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2.1 Terms and Factors

Term or factor? – That is the question. We have introduced algebraic
expressions already in Section 1.2. As we shall see soon, the ability to distin-
guish between terms and factors within an expression is one the most crucial
ones in algebra. Terms are separated by + or − signs, the sign belonging to
the term together with the quantity after the sign.

Example 1. List all terms in 2x4 − 8x3 + x2 + 2x− 7.

Solution. The terms are 2x4, −8x3, x2 (the + sign does not have to be writ-
ten and usually is not), 2x, and −7. �

When describing what 8x3 is in the above example, we can say that it is
a term since there is a minus and a plus separating it from the preceding
and following terms respectively. However, the full description of this term
is −8x3.

Factors are separated by multiplication or division. In many sources, only
multiplication is mentioned when factors are defined, but there is no reason
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30 2 ALGEBRAIC EXPRESSIONS

for excluding division since we have seen in Section 1.3 that division can be
viewed as multiplication by the reciprocal. Constant factors are called coef-
ficients.

Example 2. List all factors in each expression. What factors are coeffi-
cients?

(a) 3x2y

(b) 7x
5y4

Solution.

(a) Factors: 3, x2, y; coefficients: 3.

(b) Factors: 7, x, 5, y4; coefficients: 7, 5, and even 7
5
. In this example, 7 is

the coefficient of x, 5 is the coefficient of y4, and 7
5

is the coefficient of
x
y4

. �

Example 3. What are x and −3 in each expression, terms or factors?

(a) x− 3

(b) x(−3)

(c) −3
x

(d) −3 + x
2

Solution. Terms in (a) and (d) and factors in (b) and (c). �

Terms and factors may be more complicated expressions. In the
expressions A + B or A − B, A and B are terms, whereas in AB or A/B,
they are factors. However, A and B may stand here for longer expressions
that themselves have terms and factors.

Example 4. Is the specified expression a term or a factor in the bigger
expression it is part of?

(a) x2 + 1 in 7− 3(x2 + 1)

(b) 5(x− 2) in
5(x− 2) + 4(x+ 1)

(x+ 1)(x− 2)
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(c) 2x− 3 in
√

(2x− 3)(1− x)

(d) 4(x+ 7) in 3
√

9− 4(x+ 7)

Solution.

(a) It is a factor since it is multiplied by −3. Note that x2 + 1 is not a
factor of the whole given expression, but of −3(x2 + 1) only.

(b) It is a term added to 4(x+ 1).

(c) It is a factor multiplied by 1− x.

(d) It is a term, being subtracted from 9 (which is another term). More
precisely, this term is −4(x+ 7). �

EXERCISES 2.1

1. List all terms in each expression.

(a) −7x5 + 2x3 − 2
3
x2 − x+ 1

(b) 4x+ 2
√

3y − 1
5

(c) 8a
3 −

b
6 + 2c

2. List all factors in each expression. What factors are coefficients?

(a) −4x3 + 5
2
x2 − 7x

(b) (4x2)(−5y)

(c) 8a
3b3

3. What are x3 and −8 in each expression, terms or factors?

(a) −8x3

(b) −8 + x3

(c) x3(−8)

(d) x
x3 − 8

4. Is 3x− 5 a term or a factor in the bigger expression it is part of?



32 2 ALGEBRAIC EXPRESSIONS

(a)
x+ 2− 4(3x− 5)
(3x− 5)(x+ 2)

(b) (4x2 − 6x+ 1)− (3x− 5)

(c)

√
3x− 5
x2 + 1

5. Is 2(x2 + 1) a term or a factor in the bigger expression it is part of?

(a) 2(x2 + 1)[3x+ (x− 1)(5x2 + 1)]

(b) 4
√

2(x2 + 1) + 9

(c)
7(4x+ 3) + 2(x2 + 1)

x

2.2 Types of Algebraic Expressions

Algebraic expressions are classified by operations performed on
variables. Main types of algebraic expressions are:

• polynomials,

• rational expressions, and

• irrational expressions.

Polynomials are the simplest algebraic expressions. The Greek word
“polynomial” can be loosely translated by the phrase “many-term expres-
sion”. However, terms forming a polynomial are not arbitrary – they are
either constants or constants multiplied by variables raised to positive inte-
gers.

Example 1. Determine for each expression whether it is a polynomial or
not.

(a) x3 − 2x2 + x− 9

(b) 3
5
x2 − 7xy

(c) x2 −
√

3x+ 1

(d) x2 −
√

3x+ 1
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(e) x4 − 6
x + 4

(f)
√
x6 − x2 + 2

(g) 8x−2 − 3y + 9

Solution. Expressions (a), (b), and (d) are polynomials. The others are not.
Note that fractions and radicals are permitted in a polynomial only as coef-
ficients or constant terms; in other words, polynomials do not have variables
under fraction bars or radicals. In order to avoid the possible confusion be-
tween expressions like (c) and (d), we often write (d) as x2 − x

√
3 + 1. �

There are two main further classifications of polynomials. One is based on the
number of terms. Monomial is a polynomial with one term (‘mono’ means
‘alone’ in Greek). Binomials and trinomials are polynomials with two and
three terms respectively. The other classification criterion is the degree of
the polynomial. For polynomials of one variable, the degree is the highest
power of the variable. For polynomials of several variables, if there is a term
with two or more variables, their powers are added to determine the degree
of this term. Then the highest degree of all term degrees is the degree of the
polynomial.

Example 2. Determine the degree of each polynomial.

(a) −2x4 − 5x2 + 1
2
x− 12

(b) 4x2y + x2 − 6xy + 2y2 − 7xy2

(c) 1− 3x+ 5x2 − 4x3 + 8x4 − 2x5

Solution. Degrees from (a) to (c) are: 4, 3, 5. �

A single constant term, e.g. 3, can be viewed as a polynomial as well since
3 = 3 · x0. This is a constant monomial and its degree is 0. Polynomials of
first degree are called linear (recall from Section 1.3 that the word ‘linear’
signifies first power). Second-degree polynomials are called quadratic (the
Latin word ‘quadratum’ means ‘square’), and polynomials of third degree
are cubic.

Example 3. Classify each polynomial using any of the following words if
applicable: monomial, binomial, trinomial, constant, linear, quadratic, cubic.
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(a) 2x− 7x6

(b) 4x3 − x2 + 6x+ 2

(c) 1 + x− 5x2 − 3x4

(d) −x2 + 2x+ 7
3

(e) 3x− 27

(f) π

(g) 8x5

Solution. (a) binomial, (b) cubic, (c) nothing applies, (d) quadratic trino-
mial, (e) linear binomial, (f) constant monomial, (g) monomial. �

A rational expression is any algebraic expression that can be writ-
ten as a quotient of two polynomials. This is why rational expressions
are called also algebraic fractions. A rational expression does not have to be
given as a quotient of two polynomials but it should be possible to rewrite it
as such. For instance,

x+
1

x
is rational since x+

1

x
=
x2 + 1

x
.

An irrational expression is any algebraic expression that has a vari-
able under a radical.

Example 4. Classify each expression as a polynomial, rational expression,
or irrational expression.

(a) x+ 1−
√
x2 + 5x− 1

(b) 3− x
√

5

(c) 2x2 − 1
3x+ 8

(d) 6
5
x3 − 2x2 + 1

(e) 6
5x3
− 2x2 + 1

(f) x+ 1√
x
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Solution. Polynomials: (b), (d). Rational expressions: (c), (e). Irrational
expressions: (a), (f). �

EXERCISES 2.2

1. Determine for each expression whether it is a polynomial or not.

(a) 3
√
x− 2x2 − 9

(b) 4x2yz

(c) 5x+ 9
3x+ 4

(d) x2 − x+ 1
7

(e) 3xy + 5x2z−1

(f) 1− x2
√

7

(g) 1− x2
√
x

2. Determine the degree of each polynomial.

(a) 2xyz − 5x2y + x2z2

(b) −4x2 + 7x+ 106

(c) x− 6x3 + 3x5 − 9x7

3. Classify each polynomial using any of the following words if applicable:
monomial, binomial, trinomial, constant, linear, quadratic, cubic.

(a) −2x4 − 5x2 + 1
2
x− 12

(b) 4x2 − 6x+ 2

(c) 1− 3x

(d) 11x7 − 3x2

(e) −4
9
x

4. Classify each expression as a polynomial, rational expression, or irra-
tional expression.

(a) x+ 2
x2
− 3x+ 5

(b)
1−
√
x

x2 + 3
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(c) 7x+
√

3
1− 4x

(d) 6x3 − 2x2 + 11
3

(e) 3
√
x2 − 3x+ 9

2.3 Transforming Algebraic Expressions

Algebraic expressions are all about numbers. Very often, expressions
have to be transformed, like in (1),

(1) x+
1

x
=
x2 + 1

x
,

because different forms are needed for different purposes. Whenever an al-
gebraic expression is transformed, its numerical value has to be preserved.
Algebraic expressions are, after all, numbers, only those numbers are usu-
ally left unspecified. If we transform an algebraic expression, we should still
get the same number. The two expressions stated equal in (1) are indeed
equal as numbers for any real number x different from 0 (when x = 0, both
expressions are undefined). For instance, if x = 7,

7 +
1

7
=

50

7
and

72 + 1

7
=

50

7
.

This is why we write the equality symbol ‘=’ between different forms of
an algebraic expression that we are transforming. The above example can
be done in more than one step if we want to provide all the details of the
transformation,

(2) x+
1

x
=
x

1
+

1

x
=
x2

x
+

1

x
=
x2 + 1

x
.

In this procedure, all expressions are equal from the beginning to the end
and we put equal signs between them. We can write (2) aligning the trans-
formation steps vertically, but this does not mean that we should omit equal
signs,

x+
1

x
=

x

1
+

1

x
(3)

=
x2

x
+

1

x

=
x2 + 1

x
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It is understood here that each new line continues the previous one, and
therefore the meaning of (3) is the same as in (2). An alternative notation
is to write equal signs after each line but the last. However, omitting equal
signs, like below, is not acceptable,

x+
1

x
x

1
+

1

x
x2

x
+

1

x
x2 + 1

x
WRONG!

What we see here is four expression which seem to be disconnected and,
since we are not told anything else, may be unrelated. If the expressions we
work with are equal, we should say so. Different kinds of arrows (→, ⇒)
are not substitutes for ‘=’. Therefore, the notation given below is strongly
discouraged,

x+
1

x
→ x

1
+

1

x
→ x2

x
+

1

x
→ x2 + 1

x
WRONG!

or

x+
1

x

⇒ x

1
+

1

x

⇒ x2

x
+

1

x

⇒ x2 + 1

x
WRONG!

Arrows make no sense in the above contexts since they have special use in
mathematics. The symbol ‘⇒’ is meant to indicate an implication, that is,
when something follows from the previous statement. For instance, when we
say: “if x + 2 = 3, then x = 1,” this can be written more symbolically as
x + 2 = 3 ⇒ x = 1. The other type of arrow, →, can mean implications
as well, but it is mainly used in calculus to denote the process in which
the variable approaches some number. The meaning of arrows is therefore
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completely different from the equal sign. Even worse, expressions are not
statements in the first place, so we cannot use arrows between them. When
we write x + 2 = 3, this is a statement because we are saying that some

quantities are equal, whereas in x+ 1
x we are just indicating some operations

to be performed on x. This is also why an expression itself is not enough
to describe a mathematical problem. Suppose you are given this “problem”:

x+ 1
x . What are you supposed to do with it? This you have to be told, since

there are different things (including nothing) you can do with an algebraic

expression. Thus, “perform the indicated addition in x+ 1
x”, or “write x+ 1

x
as an algebraic fraction”, constitute valid problems.

There is a concern that the transformation as written in (3) can be mistaken
for the procedure used for solving equations. It should be pointed out that
there is nothing written on the left side of equal signs and that there has to
be something on both sides if an equation is meant. If the left sides of equal
signs in (3) are misunderstood as zeros, this too is incorrect, since zero is a
number which does not mean a blank space. In other words, if we wanted a
zero there, we would have written it.

Equal expressions are equal only when all of them are defined. To
be honest, and pedantic, sometimes algebraic expressions are not equal even
though we say they are. Already in (1), the two expressions are undefined
when x = 0. This means that they are not numbers for x = 0, but the
equal sign is used only between numbers. Another example is the following
simplification:

(4)
x2 − 1

x2 − 3x+ 2
=

(x− 1)(x+ 1)

(x− 1)(x− 2)
=
x+ 1

x− 2
.

Suppose x = 1. The first and the second expressions are undefined since
their denominators equal zero, whereas the last expression equals −1. How
can −1 equal something that is undefined, that is, how can a number equal
something that is not a number? It can’t. It is understood here that the
three expressions in (4) are equal when all of them are defined. This means
that they are equal for all real numbers x other than, not only x = 1, but
x = 2 as well. When x = 2, all three expressions are undefined.

Example 1. In each problem below, the two expressions are equal when
both are defined. For what values of the variable are the equalities valid?
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(a)
x(2x− 7)

x = 2x− 7

(b)
√

4x3 = 2x
√
x

(c)
(2x− 3)(x− 5)
(2x− 3)(x+ 5)

= x− 5
x+ 5

(d)
3
√
z4 = z 3

√
z

Solution.

(a) For all real numbers x, x 6= 0.

(b) For all real numbers x, x ≥ 0 (recall that even radicals are undefined
for negative numbers).

(c) For all real numbers x, x 6= 3
2
,−5.

(d) For all real numbers z (recall that odd radicals are always defined). �

Again, algebraic expression are all about numbers. This means that
we cannot transform an algebraic expression by applying to it operations that
will change the numerical value of the expression. For instance, the following
mistake often happens in rationalization problems (i.e. when attempting to
remove a radical):

3√
5

=

(
3√
5

)2

=
32(√
5
)2 =

9

5
. WRONG!

This certainly eliminates the radical but it does not preserve the value of the
fraction – if we square the numerator and the denominator of a fraction, we
get a different number, e.g.,

1

2
6= 12

22
=

1

4
.

It is equally impossible to multiply an expression by a number in order to
clear fractions or decimals. By the way, this operation, as well as squaring
both sides, can be performed on equations, but expressions and equations
are completely different, as we shall see in Chapter 3. Thus, if we have
an expression like 0.1x2 − 2x + 2.5, there is no way we can transform it to
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x2 − 20x + 25 after multiplication by 10. If we multiply a non-zero number
by 10, we get a different number. . . Likewise,

x

4
+

1

3
6= 12

(
x

4
+

1

3

)
= 3x+ 4,

therefore, fractions cannot be cleared from an expression unless they are
completely reducible themselves, like in

8x

4
+

12

3
= 2x+ 4.

Expressions can be transformed in different ways. One of the trans-
formations is simplification. What is simpler, is a relative thing, but simplifi-
cation normally means expanding (i.e. removing parentheses) and combining
like terms, and it does not mean factoring (i.e. writing the expression as a
product). Since it may be debatable whether x2 + x is simpler than x(x+ 1)
or not, it is better to specify what kind of simplification is needed. Thus, we
can say ‘expand’, or ‘perform the indicated operations’, and it goes without
saying that like terms should always be combined in the final answer. Like
terms have the same variables raised to the same exponents. In other words,
the only difference between like terms may be in their coefficients. Constant
terms are like terms.

Example 2. Simplify each expression by combining like terms.

(a) 3x2y + 3xy

(b) −2x4 − 5x4

(c) 3x2 − 2x+ 1− x2 + 2x

(d) 7xy − y2 + 2x+ 6y2 − 3xy

(e) 1− 8x+ 4x+ 3
x− 7

Solution.

(a) The two terms in this expression are unlike and there is nothing to
simplify.
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(b) −2x4 − 5x4 = −7x4. We can see that when we combine like terms,
we get another like term, i.e. the variables and their exponents do not
change, only the coefficient does.

(c) 3x2 − 2x+ 1− x2 + 2x = 2x2 + 1. In this example, the like terms −2x
and 2x have opposite coefficients, so that −2x + 2x = 0x = 0, which,
of course, is not written in the answer. In this case, we say that the 2x
and −2x are opposite terms which cancel.

(d) 7xy − y2 + 2x+ 6y2 − 3xy = 4xy + 5y2 + 2x

(e) 1− 8x+ 4x+ 3
x− 7 = 4− 4x

x− 7 �

When expanding, we do the operations following their prescribed order, see
Section 1.3. Again, if an operation cannot be performed because it involves
variables, we move on to the next operation. If an expression containing
several terms is to be multiplied by a monomial, like in

3x(2x2 − x+ 4),

we remove parentheses by distributing the monomial over the terms inside
parentheses:

3x(2x2 − x+ 4) = 3x · 2x2 + 3x · (−x) + 3x · 4 = 6x3 − 3x2 + 12x.

When two multiple-term expressions are factors of a product, we remove
parentheses by distributing each term of the first expression over all terms
of the other expression.

Example 3. Expand − [3(x+ 1)2 − 5(7− 2x)] indicating each step.

Solution. There is nothing we can do with x+ 1 and 7− 2x in the innermost
parentheses, so we square x+ 1 and distribute −5 over 7− 2x. For (x+ 1)2,
we either use the formula for the binomial squared, (a+ b)2 = a2 + 2ab+ b2,
or multiply (x + 1) · (x + 1) to get the same result (the latter is known as
foiling). Thus,

−
[
3(x+ 1)2 − 5(7− 2x)

]
= −

[
3(x2 + 2x+ 1)− 35 + 10x

]
.

Since −5(7) = −35, it is clear that the resulting term −35 should be written
as such. However, there is sometimes confusion how to write the result of
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−5(−2x). This is simply 10x, but we should write it as +10x in order to
separate it from the preceding terms. In other words, −2x is a term in (7−2x)
and it remains a term after it is multiplied by −5. The + sign before 10x is
needed to show this.

We continue by multiplying 3 and x2 + 2x + 1 and then simplifying the
expression in brackets. Finally, the minus in front of the brackets can be
viewed as a coefficient equal to −1, thus we distribute −1 over the expression
in brackets. We can refer to this as distributing the minus.

−
[
3(x+ 1)2 − 5(7− 2x)

]
= −

[
3(x2 + 2x+ 1)− 35 + 10x

]
= −

[
3x2 + 6x+ 3− 35 + 10x

]
= −

[
3x2 + 16x− 32

]
= −x2 − 16x+ 32 �

In factoring problems, it is usually required to factor completely.
This means that each factor is a prime, i.e. it cannot be factored any further.
If there is a coefficient which is not a prime, it is usually left unfactored.
Thus, in

24(2x+ 5)(x2 + x+ 1),

24 is not a prime number, but 2x+ 5 and x2 + x+ 1 are prime expressions.
Therefore, the above expression is considered completely factored. We nor-
mally factor only relative to integers, which means that we do not use any
other numbers when factoring.

Example 4. Determine for each expression whether it is factored or not. If
it is, say whether the factorization is complete or not.

(a) 3(x− 1) + 5(x2 − 1)

(b) (8x+ 4)(x− 7)

(c) x(2x− 1) + 3

(d) 14(3x+ 5)(3x− 5)

(e) 2x2 − x+ 4

Solution.
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(a) This expression is not factored since 3(x−1) and 5(x2−1) are separated
by a +.

(b) Factored, but not completely: (8x+ 4) is still factorable as 4(2x+ 1).

(c) Not factored.

(d) Factored completely.

(e) Not factored (but not factorable either – this quadratic trinomial is a
prime). �

Any quantity has a factor equal to 1. This is important when factoring
expressions like x3 + 2x2 + x. The GCF (greatest common factor) of the
terms x3, 2x2, and x is GCF=x. When we factor the GCF out, we get
x (x2 + 2x+ 1). A typical mistake is to give here x (x2 + 2x) for the answer.
This should be checked by distributing x over x2 and 2x to get x3+2x2, which
is not the original expression. As we can see, distributing and factoring the
GCF out are two opposite procedures. When factoring the GCF out, we get
inside parentheses the same number of terms as in the original expression.
Therefore, x(x2+2x) cannot be right since there are two terms in parentheses,
whereas the original expression has three terms. Every term of the expression
has to leave a “trace” when the GCF is “pulled” out. The trace of the term
x in this example is 1, because x = 1 · x.

Example 5. Determine for each factorization whether the GCF is factored
out correctly or not.

(a) −5x2 + 3x− 1 = −(5x2 − 3x+ 1)

(b) x6 − 2x4 + x2 = x2(x4 − 2x2)

(c) 2x2 − 6x+ 2 = 2(x2 − 3x+ 1)

(d) 5xy + 5x2y − 5xy2 = 5xy(x− y)

Solution. (a) and (c) are correct factorizations, (b) and (d) are not. �

When an algebraic expression is transformed, some rules apply to
terms and other rules apply to factors. This is why it is important to
be able to tell them apart. Four typical situations are discussed below.

We distribute over terms, not over factors. When 3(x + 2)(x − 1) is to be



44 2 ALGEBRAIC EXPRESSIONS

expanded, 3 is sometimes distributed not only over x and 2, but also over
x and −1. This results in (3x + 6)(3x − 3), which is wrong. The binomials
x + 2 and x − 1 are factors of this expression. We can only distribute 3
over the terms of one of the two binomials. Therefore, either (3x+ 6)(x− 1)
or (x + 2)(3x − 3) follow correctly from the original expression. (This is
not the end of the expansion, which, by the way, is better to do by foiling
(x + 2)(x − 1) first and then finally distributing 3.) This kind of mistake is
of the same type as in

2(xy) = 2x · 2y. WRONG!

Here, the factors x and y are mistaken for terms, since the following would
be correct:

2(x+ y) = 2x+ 2y.

When reducing fractions, only factors, not terms, can be crossed out. The
following transformation is wrong:

3 + x

2 + x
=

3+ 6x
2+ 6x

=
3

2
. WRONG!

Incidentally, if x = 0 in the above expression, then

3 + 0

2 + 0
=

3

2
.

However, if x = 1,
3 + 1

2 + 1
=

4

3
6= 3

2
.

Remember that if we state that two expressions are equal, then this means
that they are equal for all values of the variables for which both expressions
are defined. This is why the above way of reducing the fraction is wrong –

terms are mistaken for factors, i.e. the original expression 3 + x
2 + x is mistaken

for 3x
2x , which is safe to reduce,

3x

2x
=

3 6x
2 6x

=
3

2
.
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More on this in Section 2.4.

Exponents and radicals can be applied only factor by factor, not term by term.
The following is correct:

(3xy)2 = 9x2y2,
√

25x = 5
√
x.

However, if terms are mistaken for factors, we get the wrong transformations

(3x+ y)2 = 9x2 + y2,
√

25 + x = 5 +
√
x. WRONG!

When simplifying fractional expressions with factors raised to negative ex-
ponents, the following shortcut may be taken:

2x−2

3y−1
=

2y

3x2
.

A factor with a negative exponent can be moved to the opposite side of the
fraction bar by changing the sign of the exponent. This cannot be extended
to terms with negative exponents. The following is therefore wrong:

(5)
2 + x−2

3 + y−1
=

2 + y

3 + x2
. WRONG!

We shall see in Section 2.4 that expressions like the one on the left side in (5)
give rise to compound fractions, which are simplified completely differently.

EXRECISES 2.3

1. Rewrite each transformation using vertical alignment.

(a) x(x+ 5)2 = x(x2 + 10x+ 25) = x3 + 10x2 + 25x

(b) x3 + 2x2 − 6x+ 9
x = x3

x + 2x2
x −

6x
x + 9

x = x2 + 2x+ 6 + 9
x

(c)
√

32−2
√

18+2
√

2 =
√

16 · 2−2
√

9 · 2+2
√

2 =
√

16
√

2−2
√

9
√

2+
2
√

2 = 4
√

2− 2 · 3
√

2 + 2
√

2 = 4
√

2− 6
√

2 + 2
√

2 = 0

2. In each problem below, the two expressions are equal when both are
defined. For what values of the variable are the equalities valid?

(a)
5
√

2x5 = x 5
√

2



46 2 ALGEBRAIC EXPRESSIONS

(b) 4
√

16x = 2 4
√
x

(c)
(x− 8)(x+ 1)
(x2 + 1)(x− 8)

= x+ 1
x2 + 1

(d) t3 + t2

t(t+ 1)2
= t
t+ 1

(e) x2

x2(7− x)
= 1

7− x

3. Simplify each expression by combining like terms.

(a) 3x2y3 − 5x2y3

(b) −2x4y − 5x4z

(c) x3 − 1 + x2 + 7
x2 + 3

(d) 5x+
√
x− 4− 6x+ 4

(e) 2y2 + 7y − 1 + y − 2y2 − 8y + 1

4. Expand 2(x2 − 3)− [(x+ 1)(2x− 1)− 5] indicating each step.

5. Determine for each expression whether it is factored or not. If it is, say
whether the factorization is complete or not.

(a) 15(x− 1)(x2 − 1)

(b) (3x+ 4)(x− 7)

(c) x(x2 − 5x+ 6)

(d) x(3x+ 5)− 2(3x+ 5)

(e) 7x+ 1

6. Determine for each factorization whether the GCF is factored out cor-
rectly or not.

(a) −3x2 + 6x− 3 = −3(x2 − 2)

(b) y3 − 5y2 + y = y(y2 − 5y + 1)

(c) −2x2y + 8xy − 2y = −2y(x2 − 4x+ 1)

(d) 7 + 14x− 7x2 = 7(2x− x2)
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7. Determine whether the given transformation is correct or not.

(a)
x+ y−2

x+ 2 = x
(x+ 2)y2

(b)
x+ y2

x+ 2 =
y2

2

(c) x(2x− y) = 2x2 − xy

(d) 4−2a
b−3 = ab3

16

(e) 5(1− x)(3x+ 2) = (5− 5x)(15x+ 10)

(f)
7(x+ 1)

14(x− 1)(x+ 1)
= 1

2(x− 1)

(g) (1− x)3 = 1− x3

(h)
3
√

8z6 = 2z2

2.4 Rational Expressions

The fraction bar is the “axis” of a rational expression. As we have
seen in Section 2.2, rational expressions are those that can be written as
fractions with polynomials in both the numerator and the denominator. It
is important to realize where the fraction bar should be placed relative to
other symbols, particularly equal sign and operation symbols, or relative to
the surrounding expressions and text.

Example 1. Rational expressions with correctly written fraction bars:

(a) 2x+ 4 + 3x− 5
x2 + 1

(b) Simplify 2x− 1
4x2 − 1

.

(c) 5x+ 4
3x2

(d) 2x
4x+ 6 = 2x

2(2x+ 3)
= x

2x+ 3 �

Example 2. Rational expressions from Example 1 with incorrectly written
fraction bars:
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(a) 2x+ 4+ 3x− 5
x2 + 1

(b) Simplify 2x− 1
4x2 − 1

.

(c) 5x+ 4

3x2

(d)
2x = 2x = x

4x+ 6 2(2x+ 3) 2x+ 3
�

In Examples 2(a) and 2(b), the fraction bar is placed too low – it should be a
continuation of the imaginary horizontal line that goes through the middle of
2x+ 4+ or the word “Simplify”. This is an illustration of what we mean by
saying that the fraction bar should be the axis of the expression. The same
criticism applies to Examples 2(c) and 2(d), but in 2(c) the fraction bar is
also too short. In 2(d), we can say that the equality signs are too high since
they should be placed along the same imaginary horizontal line (horizontal
axis) with fraction bars, like in Example 1(d).

The relative position of the fraction bar is particularly important
for compound fractions. A compound fraction has fractions above and/or
below the main fraction bar, like in the following examples:

(1)
1 + x+ 2

x− 3
x2 − 9

,

1
x −

1
y

1
x + 1

,
2x+ 5
x

3x− 1
x+ 2

.

We could say that the main fraction bar is the longest one, but the way
compound fractions are typeset in many books, it is either impossible or
very hard to tell that there is any difference between fraction bar lengths in
compound fractions. We mean here compound fractions like the third one in
(1) because it is clear in the first and the second ones what fraction bar is the
longest and therefore main. We have to take a very close look at the third
expression in (1) to realize that the second fraction bar from above is ever
so slightly longer than the other two. This is unfortunate; a pronouncedly
longer main fraction bar would help us distinguish it more easily from the
other fraction bars, compare

2x+ 5
x

3x− 1
x+ 2

to
2x+ 5
x

3x− 1
x+ 2

.
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However, there are other ways to tell what fraction bar is the main one.
We have to pay attention to the horizontal axis of the expression and the
surrounding symbols and text. For instance, the main fraction bar below lies
on the same horizontal axis as the period (the punctuation mark),

(2)
2x+ 5
x

3x− 1
x+ 2

.

Why is the main fraction bar important at all? The following example illus-
trates this.

Example 3. Simplify
2x− 1
3x+ 1
x and 2x− 1

3x+ 1
x

.

Solution. It looks like we are asked here to simplify the same expression
twice. However, the two expressions are not identical since they have dif-
ferent main fraction bars. Even though there is a minimal difference in the
fraction bar lengths, we can identify the main fraction bars by the horizontal
axis of the whole sentence. Therefore,

(3)

2x− 1
3x+ 1
x

=
2x− 1

3x+ 1
÷ x =

2x− 1

3x+ 1
· 1

x
=

2x− 1

x(3x+ 1)

and

(4)
2x− 1
3x+ 1
x

= (2x− 1)÷ 3x+ 1

x
= (2x− 1) · x

3x+ 1
=
x(2x− 1)

3x+ 1
.

We see in (3) and (4) that equal signs stand by the main fraction bars. �

In other words, Example 3 shows that the following problem is ambiguous:
Simplify

2x− 1
3x+ 1
x

The two fraction bars are of equal length and there is no other symbol or
text (not even a punctuation mark) to indicate the main fraction bar. The
best remedy is to use an easily recognizable length for the main fraction bar.
Thus the problem Simplify

2x− 1
3x+ 1
x
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is not ambiguous and it should be solved like in (3), as opposed to Simplify

2x− 1
3x+ 1
x

which should be solved like in (4).

When compound fractions have to be written out in one line (like when typing
them in the graphing calculator, see Section 1.3), the order of operations and
the proper use of parentheses remove any ambiguity. Thus, the following
two expressions correspond to the original compound fractions in (3) and (4)
respectively:

(2x− 1)/(3x+ 1)/x and (2x− 1)/[(3x+ 1)/x].

In the above discussion of possible ambiguity involving compound fractions
with fraction bars of equal length, examples with two fraction bars are used
for simplicity. The same problems remain for compound fractions with three
fraction bars, like the one in (2). Moreover, when simplifying compound
fractions like the two first ones in (1), one of the standard methods is to
transform them initially to the structure

A
B
C
D

,

where A, B, C, and D are some polynomials, and where it is again important
to recognize the main fraction bar. If there is no indication what fraction
bar is the main one, there are five possible ways to interpret this kind of
structure:

(5)
(A/B)/(C/D), A/[(B/C)/D] = A/(B/C/D), A/[B/(C/D)],
[A/(B/C)] /D, [(A/B)/C]/D = A/B/C/D.

Two of the above expressions are simplified by reducing the number of paren-
theses because the indicated divisions are done from left to right.

To divide by a number is the same as to multiply by its reciprocal.
This has already been mentioned in Section 1.3. We see new examples of
this fact in the transformations (3) and (4). This is used below to show that
the five expression in (5) reduce to four different forms:

(A/B)/(C/D) =
A

B
· D
C

=
AD

BC
,
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A/[(B/C)/D] = A · D
B
C

= A ·D · C
B

=
ACD

B
,

A/[B/(C/D)] = A ·
C
D
B

= A · C
D
· 1

B
=
AC

BD
,

[A/(B/C)]/D =
A
B
C

· 1

D
= A · C

B
· 1

D
=
AC

BD
,

[(A/B)/C]/D =

A
B
C
· 1

D
=
A

B
· 1

C
· 1

D
=

A

BCD
.

Different operations with rational expressions require different ap-
proaches. This is why it is important to recognize what kind of operation
should be performed between two or more fractions.

Example 4. Classify each expression according to the operation indicated
between two algebraic fractions. Use the following phrases: multiplication
problem, division problem, addition problem, or subtraction problem.

(a) 3
2x+ 7 −

x+ 4
5− x

(b) x2 + 4
x2 − 2x+ 4

÷ 7x
x2 − 4

(c) x3
x− 9 + 2x2 − 3

4x+ 5

(d)

5x− 1
x2

1− 2x
x+ 3

(e) x3 − 1
x2 − x ·

2x− 6
x2 + x

(f) 1
x + 8

y

Solution. Multiplication problems: (e); division problems: (b), (d); addition
problems: (c), (f); subtraction problems: (a). �

Finding the least common denominator (LCD) is needed only when adding
and subtracting rational expressions with unlike denominators. The phrase
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“like denominators” indicates that all denominators are identical polynomials
even though they may look differently. For instance, if x(x + 1) and x2 + x
are the denominators of two rational expressions, they are like denominators
since x2+x = x(x+1). Thus, if among all the denominators in an expression,
there are two which are non-identical polynomials, then we have algebraic
fractions with unlike denominators.

Example 5. Determine for each expression whether we need to find the
LCD when performing the indicated operations.

(a) x2 − 1
3x − x+ 4

3x

(b) 7x
5x− 1 + x+ 6

2x+ 3

(c) x
2x2 − x+ 1

· x+ 1
x3 − 8

(d) 4x− 1
x+ 3 + 1

3 + x −
x2 − 2x+ 6

x+ 1

(e) 3− 2x
x+ x2

÷ 7x+ 1
x− 9

Solution. The LCD is needed in problems (b) and (d). Note that the first
and the second denominators in (d) are like, but the third one is unlike.
The LCD is not needed in problems (c) and (e) since it is never required for
multiplication or division of algebraic fractions. Although (a) is a subtraction
problem, the two rational expressions have like denominators and their LCD
(LCD = 3x) is already present; it does not have to be formed separately. �

Factor first, then cross out. We have seen already in the previous section
that only factors, not terms, can be crossed out when reducing a fraction.
Both the numerator and the denominator should be factored completely and
only then can we cross out identical factors on opposite sides of the fraction
bar. This is also how we approach multiplication of rational expressions
– each numerator and each denominator should be completely factored and
then identical factors on opposite sides of either fraction bar should be crossed
out.

Example 6. Determine whether 2x−3 can be crossed out of each expression.

(a) 2x− 3
x2 + 1

+ 4x− 7
2x− 3
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(b)
x(2x− 3)

(2x− 3)(x+ 8)

(c)
x(2x− 3) + (x2 + 2)(x+ 1)

(x+ 1)(2x− 3)

(d)
(x− 2)(x+ 3)

2x− 3 · (2x− 3)(4x+ 1)
x(x2 + 1)

(e)
(2x− 3)x

(2x+ 1)(x− 5)
÷ 5x− 9

(2x− 3)(3x+ 1)

Solution.

(a) No, this is an addition, not a multiplication problem.

(b) Yes, 2x− 3 is a factor of both the numerator and the denominator.

(c) No, although 2x− 3 is a factor of the denominator and even of a part
of the numerator (it is a factor of x(2x − 3)), it is not a factor of the
whole numerator. The numerator is not factored at this stage, so it is
too early to start crossing out.

(d) Yes, this is a multiplication problem and 2x−3 is a factor of the second
numerator and it is the entire first denominator. We can say that it is
a factor of the first denominator because we can think of 1 · (2x − 3)
there.

(e) No, this is a division problem, and, as we have seen already in this
section, to divide by an algebraic fraction, we multiply by its reciprocal.
This example therefore becomes

(2x− 3)x

(2x+ 1)(x− 5)
· (2x− 3)(3x+ 1)

5x− 9

and both (2x− 3)-factors are in the numerators. �

Example 6(d) reminds us also that 1 is a factor of any quantity, see Section
2.3. Therefore, when 2x − 3 is crossed out of this expression, 1 remains in
the first denominator before we get the final answer:

(x− 2)(x+ 3)

2x− 3
· (2x− 3)(4x+ 1)

x(x2 + 1)
=

(x− 2)(x+ 3)

1
· (4x+ 1)

x(x2 + 1)

=
(x− 2)(x+ 3)(4x+ 1)

x(x2 + 1)
.
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Compare this example to

(x− 2)(x+ 3)

3− 2x
· (2x− 3)(4x+ 1)

x(x2 + 1)
=

(x− 2)(x+ 3)

−1
· (4x+ 1)

x(x2 + 1)
(6)

= −(x− 2)(x+ 3)(4x+ 1)

x(x2 + 1)
.

How can we cross out factors 3 − 2x and 2x − 3 which are not identical?
When we interchange two numbers with the operation of subtraction between
them, we get different results: 3 − 8 = −5 and 8 − 3 = 5. However, we
can see that the only difference between the results is the sign. Therefore
3− 2x = −(2x− 3) and this why we still can cross 2x− 3 out, but −1 is left
in the first denominator in (6).

In order to add or subtract fractions with unlike denominators, we
have to make them more complicated. Consider the following addition
problem:

(7)
x

x+ 1
+
x2 + 2

2x− 3
.

Since the LCD is needed here, we change each fraction,

(8)
x(2x− 3)

(x+ 1)(2x− 3)
+

(x2 + 2)(x+ 1)

(2x− 3)(x+ 1)
.

Note that in order to preserve the value of a fraction, we have to multiply
both its numerator and denominator by the same quantity. Each fraction in
(8) is immediately possible to reduce, but if we do this, we will return to the
beginning, that is, (7). Therefore, we make each fraction more complicated
on purpose – this is the only way to get like denominators and add the
fractions. We have to be patient and refrain from reducing fractions too
early. After step (8), we switch to one fraction bar,

x(2x− 3) + (x2 + 2)(x+ 1)

(2x− 3)(x+ 1)
.

A typical mistake now is to cross out 2x − 3 and x + 1 and get x + x2 + 2,
that is, x2 + x + 2 for the final answer. This is wrong because, as pointed
out in Example 6(c), the numerator is not factored yet and there is nothing
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to cross out at this stage.

The above discussion applies equally to subtraction problems. There is,
however, an additional dangerous spot in these problems if the second fraction
has more than one term in the numerator. The following two fractions already
have like denominators,

(9)
x− 1

5x
− 2x+ 3

5x
,

so we are ready to write this expression with one fraction bar. The following
is a frequent mistake:

(10)
x− 1− 2x+ 3

5x
WRONG!

We should recall here from Section 1.3 that the meaning of the operations

in 2x+ 3
5x is better expressed as

(2x+ 3)
(5x)

, but that it is normal practice to

omit parentheses. The parentheses around the numerator should now be
reinstated in order to do the subtraction in (9) correctly. The answer is

(11)
x− 1

5x
− 2x+ 3

5x
=
x− 1− (2x+ 3)

5x
=
x− 1− 2x− 3

5x
=
−x− 4

5x
.

The point here is that the whole second numerator should be subtracted from
the first one, whereas in (10), only the first term, 2x, is subtracted. Another
way of avoiding the mistake in (10) is to rewrite the original problem (9) in
the form

(12)
x− 1

5x
+
−(2x+ 3)

5x

and then proceed like in (11). We have already stated in Section 1.3 that
subtraction can be viewed as addition of the opposite number. This is why
expressions (9) and (12) are equal.

EXERCISES 2.4

1. Some of the rational expressions given below are written with incorrect
fraction bars. Identify them and suggest possible corrections.

(a) Reduce x2 − 4x
x2 − 16

.
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(b) Simplify
(x− 1)(x+ 3)
x2 + x− 6

.

(c) 2x− 7 + 3x− 1
x2 + x− 9

(d)
x2 + x = x

x2 − 1 x− 1

(e) 2x− 8

7x3

2. Simplify
3x+ 5
x− 1
4− x and 3x+ 5

x− 1
4− x

.

3. Simplify the compound fraction using all five possible interpretations.

x
2x+ 7
5− 3x
9x+ 4

4. Classify each expression according to the operation indicated between
two algebraic fractions. Use the following phrases: multiplication prob-
lem, division problem, addition problem, or subtraction problem.

(a) 3
2x+ 7 + x+ 4

5− x

(b)
x
3

x+ y
x− y

(c) x2 + 4
x2 − 2x+ 4

· 7x
x2 − 4

(d) x3
x− 9 −

2x2 − 3
4x+ 5

(e) x3 − 1
x2 − x −

2x− 6
x2 + x

(f) 1
x ÷

8
x2

5. Determine for each expression whether the LCD is needed when per-
forming the indicated operations.

(a) x2 − 1
x+ 3 ÷

x+ 4
3x
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(b) 7x
5x2 − x −

x+ 6
x(5x− 1)

(c) x
2x2 − x+ 1

+ x+ 1
x3 − 8

(d) 4x− 1
x− 3 −

1
x2 + 1

+ x2 − 2x+ 6
x2 + 1

(e) 3− 2x
x+ x2

· 7x+ 1
x− 9

6. Determine whether x2 + 4 can be crossed out of each expression.

(a) x2 + 4
2x+ 1 ·

5x2 − x
x2 + 4

(b)
x(x2 + 4)

1 + (x2 + 4)(x+ 8)

(c)
(3x− 2)(2x− 3)

x2 + 4
− x2 + 4

7x− 3

(d)
(x− 2)(x+ 3)
(x− 1)(x2 + 4)

÷ x2 + 4
(6x− 5)(x2 + 1)

(e)
(x2 + 4)(2x− 3)
(2x+ 1)(x2 + 4)

7. Simplify by crossing out appropriate factors if any.

(a)
(4x− 7)(2x+ 1)

(1 + 2x)(3x2 − x+ 8)

(b)
(x2 − 3)(2x+ 1)

5x− 9 · x3 − 2
x(x− 8)

(c)
(4x− 7)(2x+ 1)

(7− 4x)(3x2 − x+ 8)

(d) x
x2(x− 5)

· x− 5
3x(2x+ 1)

(e) x2 + 1
x(x− 5)

· 2(5− x)
3x(x2 + 1)

8. Determine for each transformation given below whether it is correct or
not. Correct those that are wrong.

(a) x+ 1
x + 2x− 7

3 =
63(x+ 1)+ 6x(2x− 7)

63 6x = 3x− 6.
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(b) 3
4 −

1
x = 3x− 4

4x

(c) 3
4 −

1− x
4 = 3− 1− x

4 = 2− x
4

(d) x
2x+ 1 + x+ 1

2x+ 1 = 2x+ 1
2x+ 1 = 1

(e) x
2x+ 1 −

x+ 1
2x+ 1 = −1

2x+ 1


