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1 INTRODUCTION

Propositional Logic

1 Introduction

The algorithms in computer science and proofs in mathematics use logical ex-
pressions such as �if p then q�. Therefore, it is neccessary to know the truth
value of such expressions, that is, to know the cases in which these expressions
are either true or false. We discuss these issues in this lecture.

1.1 Proposition

A proposition (or statement) is a sentence that is true or false but not both.

Example. (1) 2+2 = 4 (proposition). (2) 5+2 = 7 (proposition). (3) x+2 = 7
(not a proposition). (4) He will go to school. (not a proposition).

1.2 Compound Proposition

Many propositions are composite, that is, composed of subpropositions and
various connectives. Such composite propositions are called compound propo-
sitions.

1.3 Primitive Proposition

If proposition cannot be broken down into simpler propositions, that is, if it is
not composite.

1.4 Basic Logical Operations

This section discusses the three basic logical operations of conjunction, disjunc-
tion, and negation.

1.4.1 Conjunction

If p and q are proposition variables, the conjunction of p and q is �p and q.� It
is true when, and only when, both p and q are true. If either p or q is false, or
if both are false, p ∧ q is false.

p q p ∧ q
T T T
T F F
F T F
F F F

Discrete Structure Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 2 of 20



1.5 Proposition Form 1 INTRODUCTION

1.4.2 Disjunction

If p and q are proposition variables, the disjunction of p and q is �p or q.� It is
true when at least one of p or q is true and false only when both p and q are
false.

p q p ∨ q
T T T
T F T
F T T
F F F

1.4.3 Negation

If p is a proposition variable, the negation of p is �not p� or �It is not the case
that p� and denoted ∼ p. It has opposite truth value from p: if p is true, ∼ p is
false; if p is false, ∼ p is true.

p ∼ p
T F
F T

1.5 Proposition Form

A proposition form is an expression made up of proposition variables and logical
connectives that becomes a proposition when actual propositions are substituted
for the component proposition variable. The truth table for a given proposition
form displays the truth values that correspond to the di�erent combinations of
truth values for the variables.

Example. (1)(p ∨ q)∧ ∼ (p ∧ q). (2)(p ∧ q)∨ ∼ r.

1.6 Logical Equivalence

Two proposition forms are called logically equivalent if, and only if, they have
identical truth values for each possible substitution of propositions for their
proposition variables. The logical equivalence of proposition forms P and Q is
denoted by writing P ≡ Q.

Example. (1) Double Negative Property: ∼ (∼ p). (2) Show Nonequivalence:
∼ (p ∧ q) and ∼ p∧ ∼ q.

1.6.1 De Morgan's Laws

The following two logical equivalences are known as De Mogan's laws of logic.
The negation of an and proposition is logically equivalent to the or proposi-

tion in which each component is negated. Symbolically, ∼ (p ∧ q) ≡∼ p∨ ∼ q.
On the other hand, the negation of an or proposition is logically equivalent

Discrete Structure Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 3 of 20



1.7 Tautologies and Contradictions 1 INTRODUCTION

to the and proposition in which each component is negated. Symbolically,
∼ (p ∨ q) ≡∼ p∧ ∼ q.

Example. Inequalities and De Morgan's Laws.

1.7 Tautologies and Contradictions

A tautology is a proposition form that is always true regardless of the truth
values of the individual propositions substituted for its proposition variables. A
proposition whose form is a tautology is called a tautological proposition.

A contradiction is a proposition form that is always false regardless of the
truth values of the indivitual stateemnts substituted for its proposition variables.
A proposition whose form is a contradiction is called a contradictory proposition.

Example. (1) Show that the proposition form p∨ ∼ p is a tautology. (2) Show
that the proposition form p∧ ∼ p is a contradiction.

1.8 Logical Equivalences

Theorem 1. Given any proposition variables p, q, and r, a tautology t and a
contradiction c, the following logical equivalences hold:

1. Commutative Laws

p ∧ q ≡ q ∧ p

p ∨ q ≡ q ∨ p

2. Associative Laws

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

3. Distributed Laws

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

4. Identtity Laws

p ∧ t ≡ p

p ∨ c ≡ p

5. Negation Laws
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1.9 Conditional Proposition 1 INTRODUCTION

p∨ ∼ p ≡ t

p∧ ∼ p ≡ c

6. Double Negation Law

∼ (∼ p) ≡ p

7. Idempotent Laws

p ∧ p ≡ p

p ∨ p ≡ p

8. De Morgan's Laws

∼ (p ∧ q) ≡∼ p∨ ∼ q

∼ (p ∨ q) ≡∼ p∧ ∼ q

9. Universal Bound Laws

p ∨ t ≡ t

p ∧ c ≡ c

10. Absorption Laws

p ∨ (p ∧ q) ≡ p

p ∧ (p ∨ q) ≡ p

11. Negations of t and c

∼ t ≡ c

∼ c ≡ t

1.9 Conditional Proposition

If p and q are proposition variables, the conditional of q by p is �if p then q�
or �p implies q.� It is false when p is true and q is false; otherwise it is true.
Moreover, the negation of �if p then q� is logically equivalent to �p and not q.�

Exercise. (1) Truth table for p∨ ∼ q →∼ p. (2) Show that p ∨ q → r ≡ (p →
r)∧ (q → r). (3) Show that p→ q ≡∼ p∨q. (4) Show that ∼ (p→ q) ≡ p∧ ∼ q.
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2 PROPOSITIONAL FUNCTIONS

1.9.1 Contrapositive Proposition

The contrapositive of a conditional proposition of the form �if p then q� is �if
∼ q then ∼ p.�

Fact. A conditional proposition is logically equivalent to its contrapositive.

1.9.2 Converse and Inverse Propositions

Suppose a conditional proposition of the form �if p then q� is given. Then, the
converse is �if q then p� and the inverse is �if ∼ p then ∼ q.�

Fact. A condtional proposition is not logically equivalent to its converse and to
its inverse.

1.9.3 Biconditional Proposition

Given proposition variable p and q, the biconditional of p and q is �p if and only
if q.� It is true if both p and q have the same truth values and is false if p and
q have opposite truth values.

p q p↔ q
T T T
T F F
F T F
F F T

1.9.4 Necessary and Su�cient Conditions

If r and s are propositions:
1. r is a su�cient condition for s means �if r then s.�
2. r is a necessary condition for s means �if ∼ r then ∼ s.�

Example. Show that r is a necessary condition for s also means �if s then r.�

Predicate Logic

2 Propositional Functions

A propositional function (or predicate) is a sentence that contains a �nite vari-
ables and becomes a proposition when speci�c values are substituted for the
variables. The domain of a propositional function variable is the set of all
values that may be substitued in place of the variable.
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2.1 Truth Set 3 QUANTIFIERS

2.1 Truth Set

If P (x) is a propositional function and x has domain D, the truth set of P (x) is
the set of all elements of D that make P (x) true when substituted for x. The
truth set of P (x) is denoted{x ∈ D | P (x)}.
Notation. Suppose P (x) and Q(x) be propositional functions and also suppose
the common domain of x is D. The noation P (x) ⇒ Q(x) means that every
element in the truth set of P (x) is in the truth set of Q(x). The notation
P (x)⇔ Q(x) means that P (x) and Q(x) have identical truth sets.

3 Quanti�ers

One way to obtain proposition from propositional functions is to add quanti�ers.

3.1 Universal Quanti�cation

Suppose Q(x) be a propositional function and D the domain of x. A universal
proposition is a proposition of the form ”∀x ∈ D,Q(x).” The universal proposi-
tion is de�ned to be true if and only if Q(x) is true for every x in D. It is de�ned
to be false if and only if Q(x) is false for at least one x in D. The symbol ∀
denotes �for all� and is called the universal quanti�er.

Note. A value for x for which Q(x) is false is called a counterexample to the
universal proposition.

3.2 Existential Quanti�cation

Suppose Q(x) be a propositional function and D the domain of x. An exis-
tential proposition is a proposition of the form ”∃x ∈ D such that Q(x).� The
existential proposition is de�ned to be true if and only if Q(x) is true for at least
one x in D. It is false if and only if Q(x) is false for all x in D. The symbole ∃
denotes �there exists� and is called the existential quanti�er.

3.3 Universal Conditional Proposition

One of the most important forms both in mathematics and in computer science
is the universal conditional proposition: ∀x, if P (x) then Q(x).

Example. As an example, the infomal proposition �if a real number is greater
then 2 then its square is greater than 4� can be written formally as ∀x ∈ R, if
x > 2 then x2 > 4.

3.3.1 Negation of Universal Proposition

The negation of a proposotion �∀x ∈ D,Q(x)� is � �∃x ∈ D such that ∼ Q(x).�
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4 METHODS OF PROOF

3.3.2 Negation of Existential Proposition

The negation of the existential proposition �∃x ∈ D such that Q(x)� is �∀x ∈ D,
∼ Q(x).�

3.3.3 Negation of Universal Conditional Proposition

The negation of the univeral proposition �∀x, P (x) then Q(x)� is �∃x such that
P (x) and ∼ Q(x).�

4 Methods of Proof

Mathematics, as a science, commenced when �rst someone, prob-
ably a Greek, proved propositions about �any� things or about �some�
things without speci�cation of de�nite particular things - A. N.
Whitehead.

4.1 De�nitions

You must clearly understand what the proposition is about to evaluate its truth
or falsity. Mathematicians de�ne terms percisely so consider it important to
learn de�nitions virtually word for word.

� An integer n is even if and only if n = 2k for some integer k.

� An integer n is odd if and only if n = 2k + 1 for some integer k.

� An integer n is prime if and only if n > 1 and for all positive integers r
and s, if n = r.s, then r = 1 or s = 1.

� An integer n is composite if and only if n = r · s for some positive integers
r and s with r 6= 1 and s 6= 1.

� A real number r is rational if and only if r = a/b for some integers a and
b with b 6= 0. A real number that is not rational is irrational.

� If n and d are integers and d 6= 0, then n is divisible by d if and only if
n = d ·k for some integer k. Note that the notation d | n is read �d divides
n.�

� Given any integer n and positive integer d, there exist unique integer q
and r such that n = d · q + r and 0 ≤ r < d. [The Quotient-Remainder
Theorem]

� Given a nonnegative integer n and a positive integer d, n div d equals the
integer quotient obtained when n is divided by d, and n mod d equals the
integer remainder obtainded when n is divided by d.

� Given any real number x, the �oor of x, denoted bxc, is that unique integer
n such that n ≤ x < n + 1.
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4.2 Direct Proof 4 METHODS OF PROOF

� Given any real number x, the ceiling of x, denoted dxe, is that unique
integer n such that n− 1 < x ≤ n.

4.2 Direct Proof

Prove that if the sum of any two integers is even then so is their

di�erence.

Theorem 2. ∀ integers m and n, if m + n is even then m− n is even.

Proof. Suppose m and n are integers so that m + n is even. By de�nition of
even, m + n = 2k for some integer k. Subtracting n from both sides gives
m = 2k − n. So, m − n = (2k − n) − n = 2k − 2n = 2(k − n). But k − n is
an integer because it is a di�erence of integers. Hence, m− n equals 2 times an
integer, and so by de�nition of even, m− n is even.

Prove that the sum of any two rational numbers is rational.

Theorem 3. ∀ real numbers r and s, if r and s are rational then r + s is
rational.

Proof. Suppose r and s are rational rumbers. Then by de�nition of rational,
r = a/b and s = c/d for some integers a, b, c, and d with b 6= 0 and d 6= 0. So
r + s = a

b + c
d = ad+bc

bd . Let p = ad + bc and q = bd. Then p and q are integers
because products and sums of integers are integers and because a, b, c, and d
are all integers. Thus, r + s = p

q where p and q are integers and q 6= 0. So, r + s
is rational by de�nition of a rational number.

Prove the transitive property of divisibility.

Theorem 4. ∀ integers a, b, and c, if a divides b and b divides c, then a divides
c.

Proof. Suppose a, b, and c are integers such that a divides b and b divides c.
By de�nition of divisibility, b = a · r and c = b · s for some integers r and s. By
substitution c = b · s = (a · r) · s = a · (r · s). Let k is an integer since it is a
product of integers, and therefore c = a ·k where k is an integer. Thus a divides
c by de�nition of divisibility.

Prove that given any two consecutive integers, one is even and the

other is odd.

Theorem 5. Any two consecutive integers have opposite parity.

Proof. Suppose that two consecutive integers m and m + 1 are given. By the
parity property, either m is even or m is odd.

Case 1 (m is even): In this case, m = 2k for some integer k, and so m + 1 =
2k + 1, which is odd. Hence, in this case one of m and m + 1 is even and the
other is odd.
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4.2 Direct Proof 4 METHODS OF PROOF

Case 2 (m is odd): In this case, m = 2k + 1 for some integer k, and so
m + 1 = (2k + 1) + 1 = 2k + 2 = 2(k + 1). But k + 1 is an integer because it
is a sum of two integers. Therefore,m + 1 equals twice some integer, and thus
m+1 is even. Hence, in this case also one of m and m+1 is even and the other
is odd.

It follows that regardless of which case actually occurs for the particular m
and m+1 that are chosen, one of m and m+1 is even and the other is odd.

Modulo 4 Integers Representation

Claim. We say that any integer can be written in one of the four forms: n = 4q
or n = 4q + 1 or n = 4q + 2 or n = 4q + 3 for some integer q.

Proof. Given any integer n, apply the quotient-remainder theorem to n with
d = 4. This implies that there exist an integer quotient q and a remainder r
such that n = 4 · q + r and 0 ≤ r < 4. But the only nonnegative remainders r
that are less than 4 are 0, 1, 2, and 3. Hence, n = 4q or n = 4q+1 or n = 4q+2
or n = 4q + 3 for some integer q.

The square of any odd integer has the form 8m + 1 for some integer

m.

Theorem 6. ∀odd integers n, ∃an integer m such that n2 = 8m + 1.

Proof. Suppose n is a odd integer. By the quotient-remainder theorem, n can
be written in one of the forms: n = 4q or n = 4q +1 or n = 4q +2 or n = 4q +3
for some integer q. In fact, since n is odd and 4q and 4q + 2 are even, n must
have one of the forms: n = 4q + 1 or n = 4q + 3.

Case 1 (n = 4q + 1 for some integer q): Since n = 4q + 3, n2 = (4q + 1)2 =
(4q + 1)(4q + 1) = 16q2 + 8q + 1 = 8(2q2 + q) + 1. Let m = 2q2 + q. Then m
is an integer since 2 and q are integers and sums and products of integers are
integers. Thus substituting, n2 = 8m + 1where m is an integer.

Case 2 (n = 4q + 3 for some integer q): Since n = 4q + 3, n2 = (4q + 3)2 =
(4q+3)(4q+3) = 16q2 +24q+9 = 16q2 +24q+(8+1) = 8(2q2 +3q+1)+1. Let
m = 2q2 + 3q + 1. Then m is an integer since 2, 3, and q are integers and sums
and products of integers are integers. Thus, substituting, n2 = 8m + 1where m
is an integer.

Cases 1 and 2 show that given any odd integer, whether of the form 4q + 1
or 4q + 3, n2 = 8m + 1 for some integer m.

Proving a Property of Floor

Theorem 7. For all real numbers x and all integers m, bx + mc = bxc+ m.

Proof. Suppose a real number x is and an integer m are given. Let n = bxc.
By de�nition of �oor, n is an integer and n ≤ x < n + 1. Add m to all sides
to obtain n + m ≤ x + m < n + m + 1. Now n + m is an integer, and so
by de�nition of �oor bx + mc = n + m. But n = bxc. Hence by substitution
bx + mc = bxc+ m.
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4.3 Indirect Proof 5 SEQUENCE

4.3 Indirect Proof

4.3.1 Argument by Contradiction

Theorem 8. For all integers n, if n2is odd, then n is odd.

Proof. Assume, to the contrary, that ∃ an integer n such that n2 is odd and n
is even. By de�nition of even, n = 2 · k for some integer k. So, by substitution
n · n = (2k) · (2k) = 2 · (2 · k · k). Let m = 2 · k · k. Now m is an integer because
products of integers are integers; and 2 and k are integers. Hence, n2 = 2 ·m
for some integer m. So, by de�nition of even n2is even. But this contradicts the
supposition that n2 is odd.

4.3.2 Argument by Contraposition

Theorem 9. For all integers n, if n2 is odd, then n is odd.

Proof. Form the contrapositive of the given proposition: For all integers n, if n
is even, then n2 is even. Now we'll prove the contrapositive proposition using
the method of direct prove. Suppose n is integer. By de�nition of even n = 2 ·k
for some integer k. So, by substitution n · n = (2k) · (2k) = 2 · (2 · k · k). Let
m = 2 · k · k. Now m is an integer because products of integers are integers; and
2 and k are integers. Hence, n2 = 2 ·m for some integer m. So, by de�nition of
even n2 is even. Hence, the given proposition is true by the logical equivalence
between a proposition and its contrapositive.

Sequences

5 Sequence

Informally, the sequence is a set of elements written in a row. In a sequence
am, am+1, . . . , an, each element ak is called a term. The k in ak is called a
subscript or index. A general formula for a sequence is a rule that shows how
the values of ak depend on k.

5.1 Notations

Summation Notation If m and n are integers and m ≤ n, then the summa-
tion from k equals m to n of ak is the sum of all terms am, am+1, . . . , an. We
write

∑n
k=m ak= am, am+1, . . . , an and call k the index of the summation, m

the lower limit of the summation, and n the upper limit of the summation.

Example. Let a1 = −2, a2 = −1, a3 = 0, a4 = 1, and a5 = 2. Then∑5
k=1 ak = a1 + a2 + a3 + a4 + a5 = (−2) + (−1) + 0 + 1 + 2 = 0.

We can transform a sum by a change of variable.
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5.2 Properties of Summations and Products6 PRINCIPLE OF MATHEMATICAL INDUCTION

Example. Transform the summation
∑6

k=0
1

k+1 by making the speci�c change
of variable: j = k + 1.

Product Notation If m and n are integers and m ≤ n, then the product
from k equals m to n of ak is the product of all terms am, am+1, . . . , an. We
write

∏n
k=m ak = am · am+1 · . . . · an and call k the index of the product, m the

lower limit of the product, and n the upper limit of the product. For instance,∏5
k=1 k = 1 · 2 · 3 · 4 · 5 = 120.

5.2 Properties of Summations and Products

Theorem. If am, am+1, am+2, . . . and bm, bm+1, bm+2, . . . are sequences of real
numbers and c is any real number, then the following equations hold for any
integer n ≥ m: 1.

∑n
k=m ak +

∑n
k=m bk =

∑n
k=n(ak + bk) 2. c ·

∑n
k=m c · ak 3.

(
∏n

k=m ak) · (
∏n

k=m bk) =
∏n

k=m (ak · bk).

Example. Using the properties of summation and product, write the following
expressions as a single summation or product: (1)

∑n
k=m ak + 2 ·

∑n
k=m bk (2)

(
∏n

k=m ak) · (
∏n

k=m bk).

5.3 Factorial

De�nition. For each positive integer n, the quantity n factorial, denoted n!,
is de�ned to be the product of all the integers from 1 to n. That is, n! =
n · (n− 1) . (n− 2) · . . . ·3 ·2 ·1. Zero factorial is de�ned to be 1. That is, 0! = 1.

Note. The following formula holds for each positive integer n: n! = n · (n− 1)!

6 Principle of Mathematical Induction

Let P (n) be a propositional function that is de�ned for integers n, and let n0

be a �xed integer. Suppose the following two propositions are true: (1) P (n0)
is true. (2) For all integersk ≥ n0, if P (k) is true then P (k + 1) is true. Then
the proposition for all integers n ≥ n0, P (n) is true.

Lemma. For all integers n ≥ 1, 1 + 2 + . . . + n = n(n+1)
2 .

Proof. The formula is true for n = 1: To establish the formula for n = 1, we
must show that 1 = 1(1+1)

2 = 2
2 = 1, and so the formula is true for n = 1.

If the formula is true for n = k then it is true for n = k + 1: Suppose

1+2+ . . .+k = k(k+1)
2 , for some integer k ≥ 1. We must show that 1+2+ . . .+

(k +1) = (k+1)((k+1)+1)
2 , or equivalently, that 1+2+ . . .+(k + 1) = (k+1)(k+2)

2 .

1 + 2 + . . . + (k + 1) = 1 + 2 + . . . + k + (k + 1) = k(k+1)
2 + (k + 1) =

k(k+1)
2 + (k+1)·2

2 = (k+1)(k+2)
2 .

Example. Prove that
∑n

i=0 ri = rn+1−1
r−1 , for all integers n ≥ 0 and all real

numbers r except 1.
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7 FUNCTIONS

7 Functions

A function f from a set X to a set Y is a relationship between elements of X
and elements of Y with the property that each element of X is related to a
unique element of Y . The notation f : X → Y means f is a function from X to
Y . The set X is called the domain of f and the set Y is called the co-domain
of f .

Given an element x ∈ X, there is a unique element y ∈ Y that is related
to x. We can think of x as input and y as the related output. We then say �f
sends x to y�. The unique element y to which f sends x is denoted f(x) and is
called f of x, or the value of f at x, or the image of x under f .

The set of all values of f taken together is called the range of f or the image
of X under f . Symbollically: range of f = {y ∈ Y | y = f(x), for some x in X}.
Given an element y ∈ Y , there may exist elements in X with y as their image.
The set of all such elements is called the inverse image of y. Symbollically:
inverse image of y = {x ∈ X | f(x) = y}.

Example. Let X = {a, b, c} and Y = {1, 2, 3, 4}. De�ne a function f from X
to Y by specifying that f(a) = 2, f(b) = 4, and f(c) = 2. Then, domain of f =
{a, b, c}, co-domain of f = {1, 2, 3, 4}, range of f = {2, 4}, inverse image of 2 =
{a, c}, inverse image of 4 = {b}, inverse image of 1 = ∅ and we can represent f
as a set of ordered pairs: {(a, 2), (b, 4), (c, 2)}.

7.1 Injective or One-to-One Functions

Let F be a function from a set X to a set Y . F is one-to-one if, and only if, for
all elements x1 and x2 in X, if F (x1) = F (x2), then x1 = x2. Or equivalently,
if x1 6= x2, then F (x1) 6= F (x2).

Let F be a function from a set X to a set Y . F is not one-to-one if, and
only if, ∃ elements x1 and x2 in X with F (x1) = F (x2) and x1 6= x2.

Example. Let X = {1, 2, 3}and Y = {a, b, c, d}. De�ne H : X → Y by
specifying that H(1) = c, H(2) = a, and H(3) = d. De�ne K : X → Y by
specifying that K(1) = d, K(2) = b, and K(3) = d. Then, H is one-to-one
because each of the three elements of domain of H is sent by H to a di�erent
element of the co-domain: H(1) 6= H(2), H(1) 6= H(3), and H(2) 6= H(3).
However, K is not one-to-one because K(1) = K(3) = d but 1 6= 3.

Lemma. If the function f : R→ R is de�ned by the rule f(x)=4x-1, for all real
numbers x, then f is one-to-one

Proof. Suppose x1 and x2 are real numbers such that f(x1) = f(x2).Then,
4x1 − 1 = 4x2 − 1, Adding 1 to both sides gives 4x1 = 4x2, and dividing both
sides by 4 gives x1 = x2, which is required.

Lemma. If the function g : Z→ Z is de�ned by the rule g(n) = n2, for all
n ∈ Z, then g is not one-to-one.
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Proof. (by counterexample) Let n1 = 2 and n2 = −2. Then g(n1) = g(2) =
22 = 4 and also g(n2) = g(−2) = (−2)2 = 4. Hence, g(n1) = g(n2) but n1 6= n2,
and so g is not one-to-one function.

7.2 Surjective or Onto Functions

Let F be a function from a set X to a set Y . F is onto if, and only if, given any
element y in Y it is possible to �nd an element x in X with the property that
y=F(x).

Let F be a function from a set X to a set Y . F is not onto if, and only if,
∃y in Y such that ∀x ∈ X, F (x) 6= y.

Example. Let X = {1, 2, 3, 4}and Y = {a, b, c}. De�ne H : X → Y by
specifying that H(1) = c, H(2) = a, H(3) = c, and H(4) = b. De�ne K :
X → Y by specifying that K(1) = c, K(2) = b, and K(4) = c. Then, H is
onto because each of the three elements of the co-domain of H is the image of
some element of the domain of H: a = H(2), b = H(4), and c = H(1) = H(3).
However, K is not onto because a 6= K(x) for any x in {1, 2, 3, 4}.

Lemma. If f : R→ R is the function de�ned by the rule f(x) = 4x− 1 for all
real numbers x, then f is onto.

Proof. Let y ∈ R. Let x = y+1
4 . Then x is a real number since sums and

quotients (other than by 0) of real numbers are real numbers. It follows that
f(x) = f

(
y+1
4

)
= 4 ·

(
y+1
4

)
− 1 = (y + 1)− 1 = y.

Lemma. If the function h : Z→ Z is de�ned by the rule h(n) = 4n− 1 for all
integers n, then h is not onto.

Proof. (by counterexample) The co-domain of h is Z and 0 ∈ Z. But h(n) 6= 0
for any integer n. For if h(n) = 0, then 4n− 1 = 0 by de�nition of h, which is
4n− 1 or n = 1

4 . But
1
4 is not an integer. Hence, there is no integer n for which

f(n) = 0, and so f is not onto.

7.3 Bijection or one-to-one correspoundence

A bijection from a set X to a set Y is a function F : X → Y that is both
one-to-one and onto.

7.4 Inverse Function

Suppose F : X → Y is a bijection; that is, suppose F is one-to-one and onto.
Then there is a function F−1 : Y → X that is de�ned as follows: Given any
element y in Y , F−1(y) is that unique element x in X such that F (x) equals y.
The function F−1 is called the inverse function of F .

Example. The function f : R → R de�ned by the formula f(x) = 4x − 1
for all real numbers x. Then by de�nition of f−1, f−1(y) = that unique real
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number y such that f(x) = y. But f(x) = y ⇔ 4x− 1 = y ⇔ x = y+1
4 . Hence,

f−1(y) = y+1
4 , which is the inverse function of the given function f(x) = 4x−1.

Lemma. If X and Y are sets and F : X → Y is bijection (that is, one-to-one
and onto), then F−1 : Y → Y is also bijection.

Proof. F−1 is one-to-one: Suppose y1 and y2 are elements of Y such that
F−1(y1) = F−1(y2). Let x = F−1(y1) = F−1(y2). Then, x ∈ X, and by de�-
nition of F−1, F (x) = y1 since x = F−1(y1) and F (x) = y2 since x = F−1(y2).
Consequently, y1 = y2 since each is equal to F (x).

F−1 is onto: Suppose x ∈ X. Let y = F (x). Then y ∈ Y , and by de�nition
of F−1, F−1(y) = x.

7.5 Pigeonhole Principle

A function from one �nite set to a smaller �nite set cannot be one-to-one: There
must be at least two elements in the domain that have the same image in the
co-domian.

Example. A group of thirteen people must contain at least two who were born
in the same month, for there are only twelve months in a year and 13 > 12.

The truth of the pigeonhole principle depends on the sets being �nite. So,
the de�nitions of �nite and in�nite sets are as follows:

De�nition. A set is called �nite if, and only if, it is the empty set or there is a
one-to-one correspondence from {1, 2, . . . , n} to it, where n is a positive integer.
In the �rst case, the number of elements in the set is said to be 0, and in the
second case it is said to be n. A set that is not �nite is called in�nite.

Lemma. For any funtion f from a �nite set X to a �nite set Y , if n(X) >
n(Y ), then f is not one-to-one.

Proof. Suppose f is any function from a �nite set X to a �nite set Y where
n(X) > n(Y ). Let n(Y ) = m, and denote the elements of Y by y1, y2, . . . , ym.
Recall that for each yi in Y , the inverse image set f−1(yi) = {x ∈ X : f(x) = yi}.
Now consider the collection of all the inverse image sets for all the elements of
Y : f−1(y1), f−1(y2), . . . , f−1(ym). By de�nition of function, each element of
X is sent by f to some element of Y . Hence, each element of X is one of the
inverse image sets, and so the union of all these sets equals X. But also by
de�nition of function, no element of X is sent by f to more than one element
of Y . Thus each element of X is in only one of the inverse image sets, and so
the inverse image sets are mutually disjoint. Therefore, by the addition rule,
n(X) = n(f−1(y1)) + n(f−1(y2)) + . . . + n(f−1(ym)) (Equation 1).

Now suppose that f is one-to-one. Then, each set f−1(yi) has at most one
element, and so n(f−1(y1))+n(f−1(y2))+. . .+n(f−1(ym)) ≤ 1+1+. . .+1 = m
(Equation 2).

Putting Equation 1 and Equation 2 togather gives that n(X) ≤ m = n(Y ).
This contradicts the fact that n(X) > n(Y ), and so the supposition that f is
one-to-one must be false. Hence, f is not one-to-one.
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7.6 Composition of Functions

Let f : X → Y ′ and g : Y → Z be functions with the property that the range of
f is a subset of the domain of g. De�ne a new function g ◦f : X → Z as follows:
(g ◦ f)(x) = g(f(x)) for all x ∈ X. The function g ◦ f is called the composition
of f and g.

Example. Let f : Z→ Z be the successor function and let g : Z→ Z be the
squaring function. Then f(n) = n + 1 for all n ∈ Z and g(n) = n2 for all n ∈ Z.
The function g ◦ f and f ◦ g are de�ned as follows: (g ◦ f)(n) = g(f(n)) =
g(n + 1) = (n + 1)2 for all n ∈ Z, and (f ◦ g) = f(g(n)) = f(n2) = n2 + 1 for all
n ∈ Z.

Two functions from one set to another are equal if, and only if, they take the
same values. In this case, (g◦f)(1) = (1+1)2 = 4, whereas (f◦g)(1) = 12+1 = 2.
Thus, the two functions g ◦ f and f ◦ g are not equal: g ◦ f 6= f ◦ g.

The above example illustrates the important fact that composition of func-
tions is not a commutative operation: for general functions F and G, F ◦G need
not necessarily equal G ◦ F , although the two may be equal.

Exercise. Let X = {1, 2, 3}, Y ′ = {a, b, c, d}, Y = {a, b, c, d, e}, Z = {x, y, z}.
De�ne functions f : X → Y ′ and g : Y → Z as f(1) = c, f(2) = b, f(3) = a,
and g(a) = y, g(b) = y, g(c) = z, g(d) = z, and g(e) = z. Find the arrow
diagram for g ◦ f and �nd the range of g ◦ f .

Lemma. If f : X → Y and g : Y → Z are both one-to-one functions, then g ◦f
is one-to-one.

Proof. Suppose f : X → Y and g : Y → Z are both one-to-one functions.
Suppose x1 and x2 are elements of X such that (g ◦ f)(x1) = (g ◦ f)(x2). By
de�nition of composition of functions, g(f(x1)) = g(f(x2)). Since g is one-to-
one, f(x1) = f(x2). And since f is one-to-one, x1 = x2.

Lemma. If f : X → Y and g : Y → Z are both onto functions, then g ◦ f is
onto.

Proof. Suppose f : X → Y and g : Y → Z are both onto functions. Let z be
a element of Z. Since g is onto, there is an element y in Y such that g(y) = z.
And since f is onto, there is an element x in X such that f(x) = y. Hence,
there exists an element x in X such that (g ◦ f)(x) = g(f(x)) = g(y) = z. It
follows that g ◦ f is onto.

8 Recursion

A recurrence relation for a sequence a1, a2, a3, . . . is a formula that relates each
term ak to certain of its predecessors ak−1, ak−2, . . . , ak−i, where i is a �xed
integer and k is any integer greater than or equal to i. The initial conditions
for such a recurrence relation specify the values of a0, a1, a2, . . . , ai−1.
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For example, a sequence b0, b1, b2, . . . can be de�ned recursively as follows:
For all integer k ≥ 2, bk = bk−1 + bk−2 (recurrence relation) and b0 = 1,
b1 = 3 (initial conditions). Since b0 and b1 are given, b2 can be computed using
recurrence relation. b2 = b1+b0 = 3+1 = 4. Then, since both b1 and b2 are now
known, b3 can be computed using recurrence relation. b3 = b2 + b1 = 4 + 3 = 7.
In general, the recurrence relation says that any term of the sequence after b
is the sum of the two preceding terms. Thus, b4 = b3 + b2 = 7 + 4 = 11, b5 =
b4 + b3 = 11 + 7 = 18, and so forth.

8.1 Iteration Method

An explicit formula for the sequence, whose recurrence relation and initial con-
ditions are given, is called a solution to the recurrence relation. The basic
method for �nding an explicit formula (i.e., solution) for a recursively de�ned
sequence is iteration. The following example shows the working of the meothod
of iteration.

let a0, a1, a2, . . . be the sequence de�ned recursively as follows: For all inte-
gers k ≥ 1, ak = ak−1 + 2 (recurrence relation) a0 = 1 (initial condition). We
use iteration to guess an explicit formula for the sequence.

Recall that to say ak = ak−1 + 2 for all integers k ≥ 1 means no matter
what positive integer is replaced k. In particular, a1 = a0 + 2, a2 = a1 +
2, a3 = a2 + 2, and so forth. Now use the initial condition to begin a process
of successive substitutions into these equations, not just of numbers but of
numerical expressions. Here's how the process works for the given sequence:

a0 = 1
a1 = a0 + 2 = 1 + 2
a2 = a1 + 2 = (1 + 2) + 2 = 1 + 2 + 2
a3 = a2 + 2 = (1 + 2 + 2) + 2 = 1 + 2 + 2 + 2
a4 = a3 + 2 = (1 + 2 + 2 + 2) + 2 = 1 + 2 + 2 + 2 + 2
We use the shorthand k · 2 in place of 2 + 2 + . . . + 2 (k items), so starting

from a0.
a0 = 1 = 1 + 0 · 2
a1 = a0 + 2 = 1 + 2 = 1 + 1 · 2
a2 = a1 + 2 = (1 + 2) + 2 = 1 + 2 + 2 = 1 + 2 · 2
a3 = a2 + 2 = (1 + 2 + 2) + 2 = 1 + 2 + 2 + 2 = 1 + 3 · 2
a4 = a3 + 2 = (1 + 2 + 2 + 2) + 2 = 1 + 2 + 2 + 2 + 2 = 1 + 4 · 2
a5 = a4 +2 = (1+2 +2+ 2+2) +2 = 1 +2+ 2+2 +2+2 = 1 +5 · 2
So the guess is:

an = 1 + n · 2 = 1 + 2n
The answer obtained for this problem is just a guess. To be sure of the

correctness of this guess, you will need to check it by mathematical induction.
The sequence like the one in the above example, in which each term equals

the previous term plus a �xed constant, is called an arithmetic sequence.

De�nition. A sequence a0, a1, a2, . . . is called an arithmetic sequence if and
only if there is a constant d such that ak = ak−1 + d for all integers k ≥ 1. Or
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equivalently, an = a0 + d · n for all integers n ≥ 0.

In a geometric sequence, each term equals the previous term times a �xed
constant.

De�nition. A sequence a0, a1, a2, . . . is called a geometric sequence if and only
if there is a constant r such that ak = r · ak−1 for all integers k ≥ 1. Or
equivalently, an = a0 · rn for all integers n ≥ 0.

Exercise. Let r be a �xed nonzero constant and suppose a sequence a0, a1, a2, . . .
is de�ned recursively as follows: ak = r · ak−1 for all integers k ≥ 1, a0 = a. Use
iteration to guess an explicit formula for this sequence.

9 Relations

Let A and B be sets. A (binary) relation R from A to B is a subset A × B.
Given an ordered pair (x, y) in A × B, x is related to y by R, written xRy, if
and only if (x, y) is in R.

For instance, let A = {0, 1, 2} and B = {1, 2, 3}. Let us say that an element
x in A is related to an element y in B if and only if x is less than y. Then
0R1 since 0 < 1, 0R2 since 0 < 2, 0R3 since 0 < 3, 1R2 since 1 < 2, 1R3
since 1 < 3, and 2R3 since 2 < 3. Recall that the Cartesian product of A and
B, A × B, consists of all ordered pairs whose �rst element is in A and whose
second element is in B: A×B = {(x, y) : x ∈ A ∧ y ∈ B}. In this case, A×B =
{(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}. The elements of some
ordered pairs in A × B are related while the elements of other ordered pairs
are not. Consider the set of all ordered pairs in A × B whose elements are
related: {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}. Observe that knowing which
ordered pairs lie in this set is equivalent to knowing which elements are related
to which.

Example. Let A = {1, 2} and B = {1, 2, 3} and de�ne a binary relation R from
A to B as follows: given any (x,y)∈ A×B, (x,y)∈ R if and only if x−y is even.
Then A × B = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}. To determine explicitly
the composition of R, examine each ordered pair in A × B to see whether its
elements satisfy the de�ning condition of R. (1, 1) ∈ R because 1 − 1 = 0 and
0 is even, (1, 2) /∈ R because 1− 2 = −1 and −1 is not even, (1, 3) ∈ R because
1 − 3 = 2 and −2 is even, (2, 1) /∈ R because 2 − 1 = 1 and 1 is not even,
(2, 2) ∈ R because 2 − 2 = 0 and 0 is even, and (2, 3) /∈ R because 2 − 3 = −1
and −1 is not even. Thus, R = {(1, 1), (1, 3), (2, 2)}.

Generalize the relation in the above example to the set of all integers Z. That
is, de�ne a binary relation E from Z to Z as follows: for all (m, n) ∈ Z× Z,
mEn if and only if m− n is even. Then, 4E0 because 4 − 0 = 4 and 4 is even
. . . and so forth. Now we'll show that if n is odd then we have nE1.

Lemma. If n is any odd integer, then nE1.
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Proof. Suppose n is nay odd integer. Then n = 2k + 1 for some integer k.
Now by de�nition of E, nE1 if and only if n − 1 is even. But by substitution,
n− 1 = (2k +1)− 1 = 2k, and since k is an integer, 2k is even. Hence nE1.

Exercise. De�ne a binary relation C from R to R as follows: for any (x, y) ∈
R× R, (x, y) ∈ C if and only if x2 + y2 = 1.

9.1 Functions

A function F from a set A to a set B is a relation from A to B that satis�es
the following two properties: (1) For every element x in A, there is an element
y in B such that (x, y) ∈ F . (2) For all elements x in A and y and z in B, if
(x, y) ∈ F and (x, z) ∈ F , then y = z. If F is a function from A to B, we write
y = F (x) if and only if (x, y) ∈ F .

Example. Let A = {2, 4, 6} and B = {1, 3, 5}. The relations R de�ne as
R = {(2, 5), (4, 1), (4, 3), (6, 5)} and the relation S de�ne as for all (x, y) ∈
A×B, (x, y) ∈ S if and only if y = x+1. Then, the relation R is not a function
because it does not satisfy property (2). The ordered pairs (4, 1) and (4, 3)
have the same �rst element but di�erent second elements. The relation S is not
a function because it does not satisfy property (1). It is not true that every
element of A is the �rst element of an ordered pair in S. For example, 6 ∈ A
but there is no y in B such that y = 6 + 1 = 7.

Exercise. (a) De�ne a relation from R to R as follows: for all (x, y) ∈ R ×
R, (x, y) ∈ C if and only if x2 + y2 = 1. (b) De�ne a relation from R to R as
follows: for all (x, y) ∈ R× R, (x, y) ∈ L if and only if y = x− 1. Which one C
or L is a function?

9.2 Inverse Relation

Let R be a relation from A to B. De�ne the inverse relation R−1 from B to A
as follows: R−1 = {(y, x) ∈ B ×A : (x, y) ∈ R}.
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