl3 elastic term in the first-order 
theory were detected in the experiments. 

There are two possible conclusions to these results: either (1) Kl3 is zero (the 
data above give the restriction I K I ~ ~ < O . O ~ K I I  or K13 = (0.0 k0.3) x 10-l2 
N in the first-order theory) or (2) the first-order theory does not describe 
adequately the behavior of the cells. The first-order theory might oversimplify 
the situation: for example, it assumes that the spontaneous deformations 
caused by Kls are completely suppressed by the higher-order terms. Resum- 
mation of higher-order terms in the free energy functional [32] should be one 
of the necessary steps to clarify the situation. This work is in progress. 
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