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We study the dynamics of the isotropic-nematic phase transition caused by an applied electric field at the
time scales of dielectric relaxation. In the classic Landau-Khalatnikov theory of the phase transition dynamics,
the nematic �nonpolar� order parameter is an instantaneous function of the applied field. We demonstrate that,
when the field is changing faster than the time of dielectric relaxation, the induced polar order dynamics
influences the dynamics of the nonpolar order parameter. We develop a model based on the Langevin equation
to describe the simultaneous dynamics of both polar and nonpolar order parameters; the model is supported by
experiment.
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INTRODUCTION

The dynamics of phase transitions is a fundamental prob-
lem of statistical physics. It is usually described by the
Landau-Khalatnikov �LK� theory, in which the order param-
eter evolution is determined by the corresponding free en-
ergy, which is a function of external parameters such as tem-
perature, field, etc. In many cases, however, the external
parameters influence the order parameter indirectly. A good
example is the establishment of orientational nematic �N�
order by an electric field E. The N order is described by the
Landau–de Gennes expansion with a nonpolar scalar order
parameter S �1�:
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where f0 is the free-energy density of an isotropic �I� phase
with S=0; a, b, and c are the expansion coefficients; T and
T* are the actual and supercooling temperatures, respec-
tively; and ��m is the maximum dielectric anisotropy for S
=1. However, the prime effect of E is the establishment of
polar order in the material, through a macroscopic electric
polarization P. This polarization P depends on the dielectric
tensor and therefore on the order parameter S; as a result, the
standard dielectric term 1

2P ·E leads to the last term in Eq.
�1�. The relationship between this term and dielectric aniso-
tropy and their temperature dependence has been discussed
in Ref. �2�. In this work, we discuss the role of P in the
dynamics of the field-induced isotropic-to-nematic phase
transition. The relevant LK equation for this dynamics �3�,

�
�S�t�

�t
+

�f

�S
= 0 �2�

�� is the effective viscosity coefficient�, considers the inter-
action between E and S as a direct and instantaneous one; the
evolution of P that is ultimately responsible for the link be-
tween E and S is completely ignored. The goal of this work
is to determine the dynamics of both P and S during the
field-induced I-N phase transition. Theoretically, the problem

boils down to the derivation of dynamical equations for P�t�
and S�t� using the Langevin approach, while experimentally
we measure P�t� and S�t� in response to a polarity reversal of
a strong electric field that establishes an N phase with both
polar �P� and nonpolar �S� order.

THEORY

Consider a uniaxial nematic liquid crystal �LC� with a
director n̂ parallel to an applied electric field E. Using the
Maier-Saupe model, the orientational potential of a given
molecule with a permanent dipole � along the long axis can
be expressed as the sum of Legendre polynomials Pn�cos ��
�4,5�:

V��� = − �E�t�P1�cos ��

− ���� − ���E2�t� + BP̄2�t��P2�cos �� , �3�

where � is the angle between � and n̂, �� and �� are the
molecular polarizabilities parallel and perpendicular to the

long molecular axis, the overbar on P̄2�t� and in what follows
implies an ensemble average, and B is the parameter of the
Maier-Saupe potential �4�. The Langevin equations for the

dynamics of P̄n�t� for this potential are �5�
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where �n=2� /n�n+1� is the rotational relaxation time for

P̄n�t� in the I state, � is the Debye relaxation time in the I

phase, u�t�= �	e2�t�+BP̄n�t�� /kBT, 	=kBT��� −��� /3v�2,
and e�t�=�E�t� /kBT is the normalized electric field, kB is the
Boltzmann constant, and v is the volume per molecule. Note

that the parity of n defines the parity of P̄n�t� with respect to
e�t�.

In Eq. �4�, the slowest relaxation should be observed for

P̄1�t� and P̄2�t� since �n
n−2 and since the relaxation of*odl@lci.kent.edu
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these quantities is hindered by specific slow-down effects
such as an energetic barrier for flip-flop of permanent dipoles
and the proximity of the N-I phase transition, respectively.
Thus we can assume that the higher-order polynomials with
n�3 reach the equilibrium state instantaneously. Their equi-
librium values can be found as stationary solutions of Eq. �4�
for n�3 controlled by the current values of P̄1�t� and P̄2�t�.
Using these solutions for P̄3�t� and P̄4�t�, we obtain the close

set of dynamic equations for P̄1�t� and P̄2�t�:

�
�P̄1�t�

�t
=

e�t�
3

− M11�t�P̄1�t� + M12�t�e�t�P̄2�t� , �5�
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�P̄2�t�

�t
=

3u�t�
5

+ M21�t�e�t�P̄1�t� − M22�t�P̄2�t� , �6�

where Mjk�t��0 are functions of P̄2�t� and e2�t�. Equations
�5� and �6� describe the dynamics of the polarization P�t�
=�P̄1�t� /v and the order parameter S�t�= P̄2�t� of the
uniaxial N system under the electric field e�t�.

Considering e�t� as an independent function, we obtain a
general solution for Eq. �5�:

P̄1�t� = P̄1
ins�t� + P̄1

mem�t� , �7�
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where P̄1
ins�t� is the instantaneous response �equivalent to the

one used in the LK model�, and P̄1
mem�t� is a memory term

that is caused by the finite relaxation of the polarization and
disappears when �→0; here F�t�=exp�−�1 /��	0

t M11�t��dt��.
Substituting the solution �7� into �6�, we obtain the dynami-

cal equation for P̄2�t�:

�
�P̄2�t�

�t
=

3u�t�
5

− M22�t�P̄2�t� +
1 + 3M12�t�P̄2�t�

3M11�t�
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+ M21�t�e�t�P̄1
mem�t� , �8�

where the first three terms on the right-hand side are equiva-
lent to the LK model, whereas the last term represents the
effect of the finite rate of polarization relaxation. We turn

now to the experimental determination of P̄1�t�=vP�t� /�

and P̄2�t�=S�t�.

EXPERIMENT

A cell of the classic sandwich type was constructed with a
reduced area of the indium tin oxide �ITO� electrodes, A
=5 mm2, separated by a gap d=3.8 �m. The purpose of us-
ing a small active area is to reduce the RC load, and thus to
reduce the delay of the electric field applied to the LCs �6�.

No polyimide alignment layer is used to avoid the drop of
potential across such a layer �7�. The cell is stabilized in an
LTS120 hot stage �Linkam Scientific Instruments�, with an
accuracy of 0.1 K. We use a pulse generator HV1000 �Direct
Energy� capable of changing the voltage within a few tens of
nanoseconds. We chose p-cyanophenyl p-n-heptylbenzoate
�CP7B�, TC=330 K, v=2.8610−28 mm3, as the nematic
LC, because of its large longitudinal moment ��=5.6 D �8��
and relatively long dielectric relaxation time �tens of nano-
seconds in the I phase�.

The LC, kept at T�TC, was subject to a strong electric
voltage that abruptly changed its polarity. We first applied
U0=100 V to establish the field-induced polar P̄10�T ,U0�
and nonpolar P̄20�T ,U0� order parameters. The time duration
of the pulse was 1.5 ms, long enough to accumulate all ions
near the substrates and to saturate both P̄10 and P̄20, as evi-
denced by the decrease of electric current down to 0 and by
saturated light transmittance through the cell. Note that the
applied voltage is well above the typical “anchoring break-
ing” threshold �9�, so that the ordered state can be considered
uniformly homeotropic throughout the cell.

At time t=0, the polarity of the field was reversed
abruptly, within 
100 ns. The sharp voltage reversal was
essential to trace the dynamics of both P̄1�t� and P̄2�t�. The
sharp polarity reversal should flip the direction of P. If P̄1�t�
adjusts instantaneously to the field reversal, then P̄2�t�
=const during the instantaneous polarity reversal, as it de-
pends on e2�t�. Our experiments below demonstrate that
P̄2�t� does change; these changes can be attributed not only
to the finite rate of voltage change but also to the finite rate
of P̄1�t� adjustment caused by the finite rate of Debye dielec-
tric relaxation.

There are two thermal effects associated with the applied
voltage. First, as established by Lelidis and Durand �10�, the
field-induced orientational order is accompanied by an adia-
batic temperature increase ��0.5 K� within the first 1 �s,
which then relaxes over the period of time 
100 �s. Since
the voltage reversal in our experiments was performed
1.5 ms after the voltage switch-on, this adiabatic temperature
variation has already decayed. Furthermore, our experiment
was designed to eliminate the very cause for the Lelidis-
Durand thermal effect: since the voltage amplitude remains
the same, the stationary values of the field-induced P̄2�t� be-
fore and after the voltage reversal should be the same �=P̄20�.
The second thermal effect comes from the dielectric heating
caused by reorientation of P̄1�t�. An upper limit of the tem-

perature change can be estimated as 
TP̄10
2 which is 
1 K.

As shown below, this heating leads to small changes in the
stationary value of P̄2�t� established after the voltage rever-
sal.

To determine the polarization P�t�, we used the Martinot-
Lagarde method �11� by serially connecting the cell with a
resistor R=50 � and the generator. Under this measurement
scheme,

P�t� = P0 − �0��
h�T,e0�

ULC�t� − U0

d
−

1

A
�

0

t UR�t��
R

dt�, �9�

where P0=�0���
l�T ,e0�−��

h�T ,e0��U0 /d, UR�t� is the voltage
drop at R=50 �, ULC�t�=U�t�−UR�t��1+RITO /R� is the volt-
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age across the LC, RITO=80 �; ULC�t�0�=U0; and ��
l�T ,e0�

and ��
h�T ,e0� are the values of the parallel component of the

dielectric tensor at low and high frequencies. To trace P�t�,
one needs to know all the parameters on the right-hand side
of Eq. �9�. U�t� and UR�t� are measured directly, Figs. 1�a�
and 1�b�. Their dynamics is temperature dependent. The
small temperature dependence of U�t� is related to the
changes in the load caused by the temperature-sensitive be-
havior of the LC cell. The temperature dependence of UR�t�
is much more pronounced because it is related directly
to the temperature sensitivity of the field-induced polar
order dynamics and cannot be simply explained by the tem-
perature change ���

l�T ,e0�, because ��RC= �RITO
+R��0���

l�T ,e0�A /d�5 ns; see the estimates below.
The rest of the parameters in Eq. �9� were evaluated as

follows. We have found that ��
h�T ,e0� can be considered as a

constant for CP7B in the range of the interest. At zero field
and T=TC−7 K, ��

h�T ,0� was determined to be 4.0 by fitting
the dielectric relaxation spectrum with the Debye model. In
the I phase, T=TC+1 K, the Debye fit yields �iso

h �T ,0�=4.2.
Since the two values are close, we consider ��

h�T ,e0�=4.1 as
independent of the temperature and of the field-induced or-
der parameter �within the range of the existence of the field-
induced N phase�.

To determine ��
l�T ,e0� in the induced N phase, we use the

experimental data on birefringence �n�T ,e0�, as both quan-
tities are related to the field-induced nonpolar order S�T ,e0�.
Both �n�T ,e0� and ��

l�T ,e0� depend linearly on S�T ,e0� �12�
and are therefore linearly related, ��

l�T ,e0�=�iso
l +��n�T ,e0�;

here �iso
l is the low-frequency dielectric constant in the I

phase, measured by us to be 16, and � is a fitting coefficient.
We first measure ��

l�T ,0� and �n�T ,0� at zero field in the N
phase within the range �TC−12 K, TC−1 K� and fit the mea-
sured data to obtain �=64�3. This value allows us to cal-
culate ��

l�T ,e0� in the induced N phase from �n�T ,e0�.
Both �n�T ,e0� and S�t�= P̄2�t� are determined in the same

birefringence experiment as proposed by Lelidis et al. �13�.
We measure the transmission of a He-Ne laser beam through
a cell of known thickness and a pair of linear polarizers with
photodetector TIA-500S-TS �Terahertz Technologies, Inc.�,
with response time �d�1 ns, which is much smaller than the
measured times. We use oblique beam incidence and adjust
the angle between the incident plane and the transmission
axis of the polarizers to be 45.5° instead of 45°, to compen-
sate for the reflectivity difference for s and p polarizations.
�n�T ,e0� was obtained from the stationary transmitted inten-

sity while P̄2�t� was determined from the dynamics of the
optical signal in response to the polarity reversal �Fig. 1�c��.

Figure 2 shows the dynamics of the voltage ULC�t� acting

on the LC layer �a�, and the polar P̄1�t� �b� and nonpolar

P̄2�t� �c� order parameters caused by the polarity reversal.
The voltage change ULC�t� is determined by the rate of the
generator voltage reversal and by the transient effects in the
LC “capacitor” that involve the high-frequency dielectric
constant ��

h and the dynamics of polarization P�t�. In our

FIG. 2. Dynamics of �b� P̄1�t� and �c� P̄2�t� under �a� voltage
polarity reversal �t=0� at T=TC+1 K. In �b� and �c�, the circles are
experimental data and the solid and dashed curves are simulations.
The insets in �a� and �b� are a comparison between �U and �P,

between P̄1�t� values before �P̄10� and after �P̄10� � polarity reversal
at different temperatures. The dashed curve in �b� is the instanta-

neous response of P̄1�t� under the polarity reversal.

FIG. 1. Experimental data of �a� total voltage U�t�, �b� voltage
drop UR�t� on the resistor R, and �c� transmitted light intensity
change I�t�− I�0� with respect to the stationary value I�0� �inset of
�c�� at different temperatures.
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experiment, ULC�t� is fitted well with an exponential func-
tion,

ULC�t� = U0�2e−t/�U − 1� , �10�
where the characteristic time �U is in the range of 60–30 ns,
decreasing with temperature as shown in the inset in Fig.
2�a�. The polar order dynamics can also be fitted with the

same functional dependence, P̄1�t�= P̄10�2e−t/�P −1�, P̄10
=vP0 /�, although the time constant �P is generally larger

than �U �Fig. 2�a� inset�. One would observe �P=�U if P̄1�t�
followed the changing electric field instantaneously; this re-
gime is approached only at high temperatures T�TC+3 K.
At lower temperatures T�TC+3 K, one clearly observes
that �P��U, reflecting the finite rate of dielectric relaxation.
Note that the field reversal preserves the absolute value of

the field-induced polar order P̄10, as evidenced by our experi-
ments for ten temperature points �see inset in Fig. 2�b��; this
observation justifies our calculations based on Eq. �9�.

The nonpolar order parameter P̄2�t� does not remain con-
stant during the polarity reversal, experiencing a temporary
decrease by about 10% and then restoring its equilibrium
value as e�t�→−e0. The smallness of experimentally ob-

served changes in P̄2�t� allows us to simplify the dynamic

equations for the problem: in Eq. �7�, P̄2�t� and Mij�t� can be

considered as time-independent constants P̄20 and Mij0, re-

spectively, whereas Eq. �8� for the dynamics of P̄2�t� can be
linearized with respect to �P̄2�t�= P̄2�t�− P̄20.

With the approximations above, using the exponential fit
of ULC�t�, Eq. �10�, we find the solution �7� as

P̄1�t� = P̄10��2e−t/�U − 1� +
2�e−t/�U − e−t/�nem�

�U/�nem − 1
� . �11�

The first term on the right-hand side of Eq. �11� describes an

instantaneous contribution to P̄1�t� �see above�, while the
second term is related to the finite rate of dielectric relaxation
with the characteristic time �nem=� /M11. The solution �11�
with �nem in the range 10–30 ns fits the experiment closely,
somewhat better than the model based on an instantaneous
dielectric response.

To analyze P̄2�t�, we linearize Eq. �8� with respect to

�P̄2�t� and e2�t�−e0
2 �note that the time interval during which

e2�t��e0
2 is rather short, 
150 ns� and use solution �11� for

P̄1�t� and e�t�=e0�2e−t/�U −1�, to arrive at the analytical solu-

tion for �P̄2�t�:

�P̄2�t� =
h

�S
exp�−

t

�S
��

0

t

H�t��exp� t�

�S
�dt�, �12�

where �S is the characteristic time for �P̄2�t� and h is the
measure of its amplitude; the last term in H�t�= �2e−t/�U

−1�2+2�e−t/�U −e−t/�nem��2e−t/�U −1� / ��U /�nem−1� represents
the dielectric memory contribution. The integral �12� is ana-
lytical but the final expression is too cumbersome to be pre-
sented explicitly. Equation �12� provides a good fit of the
experimental data in Fig. 2�c� with �S=95 ns and h=0.058.
The same experiment can also be fitted with the LK model,
neglecting the last term in Eq. �12�, and using �S=95 ns, h
=0.060. In the LK approach, as seen by comparing Eq. �12�
to Eqs. �1� and �2�, �S=� / ��f /�S�e=e0

and h
=�0��m�SU0

2 /3�d2; note that, in our experiment, the order
parameters change within a time interval that is much shorter
than the characteristic time of thermal relaxation, so that
�f /�S should be evaluated for an adiabatic regime. The fact
that both models fit the data well with the same �S=95 ns can

be explained by the fact that, after ULC�t� and P̄1�t� have
relaxed to their new equilibrium values at t�250 ns, H�t� in
Eq. �12� becomes close to zero and the corresponding inte-

gral approaches a constant value. In other words, �P̄2�t�

exp�−t /�S� at t�250 ns. Since �S=� / ��f /�S�e=e0

, this fea-
ture explains why the dynamics of P̄2�t� observed at different
temperatures is characterized by very different relaxation
times, Fig. 1�c�.

CONCLUSION

We have determined experimentally and theoretically the
dynamics of both the polar and the nonpolar order param-
eters during an electric-field-induced I-N phase transition. In
materials with polar molecules, the electric field induces the
nematic nonpolar order indirectly, through its coupling to the
polar order parameter. Note that in this work we consider the
simplest possible geometry, with the molecular dipoles being
parallel to the long axis of rodlike molecules and thus paral-
lel to the field-induced director. In more complex geometries,
for example, when the molecular dipoles are perpendicular to
the long molecular axis, the coupling of polar and nonpolar
order parameters should lead to a much broader variety of
the induced order, including a possible formation of biaxial
phases and phases with a negative S= P̄2�t�.

The work was supported by DOE Grant No. DE-FG02-
06ER 46331.
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