
Lecture Notes: Distributed Algorithms

Rashid Bin Muhammad, PhD.

This booklet includes lecture notes from parallel and distributed comput-
ing course I taught in Fall 07, Spring 08, and Fall 08 at the Kent State Uni-
versity, USA. I wrote a good part of these notes in Fall 2007; I revise them
every time I teach the course. The problems in the notes have been used in
class lectures, homework assignments, or exams. You can �nd a collection of
homework assignments and exams from past semesters of my class online at
http://www.personal.kent.edu/~rmuhamma/.

©Copyright 2007-2011 Rashid Bin Muhammad. Last Update Fall 2009. This work may be freely
copied and distributed, either electronically or on paper. It may not be sold for more than the
actual cost of reproduction, storage, or transmittal. This work is licensed under a Creative

Commons Attribution-NonCommercial-Share Alike 3.0 United States License.

1

1 WHAT IS A DISTRIBUTED SYSTEM?

Introduction

As Tanenbaum put it, computer systems are undergoing a revolution. From
1945, when the modern computer era began, until about 1985, computers were
large and expensive. However, starting in the mid-1980s, two advances in tech-
nology began to change that situation. The �rst was the development of pow-
erful microprocessors. The second development was the invention of high-speed
computer networks. The result of these technologies is that it is now not only
feasible, but easy, to put together computing systems composed of large num-
bers of CPUs connected by a high-speed network. They are usually called
distributed systems, in contrast to the previous centralized systems (or single-
processor systems). There is only one �y in the ointment: software. Distributed
systems need radically di�erent software than centralized systems do. And this
is the very reason to study the design and analysis of distributed algorithms.

Distributed algorithms are algorithms designed to execute on hardware con-
sisting of several interconnected processors. Parts of a distributed algorithm
execute concurrently and independently, each with only a limited amount of
information. The algorithms are supposed to work correctly, even if the indi-
vidual processors and communication channels operate at di�erent speeds and
even if some of the components fail. Distributed algorithms have a wide range
of applications, including telecomunications, distributed information process-
ing, scienti�c computing, and real-time process control. For example, today's
telephone systems, airline reservation systems, weather prediction systems, and
aircraft and nuclear power plant control systems all depend critically on dis-
tributed algorithms.

Because of the nature of the applications, it is important that the distributed
algorithms run correctly and e�ciently. However, because the setting in which
distributed algorithms run are so complicated, the design of such algorithms can
be extremely di�cult task. So, here we give reasons for the study of distributed
algorithms by brie�y introducing the types of hardware and software systems
for whcih distributed algorithms have been developed. By a distributed system
we mean all computers applications where several computers or processors co-
operate in some way. However, the main topic of this notes is not what these
systems look like, or how they are used, but how they can be made to work.
It is important to note that the entire structure and operation of a distributed
system is not fully understood by a study of its algorithms alone. To understand
such a system fully one must also study the complete architecture of its hard-
ware and software includeing issues related to properties of the programming
languages used to build the software of distributed systems.

1 What is a Distributed System?

The term �distributed system� means an interconnected collection of autonomous
computers, processes, or processors. Note that to be quali�ed as �autonomous�,
the nodes (i.e., computers, processes, or processors) must at least be equipped

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 2 of 37

1 WHAT IS A DISTRIBUTED SYSTEM?

with their own private control; thus, a parallel computer of the single-instruction,
multiple-data (SIMD) model does not qualify as a distributed system. To be
quali�ed as �interconnected�, the nodes must be able to exchange information.

For our purpose it is su�cient to give a Tanenbaum's loose characterization
of a distributed system: A distributed system is a collection of independent
computers that appear to the users of the system as a single computer.

Tanenbaum's de�nition has two aspects. The �rst one deals with hardware:
the machines are autonomous. The second one deals with software: the users
think of the system as a single computer. Both are essential.

1.1 Goals of Distributed Systems

Here we will discuss the motivation and goals of typical distributed systems and
look at their advantages and disadvantages compared to centralized systems.

1.1.1 Advantages of Distributed Systems over Centralized Systems

� Economics: Microprocessors o�er a better price/performance than main-
frames.The real driving force behind the trend toward decentralization is
economics. With Microprocessor technology, for a few handred dollars
you can get a CPU chip that can execute more instructions per second
than one of the largest 1980s mainframes. A slight variation on this theme
is the obervation that a collection of microprocessors cannot only give a
better price/performance ratio than a single mainframe, but may yield an
absolute performance that no mainframe can achieve at any price.

� Speed: A distributed system may have more total computing power than
a mainframe. The parallel machines may have more speed. But the dis-
tinction between distributed and parallel systems is ��cult to maintain
because the design spectrum is really a continuum. Here, we prefer to use
the term �distributed system� in the broadest sense to denote any system
in which multiple interconnected CPUs work together.

� Inherent Distribution: Some applications involve spatially separated ma-
chines. Some applications are inherently distributed such as airline reser-
vations, banking, computer-supported cooperative work, computer-supported
cooperative games, etc.

� Reliability: If one machine crashes, the system as a whole can still survive.
By distributing the workload over many machines, a single chip failure will
bring down at most one machine, leaving the rest intact.

� Incremental growth: Computing power can be added in small increments.
In contrast to centralized system, with a distributed systme, it may be
possible simply to add more processors to the system, thus allowing it to
expand gradually as the need arises.

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 3 of 37

2 COMPLEXITY MEASURES AND MODELS

Distributed Network Algorithms

Network algorithms are design to run on a computer network. These algorithms
include how routers send data packet through the network. The computer net-
work is modeled as a graph, G = (V,E), in which the vertices represent pro-
cessors or routers, and the edges represent communication channels. Network
algorithms are unusual as compared to the traditional algorithms in the sense
that not only the inputs are spread through out the network; the execution of
algorithms is distributed across the processors in the network.

The major class of the network algorithms is the routing algorithms. Rout-
ing algorithms specify how to move about information packets among various
computers in the network. A well designed routing algorithms should route
packets to arrive at their destinations quickly and reliably and while also being
�fair� to other packets in the network.

2 Complexity Measures and Models

Before we start the algorithmic study of network algorithm, we require a basic
understanding of how interprocessor communications is performed.

2.1 The Network Protocol Stack

Diplomats learned a long time ago that when di�erent cultures come together,
you need rules for accurate transfer of information. The rules diplomats de-
velop for communicating are called protocols. Network of today (e.g. Internet)
consists of many millions of computers on tens of thousands of subnetworks.
In fact, the Internet is arguably the most complex system ever assembled by
humankind. Sooner or latter these computers are going to communicate with
each other. Therefore, we a have a similar (to that of diplomats) function in
networks, we use the same name for our rules. The most fundamental of these
standards relate to a basic set of functions that has been de�ned collectively
by the networking industry. At the core of these functions is a set of rules
for exchanging information. These rules are known as protocols. Networking
technology is highly modular: Its system is divided into �large pieces� of well-
de�ned functions. Thus, we present the network protocols in the form of a
�ve-layer model. The idea here is to separate the various functions of network
communication into layers. Each layer has a di�erent purpose. Note that one
well-known stack with seven layers is called the Open Systems Interconnect
(OSI) Reference Model. Since, the goal of this course is the algorithmic study
of distributed/networking algorithms; the �ve-layer model is quite enough for
this purpose. This simple �ve-layer model is associated with the internet. For
algorithmic study, this stack is sometimes shown with only four layers, with
the Data-link layer and Physical layers combined into a single host-to-network
layer.

The functions of the �ve layers are:

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 4 of 37

2 COMPLEXITY MEASURES AND MODELS

1. Physical layer: This layer is responsible for passing information between
two physical locations. In its simplest form, the physical layer is a wire
where raw bits are transmitted across some medium, such as �ber op-
tics cable or electrical wires. In most cases, design decisions based on
the engineering techniques for representing 1's and 0's, bandwidth, and
transmission noise.

2. Data-link layer: This layer is responsible for controlling operation of a
single data communication link to move information e�ciently from end
to end. One important function of the layer is to handle algorithms or
methods for breaking data into subunits called frames and send to other
physical location through the physical layer.

3. Network Layer: This layer is responsible for putting the segment (di�erent
from frames) into �electronic envelopes� called packet and providing the
organization necessary to get the packets from sender to receiver. In other
words, this layer handles the algorithms and method to for breaking data
into packets and routing them from one computer (source) to another
computer (destination) through the communication links, routers, and
gateways of the internet (network). The algorithmic issues concerned with
this layer deal with methods for routing packets through network and for
breaking and reassembling packets. The primary Internet protocol used
in this layer is the Internet protocol, or IP.

4. Transport Layer: This layer is responsible for packaging data for host-to-
host delivery. This layer also provides a means to identify how messages
are to be used in the receiving host in that a set of messages is associated
with a particular application. In particular, this layer accepts data from
various applications, splits it up into smaller units if need be, and passes
these to the network layer in a fashion that ful�lls speci�c guarantees on
reliability and congestion control. The two primary Internet protocols
used in this layer are Transmission Control Protocol (TCP) and the User
Datagram Protocol (UDP).

5. Application Layer: This layer is responsible for whatever the user wants
the computer to do, such as interacting with a remote computer: virtual
terminals (TELNET and SSH), electronic mail (SMTP), transferring �les
(FTP and SCP), the World Wide Web (HTTP), the Domain Name Service
(DNS), etc. In other words, at this layer applications operate, using low-
level protocols.

2.2 Computational Model

The reputation of distributed computing is tarnished for its excess of computa-
tional models. And, this is not it - those computational models do not translate
exactly to real-life architectures. Therefore, we have chosen not to organize the
course work around models, but rather around fundamental problems (as we

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 5 of 37

2 COMPLEXITY MEASURES AND MODELS

have done in our traditional algorithms course), indicating where the choice of
model is crucial to the solvability or complexity of a problem.

In this course, we consider the basic message-passing model because this is
one of the most fundamental paradigms for distributed applications. Another
reason to chose the message-passing model to study network/distributed algo-
rithms is that this model abstracts the functionality provided by the various
layers in the network protocol stack

In a message-passing system, processors communicate by sending messages
over communication channels. The communication channel is a bidirectional
connection between any two processors. The pattern of connections provided by
the channels describes the topology of the system. The topology is represented
by an undirected graph in which each node represents a processor and an edge
is present between two nodes if and only if there is a channel between the
corresponding processors. For example, at the network layer of the internet,
nodes correspond to specialized computers called IP routers, each identi�ed by
a unique numeric code called IP address, and the messages exchanged by them
are basic data transmission units called IP packets.

The collection of channels is often referred to as the network. Each processor
in the network is assigned a unique numeric identi�er, id. For example, the
identi�er could be the IP address of a router or host on the internet. Moreover,
we assume that each processor in the network knows its neighbor (i.e. adjacent
node) and that it communicates directly only with its neighbors. Note that we
will deal exclusively with connected topologies.

An algorithm for a message-passing system with a speci�c topology consists
of a local program for each processor in the system. A processor's local pro-
gram provides the ability for the processor to perform local computation and to
send messages to and receive messages from each of its neighbors in the given
topology.

Let us sum up the above discussion by de�ning the message-passing model
as:

� Set of processes having only local memory.

� Processes communicate by sending and receiving messages. That is, a
processor sends a message, often representing a request. The message is
delivered to a receiver, which processes the message, and possibly sending
a message in response. In turn, the reply may trigger a further request,
which leads to a subsequent reply, and so forth.

� The transfer of data between processes requires �cooperative operations�
to be performed by each process (a send operation must have a matching
receive)

In the basic message-passing paradigm, the basic operations are send, and re-
ceive. For connection-oriented communication, the operations connect and dis-
connect are also required. With the abstraction provided by this model, the
interconnected processes perform input and output to each other, in a man-
ner similar to �le I/O. The I/O operations encapsulate the details of network

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 6 of 37

2 COMPLEXITY MEASURES AND MODELS

communication at the operating-system level. Note that the socket application
programming interface is based on this paradigm.

The message-passing model has gained wide acceptance in the �elds of paral-
lel and distributed computing (I think, due to its point-to-point communication
routines for data transfer between two processors) that include:

� Hardware Matching: The message-passing model �ts well with parallel
and distributed paradigms. That is, this model is the choice of paral-
lel supercomputers as well as cluster of workstations, which consists of
separate processors connected by a communication network.

� Functionality: Message-passing model o�ers a full set of functions for
expressing parallel and distributed algorithms.

� Performance: The CPUs require the management of their memory hierar-
chy, especially their cashes. Message-passing model achieves this by giving
algorithm designer and programmer explicit control of data locality.

The principle drawback of the message-passing model is the responsibility it
places on the algorithmic designer and especially, on the programmer. The
algorithm designer must explicitly implement a data distribution scheme and
all inter-processors communication and synchronization. In so doing, at the
implementation level, it is the programmer's responsibility to resolve data de-
pendencies and avoid deadlock and race conditions.

Now we present models for synchronous and asynchronous message-passing
for systems with no failures.

� Synchronous model: In this timing model, processors execute in lockstep:
The execution is partitioned into rounds, and in each round, every proces-
sor can send a message to each neighbor, the messages are delivered, and
every processor computes based on the messages just received.This means
that each processor in the network running the algorithm has an internal
clock that times program execution and the clocks of all the processors
are synchronized. The fundamental timing assumptions for this model
consist of: The speeds of processors running the algorithm are uniform.
Each processors take same number of clock ticks (i.e. same amount of
time) to perform same operations. Communication between any two pro-
cessors require same amount of time. That is, it takes the same number
of clock ticks to send message through any communication channel in the
network. Generally, this model is not realizable in practical distributed
systems. Nevertheless, it is very convenient for designing algorithms, be-
cause an algorithm need not face much uncertainty. The good point is
that once an algorithm has been design for this ideal timing model, it
can be automatically simulated to work in other, more realistic, timing
models.

� Asynchronous model: In this model, there is no �xed upper bound on how
long it takes a message to reach at the destination node. In other words,

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 7 of 37

2 COMPLEXITY MEASURES AND MODELS

if there is no upper bound on how much time elapses between consecu-
tive steps of a processor, a system is called asynchronous. For example,
the Internet is an asynchronous system because a message (for instance,
E-mail) can take days to arrive, although often it takes seconds. In partic-
ular, this model makes no assumptions about processors' internal clocks.
Similarly, it does not assume that the processors' speeds are the same.
In the absence of these assumptions, an algorithm's steps are determined
by conditions or events, not by clock ticks. Still, to allow algorithms to
perform their tasks e�ectively, there are some timing assumptions: Each
communication channel is a �rst-in �rst-out (FIFO) queue that can bu�er
an arbitrary number of messages. That is, the messages that are sent on
an edge are stored in a bu�er for that edge so that the messages arrive in
the same order they are sent. While processor speeds can vary, they are
not arbitrarily di�erent from on another. That is, there is a basic fairness
assumption that guarantees that if a processor p has an event enabling p
to perform a task, then p will eventually perform that task.

Even though we have said that in this system, there is no �xed upper bound
on a message delivery. In reality, there is always an upper bound (even in our
E-mail example), but sometimes these upper bound are very large, are only in-
frequently reached, and can change over time. Instead of designing an algorithm
that depends on these bounds, it is often desirable to design an algorithm that
is independent of any particular timing parameters, namely, an asynchronous
algorithm.

The asynchronous message-passing model applies to loosely-coupled ma-
chines and to wide-area networks. The synchronous message-passing model
is an idealization of message-passing systems in which some timing information
is known, such as upper bound on message delay. Systems that are more re-
alistic can simulate the synchronous message-passing model, for instance, by
synchronizing the clocks. Thus, the synchronous message-passing model is a
convenient model in which to design algorithms, and then the algorithms can
be automatically translated to models that are more realistic.

2.3 Complexity Measures

We will be interested in four complexity measures, the computational rounds,
space, the number of messages and the amount of time, required by distributed
algorithms. To de�ne these measures, we need a notion of the algorithm termi-
nating. We say that the algorithm has terminated when all processors are in
terminated states and no messages are in transit.

� Computational Rounds: The natural way to measure time in synchronous
algorithms is simply to count the number of rounds until termination.
Thus, the time complexity of a synchronous algorithm is the maximum
number of rounds until the algorithm has terminated. Measuring time in
an asynchronous system is less straightforward. In synchronous algorithm,
clock ticks determine these rounds, whereas in asynchronous algorithms

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 8 of 37

3 FUNDAMENTAL DISTRIBUTED ALGORITHMS

these rounds are determined by propagating waves of events across the
network.

� Space: Like traditional space complexity, we can de�ne as the amount
of space or memory needed for computation by an algorithm. However,
unlike traditional algorithm, here we must specify whether it is a global
bound on the total space used by all computers in the algorithm or a local
bound on how much space is needed per computer involved.

� Local Running Time: In network algorithms, computations are carried
out across many computers over the network, so it is di�cult to analyze
the global running of a network algorithm. In spite of, we can analyze
the amount of local computing time required for a particular computer for
computation in the network. The basic argument here is if all computers in
an algorithm are performing the same type of function, then a single local
running time bound can be su�cient for all. On the other hand, if there
are many di�erent classes of computers contributing in the computation
in an algorithm, then we are required the running time for each class of
computers.

� Message Complexity: The message complexity of an algorithm for either
a synchronous or an asynchronous message-passing algorithm is the max-
imum of the total number of messages sent between all pairs of computers
during the computation. For example, if a message M were routed through
p edges to get from one computer to another, we would say that the mes-
sage complexity of this communication is p|M |, where |M | denotes the
length of M (in words).

Note that to measure time of asynchronous algorithm a common approach is to
assume that the maximum message delay in any execution is one unit of time
and then calculate the running time until termination.

3 Fundamental Distributed Algorithms

The function of the size of the problem provides the complexity measures for
network algorithm. For instance, the following parameters may express the size
of a problem:

� The number of words used to express the input;

� The number of processor deployed; and

� The number of communication connection among processors.

Therefore, to analyze properly the complexity measures for a network algorithm
one must de�ne the size of the problem for that algorithm.

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 9 of 37

3 FUNDAMENTAL DISTRIBUTED ALGORITHMS

3.1 Leader Election

Problem. Given a network of n processors that are connected in a ring, that
is, the graph of the network is a simple cycle of n vertices. The objective is to
identify one of the n processors as the �leader� and have all the other processors
agree on this selection.

Assumption. Lets assume, for the sake of simplicity, the ring is a directed
cycle.

3.1.1 Synchronous Solution

The main idea of the algorithm is to select the leader processor with the smallest
identi�er. Since there is no obvious place to start the computation in the ring,
so we start the computation everywhere.

The algorithm starts by each processor sending its identi�er to the next
processor in the ring. In the subsequent rounds, each processor performs the
following computation synchronously:

1. The processor receives an identi�er i from its predecessor processor.

2. The receiving processor compares i with its own identi�er, id.

3. The processor sends minimum of these two values, i and id, to its successor
processor.

The processor will know that its own identi�er is the smallest in the ring when
it receives its own identi�er from the predecessor. Hence, the processor an-
nounces itself the leader by sending a �leader is� message around the ring. The
formulation of the above idea is represented in Algorithm 1: RingLeader.

Correctness Idea Suppose n be the number of processors in the ring network.
In the �rst round, each processor starts by sending its identi�er. Then, in the
next n − 1 rounds, each processor accepts a �candidate is� message, computes
the minimum m of the identi�er i in the message and its own identi�er id, and
transmits identi�er m to the next processor with a �candidate is� message. Let
l be the smallest identi�er of a processor. The �rst message sent by processor
l will traverse the entire ring and will come back unchanged to processor l. At
that point, processor l will know that it is the leader. Now, the processor l
will notify all the other processors with a �leader is� message. This �leader is�
message traverses the entire ring over the next n rounds.

Note. In the above analysis, the number of processors, n, does not have to be
known by the processors in the network.

Remark. Observe that there are no deadlocks in the algorithm, that is, no two
processors are both waiting on messages that need to come from the other.

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 10 of 37

3 FUNDAMENTAL DISTRIBUTED ALGORITHMS

Algorithm 1 RingLeader(id):

Input: The unique identi�er, id , for the processor running this al-
gorithm.
Output: The smallest identi�er of a processor in the ring.
M ←[Candidate is id]
Send message M to the successor processor in the ring.
done ←false
repeat

Get messageM from the predecessor processor in the ring.
if M = [Candidate is i] then

if i = id then

M←[Leader is id]
done ←true

else

m←min{i , id}
M←[Candidate is m]

else {M is a �Leader is� message}

done ←true
Send message M to the next processing in the ring.

until done
return M {M is a �Leader is� message}

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 11 of 37

3 FUNDAMENTAL DISTRIBUTED ALGORITHMS

Performance Analysis

� Number of Rounds: Observe that the �rst �candidate is� message from
the leader takes n rounds to traverse the ring. In addition, the �leader
is� message initiated by the leader takes n more rounds to reach all other
processors. Thus, there are 2n rounds.

� Message Complexity: To analyze the message complexity, the algorithm
can be divided into two distinct phases. The �rst phase consists of the �rst
n rounds. In this phase, in each round each processor sends and receives
one �candidate is� message. Thus, O(n2) messages are sent in the �rst
phase. The second phase consists of the next n rounds where the �leader
is� message traverses around the ring. In this phase, a processor continues
sending �candidate is� messages until the �leader is� message reaches it.
Therefore, in this phase, the leader will send one message, the successor of
the leader will send two messages, its successor will send three messages,
and so on. Thus, the total number of messages sent in the second phase
is Sigma i,

∑n
i=1 i = O(n2).

Conclusion. We are given an n-node distributed directed ring network with dis-
tinct node identi�ers but no distinguished leader. The �RingLeader� algorithm
�nds a leader in the network using a total number of O(n2) messages. Moreover,
the total message complexity of the algorithm is O(n2).

3.1.2 Asynchronous Solution

The asynchronous algorithm does not process in �lock step.� Instead, in asyn-
chronous algorithm �events� (not �clock ticks�) determine the processing. The
above synchronous algorithm can easily be converted into asynchronous model
by structuring each round so that it consists following steps:

1. A message receiving step.

2. A processing step.

3. A message sending step.

Note. The correctness of the synchronous algorithm only depend on each pro-
cessor receiving messages from its predecessor in the same sequence as they were
sent. This condition still holds in the asynchronous model.

3.1.3 Summary of the Leader Election in the Ring

Given a directed ring with n processors, algorithm RingLeader performs leader
election with O(n2) message complexity. For each processor, the local com-
puting time is O(n) and the local space used is O(1). Algorithm RingLeader
works under both the synchronous models. In the synchronous model, its overall
running time is O(n).

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 12 of 37

3 FUNDAMENTAL DISTRIBUTED ALGORITHMS

3.2 Leader Election in a Tree

Unlike leader election in the ring, a tree has a natural starting place for the
computation: the external nodes. So, in a sense, electing leader in a tree is
simpler than in a ring.

3.2.1 Asynchronous Solution

Asynchronous leader election algorithm for a tree assumes that a processor can
perform a constant-time message check on an incident edge to see if a message
has arrived from that edge.

The main idea of the algorithm is to use two phases: the accumulation phase
and the broadcast phase.

� Accumulation Phase: In this phase, identi�ers �ow in from the external
nodes of the tree. Each node keeps track of the minimum identi�er l
received from its neighbors, and After the node receives identi�ers from
all but one neighbor, it sends identi�er l to that neighbor. This node,
called accumulation node, determines the leader.

� Broadcast Phase: After identifying the leader, the algorithm starts the
broadcast phase. In this phase, the accumulation node transmits (or
broadcasts) the identi�er of the leader in the direction of the external
nodes.

Note. A tie condition may occur where two adjacent nodes become accumulation
nodes. In this case, accumulation nodes broadcast to their respective �halves�
of the tree.

Remark. Any node in the tree, even an external node, can be an accumulation
node, depending on the relative speed of the processors.

The formulation of the above idea is in Algorithm 2: TreeLeader.

Performance Analysis During the accumulation phase, each processor
sends one �candidate is� message. During the broadcast phase, each proces-
sor sends at most one �leader is� message. Each message has O(1) size. Thus,
the message complexity is O(n).

3.2.2 Synchronous Solution

In the synchronous TreeLeader algorithm, all the processors begin a round at
the same time until they halt. Thus, the messages in the accumulation phase
march in the center of the tree and in the broadcast phase messages march out
from the accumulation node.

Recall from the introduction to graph theory, the diameter of a graph is
the length of a longest path between any two nodes in the graph. For a tree,
a path between two external nodes achieves the diameter. In the synchronous
leader election in a tree algorithm, the number of rounds is exactly equal to the
diameter of the tree.

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 13 of 37

3 FUNDAMENTAL DISTRIBUTED ALGORITHMS

Algorithm 2 TreeLeader(id)

Input: The unique identi�er, id , for the processor running the al-
gorithm.
Output: The smallest identi�er of a processor in the tree.
{Accumulation Phase}
let d ≥ 1 be the number of neighbors of processors id.
m← 0 {counter for messages recieved}
l← id {tentative leader}
repeat {begin in new round}

for each neighbor j do

check if a message from processor j has arrived
if a message M = [Candidate is i] from j has ar-
rived then

l← min{i, l}
m← m + 1

until m ≥ d− 1
if m = d then

M ← [leader is l]
for each neighbor j 6=k do

send message M to processor j

return M {M is a �leader is� message}

else

M ← [candidate is l]
send M to the neighbor k that has not sent a message yet

{Broadcast Phase}
repeat {begin a new round}

check if a message from processor k has arrived
if a message from k has arrived then

m← m + 1
if M=[Candidate is l] then

l← min{i, l}
M ←[leader is l]
for each neighbor j do

send message M to processor j

else {M is a �leader is� message}

for each neighbor j 6= k do

send message M to processor j

until m = d
return M {M is a �leader is� message}

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 14 of 37

3 FUNDAMENTAL DISTRIBUTED ALGORITHMS

Algorithm 3 SynchronousBFS(v,s)

Input: The identi�er v of the node (processor) executing this algorithm and
the identi�er s of the start node of the BFS traversal
Output: For each node v, its parent in a BFS tree rooted at s
repeat
{begin a new round}
if v = s or v has recieved a message from one of its neighbors then
set parent(v) to be a node requesting v to become its child (or null, if
v = s)
for each node w adjacant to v that has not contacted v yet do
send a message to w asking w to become a child of v

until v = s or v has recieved a message

Performance Analysis To analyze the local running time, we ignore the
time spent waiting to begin a round. The synchronous algorithm for processor
i takes time O(diD), where di is the number of neighbors of processor i, and D
is the diameter of the tree. In addition, processor i uses space di to keep track
of the neighbors that have sent messages.

3.2.3 Summary of the Leader Election in the Tree

Given a tree with n nodes and with diameter D, algorithm TreeLeader performs
leader election with O(n) message complexity. Algorithm TreeLeader works
under both the synchronous and asynchronous models. In the synchronous
model, for each processor i, the local running time is O(diD) and the local
space use is O(di), where di is the number of neighbors of processor i.

3.3 Breath-First Search

Suppose a general connected network of processors is given and we have identi-
�ed a speci�c vertex, s, in this network as a source vertex.

3.3.1 Synchronous Solution

To construct the BFS tree, the algorithm proceeds in �waves�. The �waves�
propagate outward from the source vertex, s, and constructs the tree layer-
by-layer from top down. The algorithm begins by identifying s as an external
node, which is just s at the beginning. Then, in each round, each external node
v sends a message to all its adjacent nodes (neighbors) that have not contacted v
earlier, requesting that v wants to make them its children. These nodes respond
by picking v as their parent, only if they have not already chosen parent.

Note. This algorithm takes an extraordinary advantage of the synchronization
model. Speci�cally, to make the propagation process completely coordinated.

The formulation of the above idea is in Algorithm 3: SynchronousBFS.

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 15 of 37

3 FUNDAMENTAL DISTRIBUTED ALGORITHMS

Analysis In each round, the algorithm propagates out another level of the
BFS tree. Thus, the running time of this algorithm is proportional to the depth
of the BFS tree. In addition, it sends at most one message on each edge in each
direction over the entire computation. Thus, the number of messages sent in a
network of n nodes and m edges is O(m + n).

3.3.2 Asynchronous Solution

At the expense of addition message complexity, the synchronous BFS algorithm
can be transform into an asynchronous algorithm. In addition, in the asyn-
chronous algorithm, each processor must know the total number of processor
in the network. The asynchronous algorithm uses a so-called pulse technique.
The pulse technique is a process in which a signal is passed down the BFS tree
from the root s (pulse-down phase), and a signal is combined from the external
nodes back up the tree to the root s (pulse-up phase).

In the asynchronous algorithm, the source node send out a �pulse� message
that triggers the other processors to perform the next round in the computation.
(As opposed to the synchronous version in which clock ticks determine each
round in the computation.) By using pulse technique, the algorithm propagates
the computation out from the source towards external nodes and builds up a
BFS tree level by level.

When the processors at the external nodes receive a new pulse-down signal,
only then the external nodes move to the next round. This holds at the source
node too. The root s will not issue a new pulse-down signal until it has received
all the pulse-up signals from its children. In this fashion, the algorithm ensures
that the processors operate in �rough� synchronization.

The formulation of the above idea is in Algorithm 4: AsynchronousBFS.

Performance Analysis In each round, the root s sends �pulse-down� mes-
sages down the BFS tree constructed so far. When these messages reach the
external level of the tree, the current external nodes try to extend the tree
one more level, by issuing �make-child� messages to its children. When these
children respond, (either by accepting the invitation to become a child or by
rejecting it), the processors send a �pulse-up� message that propagates back up
to s. The root s then starts the whole process all over again. As the result, The
BFS tree grows level-by-level.

The node s repeats the pulsing process n− 1 times to make sure that each
node in the network has been included in the BFS tree. (Recall from graph
theory, the BFS tree can have at most n− 1 height.) Thus, unlike synchronous
version, this algorithm achieves the synchronization from round to round by
means of message passing. (Hence, the number of message needed to perform
processors coordination is more than that needed in the synchronous algorithm.)
In the network, each edge m has at most one message in each direction. (One
�make-child� message in the direction of children and one response to a �make-
child� message in the direction of parents.) Thus, the total message complexity
for accepting or rejecting make-child message is O(m), where m is the number

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 16 of 37

3 FUNDAMENTAL DISTRIBUTED ALGORITHMS

Algorithm 4 AsynchronousBFS(v,s,n)

Input: Identi�er v of processor running this algorithm, Identi�er s of the start
node of BFS traversal, and the number n of netwwork nodes
Output: For each node v, its parent in the BFS tree rooted as s
C ← ∅ {veri�ed BFS children for v}
Set A to be the set of neighbors of v {candidate BFS children for v}
repeat
{begin a new round}
if parent(v)is de�ned or v = s then
if parent(v) is de�ned then
wait for a pulse-down message from parent(v)

if C is not empty then
{v is an internal node in the BFS tree}
send a pulse down message to all nodes in C
wait for a pulse up message from all nodes in C

else
{v is an external node in the BFS tree}
for each nodeu ∈ A do
send a make-child message to u
for each node u ∈ A do
get a message M from u and remove u from A
if M is an accept-child message then
add u to C

send a pulse-up message to parent(v)
else
{v 6= s has no parent yet.}
for each node w ∈ A do
if w has sent v a make-child message then
remove w from A {w is no longer a candidate child for v}
if parent(v) is unde�ned then
parent(v)← w
send an accept-child message to w
else
send a reject-child message to w

until (v has recieved message done) or (v = s and has pulsed-down n−1 times)
send a done message to all the nodes in C

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 17 of 37

3 FUNDAMENTAL DISTRIBUTED ALGORITHMS

of edges in the network. But, in each round, there are at most O(n) pulse-up
and pulse-down messages. Given that the source s runs n− 1 rounds, there are
at most O(n2) messages that are issued to coordinate the pulse. Therefore, the
total message complexity of the algorithm in a network of m number of edges
and n number of nodes is O(n2 + m). Since we know that m is O(n2), this
bound can be further simpli�ed to O(n2 + n2) = O(2n2) = O(n2).

3.3.3 Summary of the Breadth-First Search

Given a network G with n vertices and m edges, one can compute a breath-�rst
spanning tree in G in the asynchronous model using O(n2) messages.

3.4 Minimum Spanning Trees

A minimum spanning tree (MST) of a weighted graph is a spanning subgraph
that is a tree and that has minimum weight.

Problem. Given a weighted undirected graph G, we are interested in �nding
a tree T that contains all the vertices in G and minimizes the sum of weights of
the edges of T , that is w =

∑
e∈T w(e).

3.4.1 Sequential Baruvka

Before we give an e�cient distributed algorithm for the MST problem, let us
�rst look into the oldest known minimum spanning tree algorithm - Baruvka's
algorithm.

Remark. The Jarnik and Kruskal's algorithms have achieved their e�cient run-
ning time by using a priority queue, which could be implemented using a heap.
Surprisingly, the Baruvka's algorithm does not use the priority queue.

The pseudo-code for sequential Baruvka's algorithm is presented in Algo-
rithm 5.

Analysis Each round performs the exhaustive searches to �nd the minimum-
weight out going edge from cluster. These searches can be done in O(m) time
by going through the adjacency list of each vertex in each cluster. Note that
the time O(m) involves examine each edge (v, u) in G twice: once for node v
and once for node u. In the while-loop, relabeling the vertices takes O(n) time
and traversing all edges in takes O(n) time. Thus, since n ≤ m, each round
takes O(m) time. In each round, the algorithm picks one out-going edge of each
cluster, and then merges each new connected component of T into a new cluster.
Thus, each old cluster must merge with at least one other old cluster. That is,
in each round of the algorithm, the total number of clusters in T reduces by
half. Therefore, the total number of rounds is O(logn); hence, the total running
time of Barurvka's algorithm is O(mlogn).

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 18 of 37

3 FUNDAMENTAL DISTRIBUTED ALGORITHMS

Algorithm 5 BaruvkaMST(G)

Input: A weighted connected graph G = (V,E), where |V | =
n and |E| = m
Output: A minimum spanning tree T for G .
Let T be a subgraph of G initially containing the vertices in V .
while T has fewer than n− 1 edges {T is not yet an MST} do

for each connected component Ci of T do

{Perform the MST edge addition proce-
dure for cluster Ci}
Find the smallest-weight edge e =
(u, v) in E with v ∈ Ci and u /∈ Ci.
Add e to T (unless e is already in T)

return T

3.4.2 Synchronous Solution

In each round, the algorithm performs two critical computations:

1. Determine all the connected components.

2. Determine the minimum outgoing edge from each connected component.

Assumption. For each node v, v stores a list of edges of T that are incident
on v.

Note that due to the assumption, each node v belongs to a tree, but v only
stores information about its neighbors in T. In each round, the Synchronous
Baruvka uses the algorithm TreeLeader twice:

1. To identify each connected component.

2. To �nd, for each connected component, the minimum-weight edge joining
the components.

A round works as follows.

� Using the identi�er of each node, it performs Leader-election computation
to identify the connected components. Thus, the smallest identi�er, id, of
its nodes identi�es each component.

� Next, each node v computes the minimum-weight edge e incident on v such
that the endpoints of e are in di�erent connected components. Note that
if there is no such edge, the algorithm uses a �ctitious edge with in�nite
weight. Then, the algorithm performs a leader election again. This time
using the edges associated with each vertex and their weights. The second
leader election computation yields, for each connected component C, the
minimum-weight edge connecting C to another component.

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 19 of 37

4 DISTRIBUTED BROADCAST ROUTING

Remark. The end of the algorithm is the round that computes the weight of the
minimum-weight edge to be in�nity.

Message Complexity There are O(m) constant-size messages sent at each
round. Since, there are O(logn) rounds therefore, the overall message complexity
is O(mlogn).

4 Distributed Broadcast Routing

Broadcast routing is a message, which is sent from one router (processor) to
all other routers (processors) in a network. When a router wants to share its
information with all other routers in the network, this form of communication
i.e. broadcasting, is used.

Assumption. The network is �xed and does not change over time.

The assumption implies that we must restrict ourselves to the study of static
broadcasting algorithms.

Assumption. The messages exchanged by the routers have constant size.

The assumption implies that the message complexity is proportional to the
total number of messages exchanged.

4.1 The Flooding Algorithm

Problem. A router s would like to send a message M to all other routers in
the network.

1. A router s sends the message M to all its neighbors.

2. When a router v 6= s receives an M from an adjacent router u, a router v
simply rebroadcast M to all its neighbors, except for u itself.

Remark. The above �ooding algorithm for braodcast routing is simple and re-
quires no setup. However, its routing cost is high.

The setback with the above algorithm is that if we left it unmodi�ed, it will
cause an �in�nite loop� of messages on the network, which contains a cycle. The
two possibilities to avoid in�nite loop problem are as follows.

4.1.1 Flooding with Hop Count Heuristic

To avoid in�nite loop problem, one possibility is to associate memory or state
with nodes running this algorithm.

� Add a hop counter to each message M.

� Decrement the hop counter for M each time a router processes M.

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 20 of 37

4 DISTRIBUTED BROADCAST ROUTING

� If a hop counter in M ever reaches 0, then discard the message M.

� Otherwise, process the message M and send M to all neighbors.

We initialize the hop counter for a message M to the diameter of the network so
that we can reach all routers while avoiding the creation of an in�nite number
of messages.

Analysis There is no additional space needed at the routers. The expected
time required by a router to process a message is proportional to the number
of neighbors of the router, since search and insertion in a hash table have O(1)
expected running time. The message complexity is O((dmax−1)D) in the worst
case, where dmax is the maximum degree of the routers in the network.

4.1.2 Flooding with Sequence Number Heuristic

To avoid in�nite loop problem, second possibility is that at each router, store a
hash table (or other dictionary data structure). The hash table keeps track of
which messages the router has already processed.

� When a router x creates a broadcast message M, it assigns a unique se-
quence number k to it. In other words, at the time of creation of a �ooding
message M, a router x tags a message M with the pair (x, k).

� When a router y (say) receives an M with tag (x, k), the router y checks
whether the tag (x, k) is in its hash table.

� If the tag (x, k) is in router y 's table, then the router y will discard the
M.

� Otherwise, a router y adds the tag (x, k) in its table and rebroadcast the
M to all its neighbors.

This approach will certainly solve the in�nite loop problem, but is not space
e�cient. The common solution to this problem is to have each router keep only
the latest sequence number. This solution is based on the following assumption.

Assumption. If a router receives a message originated by x with sequence num-
ber k, it has probably already processed all the messages sent by x with sequence
numbers less than k.

Analysis The space needed by each router is O(n) in the worst case. The
expected time required by a router to process a message is proportional to the
number of neighbors of the router, since search and insertion in a hash table
have O(1) expected running time. The message complexity is O(m), since the
sequential number heuristic ends up sending a message along every edge in
the network. Since m is usually much smaller than O((dmax − 1)D), sequence
numbers are generally preferable to hop counters.

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 21 of 37

5 DISTRIBUTED UNICAST ROUTING

5 Distributed Unicast Routing

Unicast routing involves setting up data structures in a network. The idea
behind setting up data structures is to support point-to-point communication,
where a single router has a message that it wants to have relayed to another
router.

Problem. The unicast routing problem is to set up data structures at the nodes
of the network that support the e�cient routing of a message from an origin
node to a destination node.

In unicast routing, our assumptions are the same as that of broadcast rout-
ing.

Assumption. The network is �xed and the messages exchanged by the routers
have constant size.

In addition, we assume that networks have a positive weight w(e) assigned
to each edge e of the network, which represents the cost of sending a message
through e.

5.1 The Distance Vector Algorithm

The distance vector algorithm is a distributed version of the Bellman and Ford
algorithm for �nding shortest paths in a graph. The distance vector is simply a
bucket array implemented at node x as an adjacency list or adjacency matrix,
which stores the length of the best-known path from router x to every other
router y in the network and the �rst edge of such a path.

Notation. Notation Dx[y] denotes the best-known path from router x to every
other router y in the network. In addition, Cx[y] denotes the �rst edge of such
a path.

The distance vector algorithm always routes along shortest paths. The main
idea of the algorithm is as follows.

1. For each router x store the distance vector. That is, Dx[y] and the �rst
edge Cx[y].

2. Initially, for each edge (x, y), assign Dx[y] = Dy[x] = w(x, y) and Cx[y] =
Cy[x] = (x, y).

3. All other Dx entries are set equal to +∞.

4. Iteratively perform a series of rounds to re�ne each distance vector to �nd
possibly better path until every distance vector stores the actual distance
to all other routers.

The algorithm uses the technique called relaxation to re�ne the distance vector
at each router. Recall from our Algorithms course, the term relaxation is used
for an operation that tightens an upper bound.

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 22 of 37

5 DISTRIBUTED UNICAST ROUTING

Distributed Relaxation This is the setup phase of the algorithm, which is
the characteristic property of the unicast routing algorithm. This setup consists
of series of relaxation steps in each round. The setup accomplished as follows.

� At the beginning of a round, each router sends its distance vector to all
of its neighbors in the network.

� After a router x has received the current distance vectors from each of its
neighbors, it performs the following local computation for n− 1 rounds:

for each router w connected to x do
for each router y in the network do
{relaxation}
if Dw[y] + w(x, w) < Dx[y] then
{a better route from x to y through w has been found}
Dx[y] = Dw[y] + w(x, y)
Cx[y] = (x, w).

Performance Note that in each round, every vertex x sends a vector of size
n to each of its neighbors. Therefore, the time and message complexity for x to
complete a round is O(dxn), where dx is the degree of x and n is the number of
routers in the network.

Actually, using the following fact, one can improve the performance of the
distance vector algorithm.

Fact. The algorithm can be iterated D number of rounds, where D is the diam-
eter of the network.

Instead of n− 1 rounds, one can iterates this algorithm (particularly, relax-
ation) for D rounds. The reason is that the distance vector will not change after
D rounds.

Routing Algorithm After the setup, the distance vector of a router x con-
tains two objects: (1) the actual distances of x to the other routers in the
network and, (2) the �rst edge of such path. Therefore, once the setup of the
data structure is completed, the routing algorithm is straightforward:

if a router x receives a message M intended for router y then
Router x sends M to router y along the edge Cx[y].

The following inductive argument establishes the correctness of the distance
vector algorithm.

Lemma. At the end of round i, each distance vector stores the shortest path to
every other router restricted to visit at most i other router along the way.

This fact is true at the beginning of the algorithm, and the relaxations done
in each round ensure that it will be true after each round as well.

Remark. Recall from the CLRS, we must show that this loop invariant holds
prior to the �rst iteration of the round, that each iteration of the round main-
tains the invariant, and that the invariant provides a useful property to show
correctness when the round terminates.

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 23 of 37

5 DISTRIBUTED UNICAST ROUTING

Analysis It is easy to see that this algorithm has a signi�cant setup cost as
compared to �ooding algorithm. The total number of messages passed in each
round is proportional to n times the sum of all the degrees in the network. This
is because the number of messages sent and received at a router x is O(dxn),
where dx is the degree of a router x. Thus, there are O(nm) messages per
round. Hence, the total message complexity for the setup of the distance vector
algorithm is O(Dnm).
Note. In the worst case the total message complexity is O(n2m) for the distance
vector algorithm.

After the setup is completed, each router stores a bucket array or distance
vector with n − 1 elements, which takes O(n) space, and processes a messages
in O(1) expected time.

5.2 The Link-State Algorithm

The link-state algorithm is a distributed version of the Dijkstra's algorithm for
�nding shortest paths in a graph. For the link-State algorithm, our assumptions
are the same as that of distance vector algorithm.

Assumption. The network is �xed and that a positive weight w(e) assigned to
each edge e of the network.

The major di�erence between link-state algorithm and the distance vector
algorithm is that the link-state algorithm computes a single communication
round that requires lots of global communication throughout the entire network,
whereas the distance vector algorithm performs its setup in a series of rounds
that each requires only local communication between adjacent routers.

The main idea of the link-state algorithm consists of the broadcast phase
and the computation phase and is as follows:

� The setup of data structure begins with each router x broadcasting its
status to all other routers in the network using a �ooding routing algorithm
with sequential number heuristic.

Here, the status of x means the weights of its incident edges. The reason we
used the sequential number heuristic is that it requires no prior setup. After
the broadcast phase, each router knows the entire network.

� For each router x, run Dijkstra's shortest path algorithm to determine the
shortest path from x to every other router y and the �rst edge Cx[y] of
such path.

Analysis The internal computation takes O(mlogn) times using standard im-
plementations of Dijkstra's algorithm, or O(nlogn+m) using more sophisticated
data structures. The data structure constructed by the setup at each router has
O(n) space and supports the processing of message in O(1) expected time. As
far as message complexity is concern, a total of m constant-size messages are
broadcast, each of which causes m messages to be sent by the �ooding algorithm
in turn. Thus, the overall message complexity of the setup is O(m2).

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 24 of 37

6 MULTICAST ROUTING

6 Multicast Routing

Broadcast routing and unicast routing can be viewed as being at the two ex-
tremes of a communication spectrum. Somewhere in the middle of this spectrum
is multicast routing. Multicast routing involves communication with a subset
of hosts on a network, called a multicast group.

6.1 Reverse Path Forwarding Algorithm

The reverse path forwarding (RPF) algorithm adapts and �ne-tunes the �ooding
algorithms for broadcast routing to multicast routing. To broadcast a multicast
message along the shortest path from a source, the RPF designed to work in
combination with existing shortest-path routing tables available at every router.

Main Idea of RPF The algorithm starts with some host that wants to send
a message to a group g.

� The host sends that message to its local router s so that s can send the
message to all of its neighboring routers.

� When a router x receives a multicast message that originated at the router
s from one of its neighbors y, x checks its local routing table to see if y is
on x's shortest path to s.

� If y is not on x's shortest path to s, then x discards the packet sent from
y and sends back to y a special prune message that tells y to stop sending
multicast messages from s intended for group g. For, in this case, the link
from y to x is not in the shortest path tree from s. Note that the prune
message includes the name of the source s and the group g.

� On the other hand, If y is on x's shortest path to s, then the router x
replicates the message and sends it out to all of its neighboring routers,
except for y itself. For, in this case, the link from y to x is on the shortest
path tree from s.

This mode of broadcast communication extends outward from s along the short-
est path tree T from s until it �oods the entire network.

Fact. If only a small number of the routers have clients, who want to receive
multicast messages that are sent to the group g, then clearly broadcasting a
multicast message to every router in the network is wasteful.

To deal with this waste, the RPF algorithm provides an additional type
of message pruning. In particular, if a router x, at an external node of T ,
determines that it has no clients on its local network that are interested in
receiving messages for the group g, then x issues a prune message to its parent
y in T telling y to stop sending it messages from s to the group g.

Note. This message in e�ect tells y to remove the external node x from the tree
T .

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 25 of 37

6 MULTICAST ROUTING

Pruning In parallel, many external nodes of T issue prune messages; as a
result there can be many external nodes removed at the same time. It is easy
to see that the removal of some external nodes of T may create new external
nodes. Therefore, the RPF algorithm has each router x continually test if it has
become an external node in T . And, if x has become an external node, then
x should test if it has any client hosts on its local network that are interested
in receiving multicast messages for the group g. Again, if there are no such
clients (in x's local network), then x sends its parent in T a prune message for
multicast messages from s to the group g. This external-node pruning continues
until all remaining external nodes in T have clients wishing to receive multicast
messages to the group g. At this point, the RPF algorithm has reached a steady
state.

However, this steady state cannot be locked in forever, because some client
hosts may want to start receiving messages for the group g. Formally, we say
at least one client h wants to join the group g. Since RPF provides no explicit
way for clients to join a group, the only way h can start receiving multicasts to
group g is if h's router x is receiving those packets. But if x has been removed
from T , then this will not happen.

Thus, one additional component of the RPF algorithm is that the prunes
that are stored at a node in the Internet are timed out after a certain amount
of time. When such a time-out occurs, say for a prune coming from a router
z to the router x holding z's previous prune message, then x resumes sending
multicast packets for the group g to z. Therefore, if a router really intends not to
receives or process certain types of multicast messages, then it must continually
inform its upstream neighbors of this desire by using prune messages.

Performance Initially, the RPF sends out O(m) messages, where m is the
number of connections in the network. However, after the �rst wave of prune
propagate through the network, the complexity of multicasting reduces to O(n)
messages per multicast message, where n is the number of routers.

In terms of additional storage at the router, RPF requires that each router
store every prune message it receives until that prune message times out. Then,
in the worst case a router x may have to store as many as O(|S| · |G|dx) prune
messages, where S is the set of sources, G is the set of groups, and dx is the
degrees of x in the network. So, in terms of additional storage at the router,
the RPF algorithm is not too e�cient.

6.2 Center-Based Trees Algorithm

The message e�ciency of the center-based trees algorithm is better than that of
the reverse path forwarding algorithm. The main idea of the center-based trees
method is as follows:

� For each group, choose a single router z on the network that will act as
the �center� or �rendezvous� node for the group g.

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 26 of 37

6 MULTICAST ROUTING

� The router z forms the root node of the multicast tree T for g. The
algorithm uses z for sending messages to routers that are a part of this
group.

� Any source wants to send a multicast message to the group g, it �rst sends
the message toward the center z. In the simplest form of the algorithm,
this message moves all the way to z, and once z receives the message, it
then broadcast it to all the nodes in T .

� Thus, each router x in T knows that if x receives a multicast message for
g from its parent in T , then x replicates this message and sends it to all
of its neighbors that correspond to its children in T .

� Likewise, in the simplest form of the center-based tree algorithm, if x
receives a multicast message from any other neighbor di�erent than its
parent in T , then it sends this message up the tree to z. Such a message is
coming from some source and should be sent up to z before being multicast
to T .

Since, the algorithm must explicitly maintain the multicast tree T for each
group. Therefore, we must provide a way for routers to join the group g.

Join Operation A join operation for a router x starts by having router x
send a join message toward the center node z.

� Any other router y receiving a join message from a neighbor t looks up
to see which of y's neighbors u is on the shortest path to z, and then y
creates and stores an internal record showing that y now has a child t and
a parent u in the tree T .

� If y was already in the tree T (that is, there was already a record saying
that u was y's parent in the tree T), then this completes the join operation.
This means that the router x is now a connected external node in the tree
T .

� (Otherwise) If y was not already in the tree T , then y propagates the join
message up to its (new) parent u in T .

Leave Operation For routers wanting to leave group g, either through ex-
plicit leave messages or because a join record times out, we essentially reverse
the action we performed for a join operation.

Performance This algorithm only sends messages along the multicast tree T
for group g, so its message complexity is O (| T |)for each multicast. In addition,
since each router only stores the local structure of T , the maximum number of
records that need to be stored at any router x is O(| G | dx), where G is the set
of groups and dx is the degree of router x in the network.

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 27 of 37

7 MODELS OF PARALLEL COMPUTATION

Parallel Algorithms

This section is about the most fundamental aspect of parallelism, namely, par-
allel algorithms. In order to properly design such algorithms, one needs to
have clear understanding of the model of computation underlying the parallel
computer.

7 Models of Parallel Computation

Any computer operates by executing instructions on data. A stream of instruc-
tions (the algorithm) tells the computer what to do at each step. A stream of
data (the input to the algorithm) is a�ected by these instructions. There are
four classes of computers depending upon how many streams are there:

1. Single Instruction stream, Single Data stream (SISD)

2. Multiple Instruction stream, Single Data stream (MISD)

3. Single Instruction stream, Multiple Data steam (MIMD)

4. Multiple Instruction stream, Multiple Data stream (MIMD)

7.1 SISD Computers

A computer in this class consists of a single processing unit receiving a single
stream of instructions that operates on a single stream of data. At each step
during the computation, the control unit emits one instruction that operates on
a data obtained from the memory unit. For example, such an instruction may
tell the processor to perform some arithmetic or logic operation on the data and
then put it back in memory.

Problem 1. It is required to compute the sum of n numbers.

7.2 MIMD Computers

A computer in this class consists of N processors each with its own control
unit share a common memory unit where data reside. There are N streams of
instructions and one stream of data. At each step, all the processors operate
upon one data received from memory simultaneously, each according to the
instruction it receives from its control. Thus, parallelism is achieved by letting
the processors do di�erent things at the same time on the same data.

Problem 2. It is required to determine whether a given positive integer z has
no divisors except 1 and itself.

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 28 of 37

7 MODELS OF PARALLEL COMPUTATION

7.3 SIMD Computers

In this class, a parallel computer consists of N identical processors. Each of the
N processors possesses its own local memory where it can store both program
and data. All processors operate under the control of a single instruction stream
issued by a central control unit. The processors operate synchronously: At
each step, all processors execute the same instruction, each on a di�erent data.
Sometimes, it may be necessay to have only a subset of the processors execute an
instruction. This information can be encoded in the instruction itself, thereby
telling a processor whether it should be active (and execute the instruction) or
inactive (and wait for the next instruction). There is a mechanism, such as a
global clock, that ensures lock-step operaton. Thus, processors that are inactive
during an instruction or those that complete execution of the instruction before
others may stay idle until the next instruction is issued.

On SIMD computer, it is desirable for the processors to be able communi-
cate among themselves during the computation in order to exchange data or
intermediate results. This can be achieved in two ways, giving rise to two sub-
classes: SIMD computers where communication is through shared memory and
those where it is done via an interconnectionnetwork.

7.3.1 Shared-Memory (SM) SIMD Computers

In the literature, this class is also known as the Parallel-Access Machine (PRAM)
model. Here, when two processors wish to communicate, they do so through the
shared memory. For example, suppose processor i wishes to pass a number to
processor j. This is done in two steps. First, processor i writes the number in
the shared memory at a given location known to processor j. Then, processor
j reads the number from that location.

The class of shared-memory SIMD computes can be further divided into four
subclasses, according to whether two or more processors can gain access to the
same memory location simultaneously:

1. Exclusive-Read, Exclusive-Write (EREW) SM SIMD Comput-
ers. Access to memory locations is exclusive. In other words, no two
processors are allowed simultaneously to read from or write into the same
memory location.

2. Concurrent-Read, Exclusive-Write (CREW) SM SIMD Com-
puters. Multiple processors are allowed to read from the same memory
location but the right to write is still exclusive.

3. Exclusive-Read, Concurrent-Write (ERCW) SM SIMD Com-
puters. Multiple processors are allowed to write into the same memory
location but read accesses remain exclusive.

4. Concurrent-Read, Concurrent-Write (CRCW) SM SIMD Com-
puters. Both multiple-read and multiple-write privileges are granted.

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 29 of 37

7 MODELS OF PARALLEL COMPUTATION

Problem 3. Consider a very large computer �le consisting of n distinct entries.
We shall assume for simplicity that the �le is not sorted in any order. It is
required to determine whether a given item x is present in the �le in order to
perform standard database operation, such as read, update, or delete.

7.3.2 Interconnection-Network SIMD Computers

Here, the M locations of the shared memory are distributed among the N pro-
cessors, each receiving M/N locations. In addition, every pair of processors are
connected by a two-way line. At any step during the computation, processor Pi

can receive a data from Pj and send another one to Pk (or to Pj). Consequently,
each processor must contain (i) a circuit of cost f(N − 1) capable of decoding
a log(N − 1)-bit address. This allows the processor to select one of the other
N − 1 processors for communicating; and (ii) a circuit of cost f(M/N) capable
of decoding a log(M/N)-bit address provided by another processors.

Simple Networks for SIMD Computers In most applications a small
subset of all pairwise connections is usually su�cient to obtain a good perfor-
mance. The most popular of these networks are brie�y outlined as follows.

� Linear Array. The simplest way to interconnect N processors is in the
form of a one-dimensional array. Here, processor Pi is linked to its two
neighbors Pi−1 and Pi+1 through two-way communication line. Each of
the end processors, namely, P1 and PN , has only one neighbor.

� Two-Dimensional Array. A two-dimensional network is obtained by
arranging the N processors into an m ×m array, where m =

√
N . The

processor in row j and column k is denoted by P (j, k), where 0 ≤ j ≤ m−1
and 0 ≤ k ≤ m − 1. A two-way communication line links P (j, k) to its
neighbors P (j + 1, k), P (j − 1, k), P (j, k + 1), and P (j, k− 1). Processors
on boundary rows and columns have fewer than four neighbors and hence
fewer connections. This network is also known as the mesh.

� Tree Connection or tree-connected computer. In this network, the
processors form a complete binary tree. Such a tree has d levels, numbered
0 to d−1 and N = 2d−1 nodes each of which is a processor. Each processor
at level i is connected by a two-way line to its parent at level i + 1 and to
its two children at level i − 1. The root processor (at level d − 1) has no
parent and the leaves (all of which are at level 0) have no children.

� Perfect Shu�e Connection. Let N processors P0, P1, . . . , PN−1 be
available where N is a power of 2. In the perfect shu�e interconnection

a one-way links Pi to Pj , where j =
{

2i
2i+1−N

for
for

0≤i≤N/2−1
N/2≤i≤N−1 . In addi-

tion to these shu�e links, two-way lines connecting every even-numbered
processor to its successor are sometimes added to the network. These con-
nections are called the exchange links. In this case, the network is known
as the shu�e-exchange connection.

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 30 of 37

8 ANALYZING ALGORITHMS

� Cube Connection. Assume that N = 2q for some q ≥ 1 and let N proces-
sors be avaiable P0, P1, . . . , PN−1. A q-dimensional cube (or hypercube) is
obtained by connecting each processor to q neighbors. The q neighbors
Pj of Pi are de�ned as follows: The binary representation of j is obtained
from that of i by complementing a single bit.

There are quite a few other interconnection networks besides the ones just
pointed out. The decision about which of these to use largely depends on the
application and in particular on such factors as the kinds of computations to
be performed, the desired speed of execution, and the number of processors
available.

Problem 4. It is required to compute the sum of n numbers x1, x2, . . . , xn on
tree-connected SIMD computer.

7.4 MIMD Computers

Here we have N processors, N stream of instructions, and N stream of data.
Each processor possesses its own control unit in addition to its local memory and
arithmetic and logic unit. This makes these processors more powerful than the
ones used for SIMD computers. Each processor operates under the control of an
instruction stream issued by its control unit. Thus, the processors are potentially
all executing di�erence programs on di�erent data while solving di�erent sub-
problems of a single problem. This means that the processors typically operate
asynchronously.

As with SIMD computers, communication between processors is performed
through a shared memory or an interconnection network. MIMD computers
sharing a common memory are often referred to as multiprocessors (or tightly
coupled machines) while those with an interconnection network are known as
multicomputers (or loosely coupled machines). Multicomputers are sometimes
referred to as distributed systems. The distinction is usually based on the phys-
ical distance separating the processors and is therefore often subjective. A
general rule is if all the processors are in close proximity of one another (they
all are in the same room, say), then they are a multicomputer; otherwise (they
are in di�erent cities, say) they are a distributed system. As we have seem in
the study of distributed algorithms, because processors in a distributed system
are so far apart, the number of data exchanges among them is signi�cantly more
important than the number of computational steps performed by any of them.

Problem 5. Generating and searching game trees. For instance, a computer
program that play chess do so by using these techniques.

8 Analyzing Algorithms

This part is concerned with two aspects of parallel algorithms: their design and
their analysis. A number of algorithm design techniques were illustrated, in the

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 31 of 37

8 ANALYZING ALGORITHMS

problems at the end of each Section, in connection with our description of the
di�erent models of parallel computation. The algorithm analysis refers to the
process of dertermining how good an algorithm is i.e., how fast, how expensive
to run, and how e�cient it is in its use of the available resources.

8.1 Running Time

The running time is one of the most important measures in evaluating parallel
algorithms. The running time of the algorithm is de�ned as the time taken by
the algorithm to solve a problem on a parallel computer, that is, the time elapsed
from the moment the algorithm starts to the moment it terminates. If the
various processors do not all begin and end their computation simultaneously,
then the running time is equal to the time elapsed between the moment the �rst
processor to begin computing starts and the moment the last processor to end
computing terminates.

8.2 Counting Steps

As we have learnt in the CLRS, before actually implementing an algorithm on
a computer, it is customary to perform a theoretical analysis of the time it
will take to solve the computational problem at hand. This is usually done by
counting the number of basic operation or steps, executed by the algorithm in
the worst case. This gives an expression describing the number of such steps as
a function of the input size. Of course, the de�nition of what constitutes a step
varies from one theoretical model of computation to another. For details, see
CLRS, Chapter 3. The running time of a parallel algorithm is usually obtained
by counting two kinds of steps: computational steps and routing steps. A com-
putational step is an arithmetic or logic operation performed on a data within
processor. On the other hand, in a routing step, data travels from one processor
to anther via the shared memory or through the communication network. For
a problem of size n, the parallel worst-case running time of an algorithm, a
function of n, will be denoted by t(n).

Problem 6. In problem 2 we studied a parallel algorithm that searches a �le
with n entries on an N -processor EREW SM SIMD computer. Compute the
parallel worst-case running time the problem.

8.3 Lower and Upper Bounds

Recall from the CLRS, given a computational problem for which a new sequen-
tial algorithm has just been designed, it is common practice among algorithm
designers to ask the following questions:

1. Is it the fastest possible algorithm for the problem?

2. If not, how does it compare with other existing algorithms for the same
problem?

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 32 of 37

8 ANALYZING ALGORITHMS

On Question 1 The answer to the �rst question is usually obtained by
comparing the number of steps executed by the algorithm to a known lower
bound on the number of steps required to solve the problem in the worst case.

Example. Say that we want to compute the product of two n × n matrices.
Since the resulting matrix has n2 entries, at least this many steps are needed
by any matrix multiplication algorithm simply to produce the output.

Lower bounds, such as the one in the above example, are usually known
as trivial lower bounds, as they are obtained by counting the number of steps
needed during input and/or output. A more sophisticated lower bound is derived
in the next example.

Example. For the problem of sorting (see the Author's lecture notes on design
and analysis of algorithms), there are n! possible permutations of the input and
logn! (that is, on the order of nlogn) bits are needed to distinguished among
them. Therefore, in the worst case, any algorithm for sorting requires on the
order of nlogn steps to recognize a particular input.

If the number of steps an algorithm executes in the worst case is of the same
order as the lower bound, then the algorithm is the fastest possible and is said
to be optimal. Otherwise, a faster algorithm may have to be invented, or it
may be possible to improve the lower bound. In any case, if the new algorithm
is faster than all known algorithms for the problem, then we say that it has
established a new upper bound on the number of steps required to solve that
problem in the worst case.

On Question 2 Once we settled the question 1, the question 2 is therefore
settled by comparing the running time of the new algorithm with the exist-
ing upper bound for the problem (established by the fastest previously known
algorithm).

Example. To date, no algorithm is known for multiplying two n× n matrices
in n2 steps. The standard textbook such as CLRS requires on the order of n3

operations. However, the upper bound on this problem is established by an
algorithm requiring on the order of nx operations at most, where x < 2.5. By
contrast, several sorting algorithms exists that require on the order of at most
nlogn operations and hence are optimal.

Finally, let us review the notion of on the order of to express lower and
upper bounds. For details, see the Author's lecture notes on Algorithms. Let
f(n) and g(n) be functions from the positive integers to the positive reals:

� The function g(n) is said to be of order at least f(n), denoted Ω(f(n)),
if there are positive constants c and n0 such that g(n) ≥ cf(n) for all
n ≥ n0.

� The function g(n) is said to be of order at most f(n), denoted O(f(n)),
if there are positive constants c and n0 such that g(n) ≤ cf(n) for all
n ≥ n0.

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 33 of 37

8 ANALYZING ALGORITHMS

This notation allows us to concentrate on the dominating term in an expression
describing a lower or upper bound and to ignore any multiplicative constants.

For matrix multiplication, the lower bound is Ω(n2) and the upper bound
O(n2.5). For sorting, the lower bound is Ω(nlogn) and the upper bound O(nlogn).

The treatment of lower and upper bounds in this section has so far concen-
trated on sequential algorithms. The same general ideas also apply to parallel
algorithms while taking two additional factors into consideration:

� the model of parallel computation used and

� the number of processors involved.

Example. An n × n mesh-connected SIMD computer is used to compute the
sum of n2 numbers. Initially, there is one number per processor. Processor
P (n − 1, n− 1) is to produce the output. Since the number initially in P (0, 0)
has to be part of the sum, it must somehow �nd its way to P (n−1, n−1). This
requires at least 2(n − 1) routing steps. Thus the lower bound on computing
the sum is Ω(n) steps.

8.4 Speedup

A good indication of the quality of a parallel algorithm is the speedup it produces
with respect to the best available sequential algorithm for that problem.

Speedup =
worst−case−running−time−of−fastest−known−sequential−algorithm−for−problem

worst−case−running−time−of−parallel−algorithm

Example. Determine the speedup in the problem 3.

8.5 Number of Processors

Another important criterion in evaluating a parallel algorithm is the number of
processors it requires to solve a problem. Clearly, the large number of processors
an algorithm uses to solve a problem, the more expensive the solution becomes
to obtain. For a problem of size n, the number of prcessors required by an
algorithm, a function of n, will be denoted by p(n).

Remark. Sometimes the number of processors is a constant independent of n.

Determine the number of processors used in problem 3 and problem 4.

8.6 Cost

The cost of a parallel algorithm equals the number of steps executed collectively
by all processors in solving a problem in the worst-case. Hence Cost = Parallel
running time × Number of processors used. This de�nition assumes that all
processors execute the same number of steps. If this is not the case, then cost is
an upper bound on the total number of steps executed. For a problem of size n,
the cost of a parallel algorithm, a funciton of n, will be denoted by c(n). Thus,
c(n) = p(n)× t(n).

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 34 of 37

9 TWO USEFUL PROCEDURES

Assume that a lower bound is knwon on the number of sequential operations
required in the worst case to solve a problem. If the cost of a parallel algorithm
for that problem matches this lower bound to within a constant multiplicative
factor, then the algorithm is said to be cost optimal.

Problem. Determine whether cost is optimal or not in problem 3 and in prob-
lem 4.

A method for obtaining model-independent lower bounds on parallel algo-
rithms is as follows. Let Ω(T (n)) be a lower bound on the number of sequential
steps required to solve a problem of size n. Then Ω(T (n)/N) is a lower bound
on the running time of any parallel algorithm that uses N processors to solve
that problem.

Problem. Determine the lower bound on a parallel sorting algorithm.

When no optimal sequential algorithm is known for solving a problem, the
e�ciency of a parallel algorithm for that problem is used to evaluate its cost.
This is de�ned as follows:

Efficiency =
worst−case−running−time−of−fastest−known−sequential−algorithm−for−problem

cost−of−parallel−algorithm
Usually, efficiency ≤ 1;

Problem. Determine the e�cency of a parallel algorithm for multiplying two
n× n matrices.

9 Two Useful Procedures

In the EREW SM SIMD model, no two processors can gain access to the same
memory location simultaneously. However, two situations may arise in a typical
parallel algorithm.

1. All processors need to read a datum held in a particular location of the
common memory.

2. Each processor has to compute a function of data held by other processors
and there needs to receive these data.

Clearly, a way must be found to e�ciently simulate these two operations that
cannot be performed in one step on the EREW model. In this section, we
present two procedures for performing these simulations.

9.1 Broadcasting a Data

Assume that N processors P1, P2, . . . , PN are available on a EREW SM SIMD
computer. Let D be a location in memory holding a data that all N processors
need at a given moment during the execution of an algorithm. We present
this process formally as procedure BROADCAST. The procedure assumes that

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 35 of 37

9 TWO USEFUL PROCEDURES

Algorithm 6 Broadcastin a data

procedure BROADCAST (D, N, A)
Step 1. Processor P1

(1a) reads the value in D,
(1b) store it in its own memory, and
(1c) writes it in A(1)

Step 2. for i = 0 to (logN − 1) do
for j = 2i + 1 to 2i+1 do in parallel
Processor Pj

(a) reads the value in A(j − 2i)
(b) stores it in its won memory, and
(c) writes it in A(j).

presence of an array A of length N in memory. The array is initially empty and
is used by the procedure as a working space to distribute the contents of D to
the processor. Its ith position is denoted by A(i).

Analysis Since the number of processors having read D doubles in each iter-
ation, the procedure terminates in O(logN) time. The memory requirement of
BROADCAST is an array of length N .

9.2 Computing All Sums

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 36 of 37

REFERENCES

References

[1] Hagit Attiya and Jennifer Welch, Distributed Computing: Fundamentals,
Simulations and Advanced Topics, John Wiley and Sons, 2004.

[2] Michael T. Goodrich and Roberto Tamassia, Algorithm Design: Founda-
tions, Analysis, and Internet Examples, John Wiley and Sons, 2002.

[3] Nancy A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers,
Inc., 1996.

[4] Gerard Tel, Introduction to Distributed Algorithms, 2nd Edition, Cambridge
University Press, 2000.

[5] Cormen, Leiserson, Riverst, and Stein (CLRS), Introduction to Algorithm,
MIT press, Cambridge, MA, 2009.

Parallel & Distributed Computing Lecture Notes by Rashid Bin Muhammad, PhD.
http://www.personal.kent.edu/∼rmuhamma/

Page 37 of 37

