

The Big Three
- The Structure of DNA
- Watson and Crick, the Double Helix
- Quantum Mechanics
- Universe shaking Idea \#6
- The physics of the very small: atoms
- The Theory of Relativity
- Universe shaking Idea \#5
- The physics of the very fast

Introduction
- Relativity is an old idea
- Not invented by Albert Einstein
- But perfected by him
- Been around in various forms
- since the Copernican Revolution
- Questions about the moving Earth
- and the appearance of the night sky

Introduction

- We have taken an historical approach - to the study of Physics.
- We are now at the turn of the last century - the $20^{\text {th }}$ century that is (so around 1900AD)
- There were three major scientific accomplishments in the $20^{\text {th }}$ century
- And two of them were in Physics!

\qquad

Introduction

- So Relativity is a theory about motion!
- Different observers \Leftrightarrow different description
- "Different" \Rightarrow different Relative Velocity
- To understand Relativity
- we need to understand Motion
- So we need to understand Space and Time!

Relativity	
- Motion: moving through Space and Time	
Velocity $=$	$\frac{\text { Distance Traveled }}{\text { Elapsed Time }}$
Distance Traveled	\Rightarrow a change in Position
	\Rightarrow a Space Interval
Elapsed Time	\Rightarrow a Time Interval
Velocity	$=\frac{\text { Space Interval }}{\text { Time Interval }}$

Relative Velocity

- Position, Time, Velocity
- are all measured relative to something
- We describe our Position (Location) as
- 10 miles due east of somewhere
- Or with Latitude, Longitude, Altitude
- relative to the Earth's center
- The distance traveled is the Space Interval - between start and finish

Relative Velocity

- We measure Time relative
- to some starting reference point
- Relative to some date: 0 AD
- Relative to some time: Class started at 11 AM
- We measure the elapsed Time
- from when the clock starts to when it stops
- The elapsed Time is the Time Interval - between start and finish
Relative Velocity
- When we say our speed is 65 mph
- we mean 65 mph with respect to the road
- What is the relative speed between two cars?
- One going north at 50 mph relative to the road
- One going south at 50 mph relative to the road
- Let's see...

Relative Velocity

- So each car is moving at 50 mph

Trick Question?

- What is your velocity right now?
- The answer depends upon your point of view
- You are at rest, so your velocity is zero

Relative Velocity

- The "right" answer to the question...

How fast are you going?

- with respect to the room
- Your velocity is about $67,000 \mathrm{mph}$ - with respect to the Sun
- ...is "relative to what?"
- relative to each other
- One hour later they will be 100 miles apart!
- The answer depends upon your point of view!
- Which is the "right" answer?

Absolute versus Relative
- To fully understand the Theory of Relativity
- you must understand these two concepts!
- In Physics, we measure or calculate many
quantities
- Position, Velocity, Acceleration, Time
- Mass, Momentum, Force
- Kinetic Energy, Potential Energy
- Do all observers get the same result?

Absolute versus Relative
- If a quantity is ABSOLUTE
$-\underline{\text { all }}$ observers agree on its value
- Its measured value does not depend upon the
relative velocity between observer and event
- Also called an "Invariant" quantity

Galilean-Newtonian Relativity

- Relativity is the answer to this question:

What is the true velocity of the Earth relative to absolute space?

- First we must answer another question:

Frames of Reference

- Frame of Reference
- a 3-dimensional object used to describe motion
- A kind of map of 3-D Space
- It is a mathematical device
- Remember the equant, eccentric, etc...
- Motion is measured
- relative to a particular Frame of Reference

What is "absolute space"?

- Usually we are at rest
- relative to our own Frame of Reference

Frames of Reference

- Each Frame has a Coordinate System
- A measuring device with numbers that is attached to the Frame of Reference
- Defines an "origin" - where the zero point is!
- We can measure the location of any event
- by determining its three coordinates
- Coordinates \Leftrightarrow where it is located in Space

Frames of Reference

- To measure an object's motion...
- relative to a Frame of Reference
- ...we specify how its coordinates change - as time goes by

Motion \Rightarrow change in Position
Measure Motion \Rightarrow change in Coordinates

Frames of Reference

- Example: How fast can I cross a room?
- Reference Frame: Room
- We measure my motion relative to the room
- Coordinate System: Floor tiles
- We use the tiles to make the measurements
- Origin: start of the first tile

Frames of Reference

- My Velocity is described completely - in terms of the Frame of Reference
- The result would be different
- in terms of a different Frame of Reference
- or with respect to a different observer
- Because Velocity is RELATIVE!
- A variant quantity

Frames of Reference

- There are two kinds of Reference Frames
- Inertial Reference Frames
- Move at a constant velocity
- Constant speed and direction
- The Earth is a good approximation
- Non-inertial Reference Frames
- Move at a changing velocity
- Also called Accelerated Reference Frames

Relativity

- The Theory of Relativity
- Describes how observers view an event from different Frames of Reference
- By "different Frames of Reference"
- we mean Frames of Reference with different Relative Velocities to the event

Absolute versus Relative	
- An ABSOLUTE quantity	
- has the same value in all Inertial Reference Frames	
- Example: the speed of light	
- A RELATIVE quantity	
- has a different value in different Inertial Reference Frames	
	${ }^{34}$

\left.| Relativity |
| :---: |
| - Velocity is a RELATIVE quantity |
| - Your velocity relative to an event obviously |
| depends on your velocity relative to that event |$\right]$| - So the value we measure depends |
| :--- |
| - upon what we use as a reference |
| - Recall our two cars: |
| - 50 mph relative to road, 100 mph relative to
 each other |

Relativity

- Since Velocity is relative, then...

$$
\begin{aligned}
\text { Momentum: } & m v \\
\text { Kinetic Energy: } & 1 / 2 m v^{2} \\
\text { Potential Energy: } & E-K E
\end{aligned}
$$

-...are relative too. So?

Example	
- Two kids are playing catch - in the back of a pickup truck.	
- They gently toss a ball back and forth... They can throw a ball about 5 mph ... while the truck drives at 100 mph .	
- Do not try this experiment at home. - It only gets worse...	
	${ }_{3} 7$

Example

- One of the kids gets carried away - and throws the ball out of the truck.
- This happens as the truck passes - a pedestrian waiting to cross the street, and the ball strikes the pedestrian in the head!
- How fast is the ball moving when it hits?

Example

- To the people in the truck, - the ball is moving at 5 mph .
- Its Velocity is 5 mph relative to the truck.
- To a person on the sidewalk,
- The ball is moving at 105 mph .
- Its Velocity is 105 mph relative to the
sidewalk.
- Ouch!

Example

- In the truck frame of reference,
- the ball has a small Velocity
- and a small Kinetic Energy
- In the sidewalk frame of reference
- the ball has a huge Velocity
- and a huge Kinetic Energy

Facts versus Laws

- The Facts are Relative
- Different values for Velocity, Kinetic Energy
- But the Laws are Absolute
- Newton's Laws are valid in both frames
- Energy is Conserved in both frames
- All observers agree: Energy was conserved
- They just don't agree on how much was conserved!

Galilean-Newtonian Relativity
- Galilean-Newtonian Relativity
- Describes which quantities are Absolute
- according to Newton's Laws
- Including the Laws themselves
\quad- Newton's Laws are Invariant

Absolute Quantities in Newtonian Physics

- Length - All
- Time agree on the value of
- Mass • Stationary observers
- Force and
- Acceleration
- Moving observers
- Laws of Mechanics

Relative Quantities in Newtonian Physics
$\left.\begin{array}{ll}\text { - Velocity } & \text { - Measured values of } \\ \text { these quantities will be } \\ \text { - Momentum } & \text { - For observers in } \\ \text { - Kifferentic Energy frames of } \\ \text { reference }\end{array}\right\}$

Galileo
- Gave the first sensible answer to our
question about Absolute Motion
- He said Mechanical Experiments
- $\underline{\text { cannot }}$ detect Absolute Motion
- There is $\underline{\text { no way }}$ to detect Absolute Motion
- by doing a $\underline{\text { Mechanical }}$ Experiment

Galileo

- Recall our demonstration about falling balls - A Mechanical experiment
- Do the experiment in the lab
- Both land at the same time ($\approx 1 / 2$ second $)$
- Do the experiment in an airplane
- At an altitude of 7 miles above the ground
- Moving 500 mph relative to the ground

Galileo

- I get the exact same result in the plane
- They take the same time to land as in the lab
- They still land simultaneously
- The results must be the same
- otherwise I could tell from the experiment that I was moving

Principle of Relativity

- According to Galileo
- The Laws of Mechanics are not changed by inertial motion
- There is noway to detect inertial motion by doing a Mechanical Experiment
- You cannot detect inertial motion unless you look out the window
- See a different reference frame!

Principle of Relativity

- Inertial Motion \Rightarrow constant Velocity
- We cannot "feel" Inertial Motion
- We only feel the Accelerations
- The changes in Velocity
- Example: Only feel the bumps and turbulence

To review:

- Relative Velocity
- Speed of one observer as measured by another
- The Theory of Relativity
- Describes how different observers with
different relative velocities view an event
- A theory about motion, space and time

- The "Facts are Relative"
- Different observers, different measured values
- The "Law is Absolute"
- All observers agree that Energy is conserved.
- However, a new field of study was emerging to challenge these concepts... - Mid 1800's

Electromagnetism	
- Galileo's Principle of Relativity	
- "Mechanical experiments" cannot detect	
Inertial Motion	
- When Maxwell developed his theory	
	- of Electromagnetism, it raised a possibility...
- Can Electrical or Magnetic experiments	
detect Inertial Motion?	

	James Clerk Maxwell (1831-1879)
- Born in Edinburgh,	
Scotland	
- Brilliant but shy Scotsman	
- Studied Math, Astronomy,	
Chemistry, Electricity/Magnetism - Died at age 48 of abdominal cancer	

James Clerk Maxwell
- Published his first paper when 15 years old
- Math paper on ovals
- Graduated from Trinity College (England)
in 1854
- Degree in Mathematics
- Mostly self-taught though

James Clerk Maxwell

- Mathematically proved the rings of Saturn had to be small particles (not solid rings) in order to be in a stable orbit
- Confirmed by Voyager I spacecraft in March 1979.

James Clerk Maxwell

- Most important work (in 1873)

New finking Electricity and Magnetism

- Helped formulate
- Called Maxwell's Equations today
- They prove that light is an E\&M wave!
- the Kinetic Molecular Theory
- One of the greatest mathematical achievements of $19^{\text {th }}$ Century Physics!

Electromagnetism

- Maxwell's theory explains
- both Electricity and Magnetism
- A combined (unified) theory
- More on this in a later chapter.
- Before Maxwell, E\&M
- were considered separate, distinct phenomena
- Maxwell showed they are related
- Gave a unified theory of E\&M

Electric Charge

- Static Electricity
- That "shock" you get from a rug
- Holds a balloon to a wall
- Caused by the transfer of Electric Charge
- from one object to another
- Electric charge cannot be created or destroyed!
- Another of those conservation laws...

Electric Charge

- Electric Charge is conserved!
- Every known process conserves charge
- Total amount of Charge never varies
- A violation has never been observed
- Charge cannot be created or destroyed
- Charge can only be transferred

Electric Charge
- There are two kinds of Electric Charge
- Named by Benjamin Franklin
Positive Charge $\oplus \quad$Negative Charge carried by Protons carried by Electrons - Note: Electrons are very light - so they are much easier to move than Protons - Proton mass ~ 2000 x electron mass

Electric Charge	
Like charges REPEL	
$\underset{\text { Electric Force }}{\Leftarrow} \oplus \oplus$	Electric Force
Opposite charges ATTRACT	
$\oplus \rightleftharpoons \Leftarrow \ominus$ Electric Force	

What holds a balloon to the wall?

- The balloon starts out "Neutral"
- Equal amounts of Positive and Negative charge
- Rub the balloon on your hair
- Transfers electrons from Balloon to Hair
- Balloon is now positively charged \oplus
- Hold balloon against the wall
- Negative charges in wall attract positive Balloon

$$
\Theta \rightleftharpoons \Leftarrow \oplus
$$

- A property of Electric Charges
- The Field is "associated" with a Charge
${ }_{67}$

Electric Fields

- Every Electric Charge
- creates an Electric Field which exerts
- an Electric Force on other Electric Charges
- Every Electric Charge
- is influenced by the Electric Field
- created by other Electric Charges

Electric Fields

- The Electric Field is a vector
- Magnitude "how much"
- Stronger Field \Rightarrow larger Force
- Direction "which way"
- Points the way a positive charge would move
- Away from \oplus Toward Θ

Electric Fields

- The total Electric Field
- is the vector sum of all the Electric Fields
- of all the Electric Charges present
- The total Electric Field depends on
- Geometry: how the charges are arranged
- Kinds of Charge: Positive or Negative

Electric Fields

- We can draw the Electric Field
- using Arrows
- Arrows tell us the magnitude
- Closer together \Rightarrow stronger Field
- Arrows tell us the direction
- Point the way a positive charge would move

Electric Fields

- Electric Fields are a useful way
- to calculate the total Forces exerted
- by a collection of Electric Charges
- Electric Fields are a property of static Charges - Static \Rightarrow not moving
- What happens when they are moving?

Magnetic Fields

- Moving Electric Charges constitute - an Electric Current
- Electric Currents are measured in Amps - An electrical unit you may know
- Every known Magnetic effect is due to Electric Currents -- moving Electric Charges!

Magnetic Fields
- Electric Currents create Magnetic Fields
- Bar Magnets
- Comprised of small individual currents
- Electrons moving in Atoms
- Every Atom is a small Magnet
- Permanent Bar Magnet \Rightarrow Atoms lined up

Magnetic Poles
- There are two kinds of Magnetic Poles
- Magnetic version of Electric Charges
North Poles $\mathbf{N} \quad$ South Poles S
- Note: there is an important difference
- Magnetic Poles $\underline{\text { always come in pairs! }}$

Magnetic Fields

- Every moving Electric Charge
- creates a Magnetic Field which exerts
- a Magnetic Force on other moving Charges
- Every moving Electric Charge
- is influenced by the Magnetic Field
- created by other moving Charges

Magnetic Fields

- The Magnetic Field is a vector
- Magnitude "how much"
- Stronger Field \Rightarrow larger Force
- Direction "which way"
- Points the way a North monopole would move
- Away from N, Toward S

Magnetic and Electric Interactions
- Maxwell unified E\&M
\quad - Showed Electricity and Magnetism are related
- There are relationships among
\quad- Electric Charges - Electric Fields

Magnetic and Electric Interaction
- They are all interrelated!
- Start with a stationary Electric Charge
- Apply an Electric Field
\quad- Exerts an Electric Force on Charge - So it accelerates \Rightarrow it moves! $\boldsymbol{F}=\boldsymbol{m a} \boldsymbol{a}$ - Now we have a moving Electric Charge - which creates a Magnetic Field

Relationships among q, E, B

1. Electric Charges create Electric Fields
2. Electric Fields exert Electric Forces
3. Moving Charges create Magnetic Fields
4. Magnetic Fields exert Magnetic Forces
5. Changing Mag.Field creates an El.Field
6. Changing El.Field creates an Mag.Field

Light

- The final piece to our puzzle...
- In his theory of E\&M, Maxwell proved
- Light is a wave of changing E and B fields
- He even predicted the speed of light

$$
\begin{aligned}
c & =186,000 \frac{\text { miles }}{\mathrm{sec}} \\
& =670 \text { Million } \frac{\text { miles }}{\text { hour }}
\end{aligned}
$$

Light

- Light is an electromagnetic wave
- Oscillating Electric \& Magnetic Fields
- Travels through space at the Speed of Light
- Many experiments showed - the wave nature of Light
- This raised a new question: - What is waving?

Light

- Most Waves need a medium
- Sound waves need Air
- Ocean waves need Water
- A Wave is a disturbance in the medium
- Light can travel through a vacuum
- There is nothing to disturb in empty space
- So there is nothing "waving"
- So what is being disturbed????
Light
- So Physicists invented the "Ether""
- Light is a disturbance in the Ether
- The Ether is $\underline{\boldsymbol{v e r y}}$ strange stuff...
- Fills all of space
- Massless, yet very stiff (Light is Fast!)
- Wave velocity is proportional to medium stiffness
- Does not affect the motion of objects
- At rest relative to Absolute Space

Problems

- Since the Ether was "at rest"
- Relative to Newton's Absolute Space
- Detecting the Ether offered a chance - to define an Absolute Frame of Reference
- Using E\&M offered a chance to evade - Galileo's Principle of Relativity

More Problems

- According to Galileo-Newtonian relativity - $\underline{\text { All }}$ Forces are INVARIANT
- This contradicts Maxwell!
- Magnetic Force is RELATIVE: $F=q v B$
- Depends on Frame of Reference
- Depends on Relative Velocity!

Velocity

More Problems

- This could be used to violate
- Galileo's Principle of Relativity
- Measure the Force on a moving Charge
- In two different Frames of Reference
- The Lab (at rest relative to Earth)
- A Car (moving relative to Earth)
- Compare results
- Gives information on the velocity of the Earth!

Special Relativity

The situation around 1900 was this:

- No experimental evidence for the ether
- None at all!
- Relative nature of the Magnetic Force
- on a moving Electric Charge
- violates Galilean-Newtonian Relativity!

The Problem

No experimental evidence for the ether!

- The experimental apparatus could detect - an effect 40 times smaller than the theory predicted
- Yet it detected nothing, zero, nada, zilch, zip
- A "null result"
- We still detect nothing even today!

Albert Michelson (1852-1931)

- Graduated from U.S. Naval Academy @ 21
- Stayed on for 4 years as a science instructor
- Measured the speed of light so well that his value was the standard for the next 30 years!
- Won the Nobel Prize in 1907
- Was a Professor of Physics at CWRU (1883) - Met Chemistry Prof Edward Morley there
- First Chair of the new Physics Dept at the University of Chicago.

Michelson-Morley Experiment
- Conducted for the $1^{\text {st }}$ time in Germany
- While serving as a Naval Attaché prior to WWI
- Repeated multiple times in Cleveland
- Over a 25 year span
- All with negative results
- No ether ever detected!

The Problem

Relative nature of the Magnetic Force

- Maxwell's successful theory of E\&M...
- Predicted the value for the Speed of Light
- Explained all Electromagnetic phenomena
- ...contradicted Galilean-Newtonian relativity
- Which claimed all Forces are ABSOLUTE!

The Solution

- There were many scientists
- Working on these problems
- Some were very close to a breakthrough
- Many were ready for a new theory
- And accepted the new one quickly
- Even though it was revolutionary!
- But only one solved the problems...

Albert Einstein
- Showed no particular intellectual promise
- A somewhat "typical" student
- Did very well in what interested him
- Math and Science
- Did badly in most others
- And dropped out of high school

Albert Einstein
- After leaving high school
- Bummed around in Italy for a while
- To avoid compulsory German military service
- Renounced his German citizenship in 1896
- Entered college in 1895 in Switzerland
- Had to cram for the entrance exam
- Barely passed the non-science parts

Albert Einstein

- Not a particularly good college student - Disliked regimented style
- Skipped classes often to read Physics
- Caused an explosion in a lab
- He was a horrible experimentalist!
- Good thing he became a theorist!
- Graduated only with the help of a friend - who shared his class notes

Albert Einstein
- Graduated in 1900
- Tried to get an academic position
- No letters of recommendation
- Told he'll "never amount to anything"
- Not a Swiss citizen, because he was a Jew
- Eventually gained citizenship in 1901
- No connections \Rightarrow No academic job!

Albert Einstein
- Sometime during his "drop out" year
- When he was only 16
:---
"What would happen if I was moving at
the speed of light."
- Later in college he changed it slightly:
"What would a light ray look like to an
observer moving at the speed of light?"

Light

- This is called a "traveling wave"
- A wave that travels from one place to another
- Consider a simple analogy
- A wave moving down a taut rope
- Snap one end of the rope
- A single wave travels along the rope

Light
- A "stationary" observer
- Sees a moving wave
- An observer moving with the wave
- In the same direction with the same speed
- Sees the wave just standing there
- This is called a "standing wave"

More Problems: The Speed of Light	
- Measure the Speed of Light	
On a moving Train	$c+v$
Subtract Maxwell's value	$-c$
Determine Inertial motion	v
- Violates Galilean relativity	
- Detect motion without looking outside	130

The Solution
- The Special Theory of Relativity
- Published in 1905 by Einstein
- A big part of his "miracle year"
- Published 5 papers and got his Ph.D. in 1905
- Received the Nobel Prize in 1921
- Only two such years in history of Physics
- Newton's year in 1666
- Einstein's year in 1905

Albert Einstein - All five were landmark papers - One on the Photoelectric Effect: - quantum theory of light - Nobel Prize material - Two on Brownian Motion - proved the existence of molecules - Two on Special Relativity - Our current topic	
	${ }^{132}$

Light

- So, to our moving observer - moving at the Speed of Light
- The Light wave would be
"A standing wave of changing Electric and Magnetic Fields"
- But Standing Waves are NOT allowed - in Maxwell's E\&M theory!

Maxwell and the Speed of Light

In Theory (believed by most to be correct),

- The only speed allowed for Light
- is $\underline{t h e}$ Speed of Light: $c=186,000 \frac{\text { miles }}{\text { sec }}$
- There is no allowance for the Speed of Light - Relative to an inertial observer
- It was an Absolute quantity!
- And Einstein noticed another problem... - While riding on the train to work

The Special Theory of Relativity

- Published in 1905 by Einstein

A big part of his "miracle year"

- Published 5 papers and got his Ph.D. in 1905
- Received the Nobel Prize in 1921

Only two such years in history of Physics

- Newton's year in 1666
- Einstein's year in 1905
- Einstein resolved all these problems
- By making two postulates
- A Postulate is an assumption
- He knew that if the postulates were right - then all the problems are solved

The Two Postulates

- His was a theoretical explanation - "On the Electrodynamics of Moving Bodies"
- Both postulates have since been confirmed - experimentally and conceptually
- Einstein simply recognized
- "the way it should be and must be"
- Knew they were correct even without an experiment!

1. "The Laws of Physics are INVARIANT in all inertial reference frames."

- The Laws of Physics are $\boldsymbol{A B S O L U T E}$

This postulate is not difficult to accept!

The First Postulate
- This is an upgrade of Galileo's statement
Laws of Mechanics \rightarrow Laws of Physics
- Now there is no way to determine Inertial
Motion without looking outside
- Not just no mechanical experiment
- But no experiment at all!

The First Postulate
- Since the Laws of Physics are $\underline{\text { ABSOLUTE }}$
- We can not determine Absolute Motion
- by any experiment
- All Inertial Reference Frames
$\quad-$ are $\underline{\text { equally } \text { valid }}$
- So $\underline{\text { all }}$ Forces are $\underline{\text { RELATIVE! }}$ -

The Second Postulate

2. "The Speed of Light is INVARIANT in
all inertial reference frames."

- The Speed of Light is $\boldsymbol{A B S O L U T E}$.

This one gets a little strange if you really think about it, which we will...

The Second Postulate
- Eliminates all the Speed of Light loopholes
- which violated the Principle of Relativity
- But this is new and different!
- The Speed of Light is $\underline{\text { ABSOLUTE }}$
- The Speed of Light is independent
- of the motion of the observer

Special Relativity

- With pure genius, Einstein had "fixed" it! - He concluded the Ether concept was garbage - Completely unnecessary!
- But there are other consequences - of his revolutionary new postulates
- The rest of the theory...
- and this chapter
- ...are about those consequences!

To review:

- Trouble with Light
- No experimental evidence for Ether
- Speed-of-Light "standing wave" not allowed
- Measure Speed of Light while moving
- Detect Inertial Motion
- Violates Principle of Galilean-Newtonian Relativity
- Relative nature of Magnetic Force
- Violates Principle of Relativity
- Contradicts Newton

The Second Postulate

- Explains the failure of all attempts to detect the Ether
- Used variations in the Speed of Light
- Due to the motion of the Earth
- If the Speed of Light is $\boldsymbol{A B S O L U T E}$
- there is no way to detect the Ether
- It is a useless concept in Physics
- Its existence cannot be determined!
- The Solution: Einstein's 2 Postulates
- Laws of Physics are INVARIANT
- There is no way to detect inertial motion by doing $\boldsymbol{a n} \boldsymbol{y}$ experiment
- Speed of Light is INVARIANT
- All inertial observers measure the Speed of Light to be $c=186,000 \frac{\mathrm{miles}}{\mathrm{sec}}$
- This value is independent of the relative speed between the Observer and the Light Source

Special Relativity	Special Relativity
- Einstein's Two Postulates - had many surprising consequences - Redefined the meaning of some basic concepts	- The "Special" in Special Relativity - Refers to the fact that it refers only to Inertial Reference Frames
- We'll need new concepts of Space and Time - The Space interval between two events - The Time interval between two events	- Special Relativity applies to - motion at constant velocity only! - No Accelerations!
${ }^{151}$	

Four Consequences

- Four consequences of the Postulates

1. Space and Time Intervals
2. The Addition of Velocities
3. Inertia
4. Energy

- Plus a bonus story...
- Now, things get tricky...

1. Space and Time

- Space and Time are abstract concepts -We need a simple definition.
- Einstein's definitions:
- Space is what a meter stick measures.
- Time is what a clock measures.
- These practical definitions are - based on physical measurements and - the Light that carries the information

A Light Clock

- Let's start with the Time Interval
- between two events as seen in two different Inertial Reference Frames
- Our two events: "Tick" and "tock"!
- We'll use a Light Clock
- measure the Time Interval between two events
- using the Speed of Light

The Clock Frame

- First we'll look at the Time Interval... - Between "Tick" and "Tock"
- ...in the Clock Frame:
- The Inertial Reference Frame - that is at rest relative to the clock
- We and the Clock are in the same Frame - No relative velocity between us!

The Clock Frame

- In the Clock Frame
- The Clock is at the same place
- when the "Tick" and "Tock" happen
- This Time Interval is called the Proper Time
- The Time Interval measured in the reference frame where the Clock is in the same place

Space and Time

- Basic Physics review for Inertial Motion - Motion at constant velocity

$$
\text { Time }=\frac{\text { Distance }}{\text { Speed }}
$$

- Drive 100 miles at 50 miles per hour... - The trip takes 2 hours

The Clock Frame
- For our Light Clock
- in the Clock Frame
- The Distance traveled is twice the Length
- Back and forth
- The Speed is the Speed of Light
- Light is doing the traveling

The Lab Frame

- Now we'll look at the Time Interval
- between the same two events
- ...in the Lab Frame:
- The Inertial Reference Frame - in which the clock is moving.
- We are sitting in the Lab
- The Clock has velocity v relative us!

The Lab Frame
- In the Lab Frame
- The Clock is not at the same place
- when "tick" and "tock" happen
- During the Time between the two events
- the Clock has moved

Space and Time

- Now recall the $2^{\text {nd }}$ Postulate - The Speed of Light is ABSOLUTE
- The Light's speed between "Tick" and "Tock" - is the same in both Frames
- That's what ABSOLUTE means! - Same value in ALL Inertial Reference Frames

Space and Time
- In the Lab Frame
- the Light travels a longer distance: $D>L$
- at the same speed: \boldsymbol{c}
- Time Interval is $\underline{\text { Longer in the Lab Frame }}$
- Longer distance at the same speed!
- The clock is running slower in the Lab!
- This is a direct result of the 2 ${ }^{\text {nd }}$ Postulate!
- The Speed of Light is ABSOLUTE!

Time Dilation
- This is called Time Dilation
- Dilate means "to become larger"
- The Time Interval in the Lab Frame...
- between the same two events
- The same "Tick" and "Tock"
- ..is $\underline{\text { larger }}$ than that in the Clock Frame!

Moving Clocks Run Slow!

- This has nothing to do with our Clock - It is after all a rather strange clock
- This is a property of TIME
- Not a property of Clocks
- The Clock just measures TIME

Space and Time

- Now let's look at the Space Interval
- between two events as seen in two different Inertial Reference Frames
- Same two events: "Tick" and "Tock"!
- We'll still use the Light Clock
- Measure the Space Interval between two events
- Using the Speed of Light

Length Contraction

- This is called Length Contraction - Contract means "to reduce in size"
- The Space Interval
- between the same two events
- The same "Tick" and "Tock"
- ...is shorter for the moving Clock
Length Contraction
- If the object is a meter stick
- its Rest Length is 1 meter
- Moving at 60% of the Speed of Light
- its velocity is $v=(3 / 5) c$
- We would measure its Length to be $4 / 5$ meter
- Only 80% of its Rest Length!

Moving Objects Are Shorter!

- They are shorter
- along the direction of the motion
- so their height is not affected at all!
- This is a property of SPACE - Not a property of objects
- The object just occupies the SPACE
- Space Intervals are RELATIVE!

Length Contraction

The faster you move through Space,
the less Space you occupy!
(along the direction of motion only)
Space and Time

- Both of these effects are a direct result
- of the $2^{\text {nd }}$ Postulate

- Remember what "speed" means
Speed of Light
$=\frac{\text { Distance Traveled by Light }}{\text { Elapsed Time }}$

$=\frac{\text { Space Interval }}{\text { Time Interval }}$

Space and Time

- Both intervals change so that their ratio - The Speed of Light
- Remains INVARIANT
- Space and Time are interrelated - Both are part of one entity called Space-Time
- We live in a 4-dimensional Universe! -3-D Space + 1-D Time $=4$-D Space-Time

Space and Time

- The concepts of Space and Time..
- Space interval between two events
- Time interval between two events
- ...are no longer separate!
- Space-Time interval between two events
Space-Time

- Einstein showed the Space-Time Interval
- between two events
- Is INVARIANT!
- All observers agree on the Space-Time
Interval Between two events - This too is a direct result of the $2^{\text {nd }}$ - The Speed of Light is ABSOLUTE
Space-Time Interval

The Speed of Light

2. Addition of Velocities

- How does the speed of an object... - in one Inertial Frame of Reference
- ...transform into another Inertial Frame?
- By the Addition of Velocities

Remember the kids playing catch in the truck?

- Let's assume this time that you (a pedestrian) are playing catch with someone in the back of the truck.

Addition of Velocities
- According to Isaac Newton
- If \boldsymbol{u} is the speed of the ball relative to the truck
- If \boldsymbol{v} is the speed of the truck relative to you
- Then the speed of the ball relative to you is
\boldsymbol{U} +

Addition of Velocities

- Space and Time are RELATIVE
- We need a rule for adding velocities that - includes the different rate of Time and the different size of Space for the two different Reference Frames
- Einstein provides us with such a rule - Of course... It's his theory, it's his solution!

Addition of Velocities

- Now suppose we replace our thrower - with a Light Source
- According to Newton
- If \boldsymbol{v} is the speed of the truck relative to you
- If \boldsymbol{c} is the Speed of the light relative to the truck
- Then the speed of light relative to you is

$$
c+v
$$

Addition of Velocities

- Why don't we notice this different rule?
- There is an extra term in Einstein's rule: $\frac{u v}{c^{2}}$
- The " c^{2} " is a huge number: $\approx 10^{17} \mathrm{~m}^{2} / \mathrm{s}^{2}$

$$
1+\frac{u v}{c^{2}}=1+\mathrm{a} \text { tiny number }
$$

Addition of Velocities			
\boldsymbol{u} \boldsymbol{v} Newton Einstein 60 mph 30 mph 90 mph 90 mph 186 mps 18.6 mps 204.6 mps 204.59998 mps $0.6 \boldsymbol{c}$ $0.3 \boldsymbol{c}$ $0.9 \boldsymbol{c}$ $0.763 \boldsymbol{c}$ $0.5 \boldsymbol{c}$ $0.5 \boldsymbol{c}$ \boldsymbol{c} $0.800 \boldsymbol{c}$ $0.75 \boldsymbol{c}$ $0.75 \boldsymbol{c}$ $1.5 \boldsymbol{c}$ $0.960 \boldsymbol{c}$ $0.9 \boldsymbol{c}$ $0.6 \boldsymbol{c}$ $1.5 \boldsymbol{c}$ $0.974 \boldsymbol{c}$ \boldsymbol{c} $0.5 \boldsymbol{c}$ $1.5 \boldsymbol{c}$ \boldsymbol{c} \boldsymbol{c} \boldsymbol{c} $2 \boldsymbol{c}$ \boldsymbol{c}			

Addition of Velocities

- The effects of Special Relativity - are noticeable only at very high speeds
- Even at 186 miles per second ($1 / 1000$ c)
- Newton and Einstein are very close
- The human speed record: ${ }^{1 / 27000} \boldsymbol{c}$
- The Apollo astronauts returning from the moon - $6.89 \mathrm{miles} / \mathrm{sec}=24,800 \mathrm{mph}$
- There seems to be an upper limit on speed... - A "cosmic speed limit" 200

Addition of Velocities

- So what about our moving Light source?
- According to Einstein:
$\frac{u+v}{1+\frac{u v}{c^{2}}}=\frac{c+\frac{1}{2} c}{1+\frac{(c)\left(\frac{1}{2} c\right)}{c^{2}}}=\frac{\frac{3}{2} c}{\frac{3}{2}}=c$
- The $2^{\text {nd }}$ Postulate holds!

Addition of Velocities

- Even if the truck is moving at Light Speed
- According to Einstein:

$$
\frac{u+v}{1+\frac{u v}{c^{2}}}=\frac{c+c}{1+\frac{(c)(c)}{c^{2}}}=\frac{2 c}{2}=c
$$

- The $2^{\text {nd }}$ Postulate still holds!

Newton's Laws

- Apply a constant Force
- produce a constant Acceleration
- According to Newton...
- If you push long and hard enough - your speed will exceed the Speed of Light
- For an acceleration of one " g " $\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)$ - it takes about a year to get to Light Speed

3. Newton's Laws and Inertia

- The Speed of Light is a natural speed limit
- No object's speed can ever exceed
- or even equal the Speed of Light
- It is a consequence of the $2^{\text {nd }}$ Postulate
- But there is $\underline{\boldsymbol{n} \boldsymbol{o}}$ speed limit in Newton's Laws

Newton's Laws

- Recall Newton's $2^{\text {nd }}$ Law

$$
F=m a \quad \Leftrightarrow \quad a=\frac{F}{m}
$$

- Relates cause and effect
- Cause: Force
- Effect: Acceleration (changes in motion) 202

Newton's Laws

- This is $\underline{\boldsymbol{n o t}}$ allowed in Special Relativity
- But even Einstein can't change
- how hard you can push
- or how long you can push
- So how can he limit the speed of the object? - Where does the cosmic speed limit come from?
- So what does happen??

Newton's Laws
- According to Einstein
- Acceleration is RELATIVE
• it's based on a change in velocity after all
- As the speed increases
- the acceleration must decrease
- So the Object's Inertia must increase
• Inertia is an opposition to a change in motion
- Inertia is the object's resistance
- to Changes in its motion
- and is determined by its Mass

Newton's Laws	
- Mass is RELATIVE!	
- As the object's speed increases	
- so does its Mass	
-So for the same amount of Force - there is less Acceleration	
Moving objects have more Mass! 	

Newton's Laws

- The faster the object is moving
- the more Mass it has
- The increase in Mass
- produces smaller and smaller Accelerations
- The speed is always less than Speed of Light
- Mass is RELATIVE

Energy	
- One big difference between... - Newton and Einstein	
- According to Newton an object at rest has no Energy	
- According to Einstein - even at rest, an object has Energy - A $\underline{\text { LOT }}$ of Energy...	
	${ }^{214}$

Energy

- The " c^{2} " is a huge number: $\approx 10^{17} \mathrm{~m}^{2} / \mathrm{s}^{2}$
- So a small amount of Mass
- can be converted to a huge amount of Energy
- One kilogram of Mass (about 2.2 pounds)
- completely converted to Energy
- would run the entire U.S. for 9 hours

Energy
- Unfortunately (The Big IF!)
- there is only one way known
- to completely convert Mass to Energy
- Combining Matter and Antimatter
- Just like on Star Trek
- Not yet feasible technologically or economically
- Antimatter is expensive to make, hard to handle

The Relativistic Factor: γ
- All of these new relativistic effects
- are extremely small for everyday velocities
- There is a way to calculate how small
- The Relativistic Factor: γ (gamma)
$\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$

The Relativistic Factor: γ

- The bigger the Relativistic Factor - the more important Relativity is
- For speeds small compared to Light Speed - we have $\gamma \approx 1$
- For speeds large compared to Light Speed - we have larger and larger γ

The Relativistic Factor: γ

- At a speed of $1 / 10 \boldsymbol{c}$, we have $\gamma=1.005$
- about 67 million miles per hour
- The predictions of Newton and Einstein
- are only different by $1 / 2$ percent
- About 1 part in 200
- So if Newton says the answer is 200
- Einstein says it is 201

The Tale of the Traveling Twin

- Let's do our own thought experiment...
- Suppose we have two twin astronauts
- Each is 30 years old at the start of the trip
- One travels to a some star and returns
- The other stays on the Earth
- When they are reunited
- which twin is older?

The Tale of the Traveling Twin

- Let Twin A be the Space Traveler - So Reference Frame A is her point of view
- Then Twin B is the Mission Controller
- Reference Frame B is the Earth's point of view
- Let's see what Special Relativity has to say

The Tale of the Traveling Twin

- Let's go to the star Vega
- Distance: 25 light years (in Frame B)
- Let's travel at a speed of $\boldsymbol{v}=0.999 \boldsymbol{c}$
-99.9% of the Speed of Light
- At this speed we have
- Relativistic Factor: $\gamma=22$
- We expect Relativity to be important here

A Light Year
- A Light Year
- The distance Light travels in one year
- It is a unit of $\underline{\text { Distance, not Time! }}$
- Approximately 6 trillion miles
- Or 6 million million miles
- So it takes the Light from Vega
- 25 years to reach us here on Earth

Frame of Reference B

- As measured by clocks on Earth
- This trip takes a time of

$$
t_{B}=\frac{2 L_{B}}{v}=50 \text { years, } \frac{1}{2} \text { month }
$$

- Twin B is 50 years, $1 / 2$ month older - So he is 80 years, $1 / 2$ month old!

Frame of Reference A

- As measured by clocks on the Ship
- This trip takes a time of

$$
t_{A}=\frac{2 L_{A}}{v}=2 \text { years, } 3 \text { months }
$$

- Twin A is 2 years, 3 months older
- So she is 32 years, 3 months old!

The Tale of the Traveling Twin

- Twin A sees Earth and Vega moving
- so the distance between them is contracted
- In her Frame of Reference
- They are closer in her frame: $L_{A}<L_{B}$
- So the trip takes less time in her frame - Same relative speed, shorter distance

The Tale of the Traveling Twin
- By traveling at a very fast speed - very near the Speed of Light
- Traveler A slowed her rate of time - Moving fast through Space - Moving Slowly through Time
The Tale of the Traveling Twin - This effect is sometimes called - The Twin Paradox - Paradox: "something that seems to contradict or oppose common sense"
- Why?

The Tale of the Traveling Twin

- Twin B sees Twin A move off and return
- So Twin A's clocks run slowly
- Twin A ends up younger
- Twin A sees Twin B move off and return
- So Twin B's clocks run slowly
- Twin B ends up younger
- Is each point of view is equally valid?

The Tale of the Traveling Twin
- No!
- Special Relativity says
- All Inertial Reference Frames are equally valid
- Twin A uses two Inertial Frames
- One "out" and one coming back
- She turns around
- So there were Forces and Accelerations
- No longer inertial reference frames!!

Minkowski Diagrams

- Also called "Space-Time Diagrams"
- A graph of Time versus Distance
- Time is plotted on the vertical axis
- Space is plotted in the horizontal axis
- Let's look at our two Twins

Minkowski Diagrams

- Twin B stays at the same place
- Only "moves" through Time
- Twin A changes location in Space
- And also "moves" through Time
- We see that see used two Inertial Frames!
- She will be younger!
- Let's look at some different trips...

Minkowski Diagrams

- Both leave at the same time
- Travel in opposite directions
- They both stop at the same Time
- Where they turn around and return home
- Both will be at the same age upon return

Minkowski Diagrams

- Twin A leaves first
- Twin B stays home for a while, leaves later
- Travels faster and catches up to Twin A
- Meet at the same place at the same Time
- Twin B will be younger
- Can prove this after much much math!

Summary of Special Relativity

- Moving Clocks run slower
- Time Dilation
- Moving Objects are Shorter
- Length Contraction
- Space, Time, and Mass are RELATIVE - Space-Time is ABSOLUTE

Beyond the Special Theory of Relativity

- The Special Theory of Relativity only covers the "special" case
- of inertial reference frames
- non-accelerated reference frames
- It gives the correct equations for transformations - between two reference frames moving at constant velocities with respect to each other

Beyond the Special Theory of Relativity

- Einstein wanted equations which were much more general than these special ones
- so he devised a "general" theory to cover all reference frames, inertial and non-inertial.
- This theory is called the General Theory of Relativity and is $\boldsymbol{M U C H}$ more difficult mathematically.
- Took 10 years of work to develop this new theory (published in 1916).

The General Theory of Relativity

- Called GenRel for short
- He started with an observation that both Newton's 2nd Law and his Universal Gravitation Law both contained the same quantity - the object's mass
- $\underline{\text { Inertial mass }}$ in the former $\quad F=m a$
$-\underline{\text { Gravitational mass }}$ in the latter $\quad F=G \frac{m_{1} m_{2}}{r^{2}}$

The General Theory of Relativity

- Since these were two separate laws, the masses did not necessarily need to be the same
- Precision experiments were carried out which proved the two masses were in fact the same
- Einstein thought that this was not coincidental and that the acceleration in the 2nd law was related to the gravitational acceleration in the gravitational law.

The General Theory of Relativity

- Proposed his Equivalence Postulate - It is impossible to distinguish a gravitational force from an equivalent acceleration induced force
- If you were standing in a space ship moving with an acceleration of g, then you would feel the same force as if you were standing on the Earth's surface
- You couldn't tell the difference!

The General Theory of Relativity

- A force is being simulated by an acceleration
- Any effect which could be described by an accelerated reference frame
- could also be described as a gravitational effect

The General Theory of Relativity

- In an accelerated reference frame, even a beam of light would be bent
- This led Einstein to conclude that a gravitational field would alter (bend) the path of a beam of light!

The General Theory of Relativity

- Einstein interpreted the bending of the light as representing a curvature of space itself
- Since the motion of the ship occurs in curved space, gravity was just an effect induced by moving through this curved space.
- Large concentrations of mass (stars, planets) curve the space around them
- Any motion through this space causes an acceleration due to the curvature which we feel as gravity
- Just as you "feel" a force pushing you outward as you round a curve in your car

The General Theory of Relativity

- The General Theory is much more than this; I've just scratched the surface
- The General Theory has been tested many times and has always been found correct!

The General Theory of Relativity

- General Relativity says that the properties of space
- are dependent on gravitational forces and the presence of matter
- It also says the properties of space-time are determined by light rays
- Electromagnetic waves

The General Theory of Relativity

- A star's light is bent around the Sun as seen during an eclipse (in 1919).

The General Theory of Relativity

- Einstein believed these effects were related
- He spent the rest of his life trying to "unify" them into one overall theory
- The effort continues today to discover this single unified-field theory
- More on this in Chapter 9

The General Theory of Relativity

- The precession of the planet Mercury's orbit can only be completely explained by the General Theory.

