Chapter 6: Idea 5

Electromagnetism and Relativity

The <u>facts</u> are relative, but the <u>law</u> is absolute.

When you understand this statement, then you understand Relativity!

The Big Three

- The Structure of DNA

 Watson and Crick, the Double Helix
- Quantum Mechanics
 Universe shaking Idea #6
 - The physics of the very small: atoms
- · The Theory of Relativity
 - Universe shaking Idea #5
 - The physics of the very fast

Introduction

- Relativity is an old idea
 Not invented by Albert Einstein
 But perfected by him
- Been around in various forms
 since the Copernican Revolution
- Questions about the moving Earth

 and the appearance of the night sky

Introduction

- We have taken an historical approach - to the study of Physics.
- We are now at the turn of the last century - the 20th century that is (so around 1900AD)
- There were three major scientific accomplishments in the 20th century – And two of them were in Physics!

Introduction

- Relativity does <u>not</u> say
 - "Everything is relative."
- In fact it says some things are <u>not</u> relative

 and explains the consequences of this
- If offers important new insights – on many fundamental quantities – Space, Time, Mass, Gravity

Introduction

- The modern Theory of Relativity

 is Einstein's resolution to some problems
 Some inconsistencies in Physics
- It changed our understanding of basic ideas
 Space and Time ↔ Motion
 Gravity ↔ Space
- · And it changed how we think about them...

Introduction

- The Theory of Relativity - describes how different observers view an event
- Description depends upon your point of view

 Depends on the <u>Relative Velocity</u> between the
 observer and the event
- By "different observers" we mean observers – with different Relative Velocity to the event

Introduction

- So Relativity is a theory about motion!

 Different observers ⇔ different description
 "Different" ⇒ different Relative Velocity
- To understand Relativity - we need to understand Motion
- · So we need to understand Space and Time!

Relative Velocity

- Position, Time, Velocity

 are all measured relative to something
- · We describe our Position (Location) as
- 10 miles due east of somewhere
 Or with Latitude, Longitude, Altitude
- relative to the Earth's center
- The distance traveled is the Space Interval – between start and finish

Relative Velocity

- We measure Time relative
 - to some starting reference point
 Relative to some date: 0 AD
 - Relative to some date: 0 AD
 Relative to some time: Class started at 11 AM
- We measure the elapsed Time
- from when the clock starts to when it stops
- The elapsed Time is the Time Interval – between start and finish

Relative Velocity

- When we say our speed is 65 mph - we mean 65 mph with respect to the road
- What is the relative speed between two cars?
 One going north at 50 mph relative to the road
 One going south at 50 mph relative to the road

13

• Let's see...

Relative Velocity

- So each car is moving at 50 mph - relative to the road
- But they are moving at 100 mph - relative to each other
- One hour later they will be 100 miles apart!
 Their Relative Velocity is 100 mph!

Trick Question?

- What is your velocity right now? - The answer depends upon your point of view
- You are at rest, so your velocity is zero

 with respect to the room
- Your velocity is about 67,000 mph - with respect to the Sun

17

• Which is the "right" answer?

Relative Velocity

• The "right" answer to the question ...

How fast are you going?

- ... is "relative to what?"
- The answer depends upon your point of view!

Absolute versus Relative

- To fully understand the Theory of Relativity
 – you <u>must</u> understand these two concepts!
- In Physics, we measure or calculate many quantities
 - Position, Velocity, Acceleration, Time
 - Mass, Momentum, Force
 - Kinetic Energy, Potential Energy
- · Do all observers get the same result?

10

22

25

Absolute versus Relative

- If a quantity is ABSOLUTE
 - <u>all</u> observers agree on its value
- Its measured value does <u>not</u> depend upon the relative velocity between observer and event

20

23

26

• Also called an "Invariant" quantity

Absolute versus Relative

- If a quantity is **RELATIVE**
 - <u>all</u> observers do <u>not</u> agree on its value
 - Its measured value does depend upon the relative velocity between observer and event
- · Also called a "Variant" quantity

Galilean-Newtonian Relativity

· Relativity is the answer to this question:

What is the true velocity of the Earth relative to absolute space?

· First we must answer another question:

What is "absolute space"?

Frames of Reference

- · Frame of Reference
- a 3-dimensional object used to describe motion
 A kind of map of 3-D Space
- A kind of map of 3-D space
 It is a mathematical device
- Remember the equant, eccentric, etc..
- Motion is measured - relative to a particular Frame of Reference
- Usually we are at rest - relative to our own Frame of Reference

Frames of Reference

- Each Frame has a Coordinate System

 A measuring device with numbers that is attached to the Frame of Reference
 Defines an "origin" – where the zero point is!
- We can measure the location of any event - by determining its three coordinates
- − Coordinates ⇔ where it is located in Space

24

Frames of Reference

- To measure an object's motion... – relative to a Frame of Reference
- ...we specify how its coordinates change

 as time goes by

Motion \Rightarrow change in Position

Measure Motion \Rightarrow change in Coordinates

- Frames of Reference
- Example: How fast can I cross a room?
- Reference Frame: Room
 We measure my motion relative to the room
- Coordinate System: Floor tiles
- We use the tiles to make the measurementsOrigin: start of the first tile

Frames of Reference

- My Velocity is described completely – in terms of the Frame of Reference
- The result would be different – in terms of a different Frame of Reference – or with respect to a different observer
- Because Velocity is <u>RELATIVE</u>!
 A variant quantity

Frames of Reference

- · Back to our question ...
- Absolute Space

 The Frame of Reference that is <u>at rest</u> relative to all other Frames of Reference
- Every observer would <u>always</u> agree on any

 measurement made relative to Absolute Space

Frames of Reference

- · There are two kinds of Reference Frames
- Inertial Reference Frames
 - Move at a constant velocity
 - Constant speed and direction
 The Earth is a good *approximation*
- Non-inertial Reference Frames
 Move at a changing velocity
 - Also called Accelerated Reference Frames

Relativity

- The Theory of Relativity

 Describes how observers view an event from different Frames of Reference
- By "different Frames of Reference"

 we mean Frames of Reference with different Relative Velocities to the event

33

Absolute versus Relative

- An <u>ABSOLUTE</u> quantity

 has the <u>same</u> value in <u>all</u> Inertial Reference Frames
 Example: the speed of light
- A <u>RELATIVE</u> quantity

 has a different value in different Inertial Reference Frames

34

· Example: an object's velocity

Relativity

- Velocity is a <u>*RELATIVE*</u> quantity

 Your velocity relative to an event obviously depends on your velocity relative to that event
- So the value we measure depends – upon what we use as a reference
- Recall our two cars:
 50 mph relative to road, 100 mph relative to each other

35

Relativity

· Since Velocity is relative, then...

Momentum: mvKinetic Energy: $\frac{1}{2}mv^2$ Potential Energy: E - KE

• ... are relative too. So?

Example

- Two kids are playing catch

 in the back of a pickup truck.
- They gently toss a ball back and forth... They can throw a ball about 5 mph ...while the truck drives at 100 mph.

37

Do not try this experiment at home.
 It only gets worse... ^(C)

- One of the kids gets carried away

 and throws the ball out of the truck.
- This happens as the truck passes

 a pedestrian waiting to cross the street, and the ball strikes the pedestrian in the head!
- · How fast is the ball moving when it hits?

29

Example

- · To the people in the truck,
 - the ball is moving at 5 mph.
 - Its Velocity is 5 mph <u>relative to the truck</u>.
- · To a person on the sidewalk,
 - The ball is moving at 105 mph.
 - Its Velocity is 105 mph <u>relative to the</u> <u>sidewalk</u>.

20

42

- Ouch!

Example

- In the truck frame of reference,
 - the ball has a small Velocity
 - and a small Kinetic Energy
- In the sidewalk frame of reference

 the ball has a <u>huge</u> Velocity
 - and a huge Kinetic Energy

Facts versus Laws

- The Facts are Relative
 Different values for Velocity, Kinetic Energy
- But the Laws are Absolute
 Newton's Laws are valid in both frames
 - Energy is Conserved in both frames
- All observers agree: Energy was conserved

 They just don't agree on how much was
 conserved!

Galileo

- · Gave the first sensible answer to our question about Absolute Motion
- · He said Mechanical Experiments - cannot detect Absolute Motion
- · There is no way to detect Absolute Motion - by doing a Mechanical Experiment

46

49

52

Galileo

- · Recall our demonstration about falling balls - A Mechanical experiment
- · Do the experiment in the lab - Both land at the same time ($\approx \frac{1}{2}$ second)
- · Do the experiment in an airplane - At an altitude of 7 miles above the ground - Moving 500 mph relative to the ground

47

Galileo

- I get the exact same result in the plane - They take the same time to land as in the lab - They still land simultaneously
- · The results must be the same - otherwise I could tell from the experiment that I was moving

49

Principle of Relativity

- · According to Galileo
 - The Laws of Mechanics are not changed by inertial motion
 - There is <u>no way</u> to detect inertial motion by doing a <u>Mechanical</u> Experiment
 - You cannot detect inertial motion unless you look out the window
 - · See a different reference frame!

Principle of Relativity

- Inertial Motion ⇒ constant Velocity
- · We cannot "feel" Inertial Motion
- · We only feel the Accelerations - The changes in Velocity · Example: Only feel the bumps and turbulence

To review:

- · Relative Velocity - Speed of one observer as measured by another
- · The Theory of Relativity - Describes how different observers with different relative velocities view an event
- · A theory about motion, space and time

· Reference Frame

- A 3-dimensional object used to describe motion – A kind of map of 3-D Space
- · Inertial Reference Frames
 - "Inertial" means constant velocity
 - Constant speed in a straight line
 - No accelerations!
- There is *no way* to detect inertial motion by doing a Mechanical Experiment

Absolute versus Relative

- ABSOLUTE • RELATIVE
 - Measured value does depend
 - Measured value does not depend on relative speed on the relative speed
- All observers get the same result
 - different relative speeds
 - with respect to the event ...get different results

Different observers ...

· The "Facts are Relative"

- Different observers, different measured values
- · The "Law is Absolute"
 - All observers agree that Energy is conserved.
- · However, a new field of study was emerging to challenge these concepts... - Mid 1800's
- 54

Electromagnetism

- When Maxwell developed his theory

 of Electromagnetism, it raised a possibility....
- Can Electrical or Magnetic experiments detect Inertial Motion?

~~

James Clerk Maxwell (1831-1879)

- Born in Edinburgh, Scotland
- Brilliant but shy Scotsman
 Studied Math, Astronomy, Chemistry, Electricity/Magnetism
- Died at age 48 of abdominal cancer

James Clerk Maxwell

- Published his first paper when 15 years old
 Math paper on ovals
- Graduated from Trinity College (England)
 in 1854
 - Degree in Mathematics
 - Mostly self-taught though

James Clerk Maxwell

- Mathematically proved the rings of Saturn had to be small particles (not solid rings) in order to be in a stable orbit
- Confirmed by Voyager I spacecraft in March 1979.
- Helped formulate
 the Kinetic Molecular Theory

James Clerk Maxwell

- · Most important work (in 1873)
 - 4 equations linking Electricity and Magnetism
 New field called Electromagnetism (E&M or EM)
 Called Maxwell's Equations today
 - They prove that light is an E&M wave!
 - One of the greatest mathematical achievements of 19th Century Physics!

Electromagnetism

- Before Maxwell, E&M
 were considered separate, distinct phenomena

61

• Maxwell showed they are related - Gave a unified theory of E&M

Electric Charge

- Static Electricity
 - That "shock" you get from a rug
 - Holds a balloon to a wall
- Caused by the transfer of Electric Charge - from one object to another
- Electric charge cannot be created or destroyed! – Another of those conservation laws...

62

Electric Charge

- · Electric Charge is conserved!
- Every known process conserves charge

 Total amount of Charge never varies
 A violation has <u>never</u> been observed
- Charge cannot be created or destroyed
 Charge can only be transferred

Electric Fields

- How do Electric Charges "feel" each other?
 A charge "here" can feel an electric force from another charge "there"
- · How is the Electric Force transmitted?
- By the Electric Field
 A property of Electric Charges
 - The Field is "associated" with a Charge

67

Electric Fields

- Every Electric Charge
 creates an Electric Field which exerts
- an Electric Force on other Electric Charges
- Every Electric Charge
 - is influenced by the Electric Field
 - created by other Electric Charges

Electric Fields

- · The Electric Field is a vector
- Magnitude "how much"
 Stronger Field ⇒ larger Force

Electric Fields

- The total Electric Field

 is the vector sum of all the Electric Fields
 of all the Electric Charges present
- The total Electric Field depends on

 Geometry: how the charges are arranged
 Kinds of Charge: Positive or Negative

71

Electric Fields

- We can draw the Electric Field – using Arrows
- Arrows tell us the magnitude
 Closer together ⇒ stronger Field
- Arrows tell us the direction
 Point the way a positive charge would move

Electric Fields

- Electric Fields are a useful way

 to calculate the total Forces exerted
 by a collection of Electric Charges
- Electric Fields are a property of <u>static</u> Charges
 Static ⇒ not moving

71

80

· What happens when they are moving?

Magnetic Fields

- Moving Electric Charges constitute
 an Electric Current
- Electric Currents are measured in Amps – An electrical unit you may know
- Every known Magnetic effect is due to Electric Currents -- moving Electric Charges!

Magnetic Fields

- Electric Currents <u>create</u> Magnetic Fields
- Bar Magnets

 Comprised of small individual currents
 Electrons moving in Atoms
- Every Atom is a small Magnet

 Permanent Bar Magnet ⇒ Atoms lined up

79

Magnetic Poles

There are two kinds of Magnetic Poles
 – Magnetic version of Electric Charges

North Poles \mathbf{N} South Poles \mathbf{S}

Note: there is an important difference

 Magnetic Poles <u>always</u> come in pairs!

84

87

is influenced by the Magnetic Field
created by other moving Charges

- The Force on a moving Electric Charge

 depends on the relative Velocity
 between the Charge and the Magnet
- So a "moving" Magnet exerts a Force
 on a "stationary" Electric Charge
 And vice-versa...
- The Magnetic Force is **<u>RELATIVE</u>**!

86

Magnetic Fields

- · The Magnetic Field is a vector
- Magnitude "how much"
 Stronger Field ⇒ larger Force
- Direction "which way"
 Points the way a North monopole would move
 - Away from N, Toward S

Magnetic and Electric Interactions

Maxwell unified E&M

 Showed Electricity and Magnetism are related

91

- There are relationships among
 - Electric Charges
 - Electric Fields
 - Magnetic Fields

- · They are all interrelated!
- · Start with a stationary Electric Charge
- Apply an Electric Field

 Exerts an Electric Force on Charge
 So it accelerates ⇒ it moves! F = ma
- Now we have a moving Electric Charge - which creates a Magnetic Field

Relationships among q, E, B

- 1. Electric Charges create Electric Fields
- 2. Electric Fields exert Electric Forces
- 3. Moving Charges create Magnetic Fields
- 4. Magnetic Fields exert Magnetic Forces
- 5. Changing Mag.Field creates an El.Field
- 6. Changing El.Field creates an Mag.Field

Light

- The final piece to our puzzle...
- In his theory of E&M, Maxwell proved – Light is a wave of changing E and B fields
- · He even predicted the speed of light

 $c = 186,000 \frac{\text{miles}}{\text{sec}}$

= 670 Million $\frac{\text{miles}}{\text{hour}}$

Light

· Light is an electromagnetic wave - Oscillating Electric & Magnetic Fields - Travels through space at the Speed of Light

101

104

- · Many experiments showed - the wave nature of Light
- · This raised a new question: - What is waving?

Light

- · Most Waves need a medium - Sound waves need Air
 - Ocean waves need Water
- · A Wave is a disturbance in the medium
- · Light can travel through a vacuum - There is nothing to disturb in empty space
- So there is nothing "waving"
 - So what is being disturbed????

102

Light

- · So Physicists invented the "Ether" - Light is a disturbance in the Ether
- The Ether is very strange stuff...
 - Fills all of space
 - Massless, yet very stiff (Light is Fast!) · Wave velocity is proportional to medium stiffness
 - Does not affect the motion of objects

103

- At rest relative to Absolute Space

Problems

- · Since the Ether was "at rest" - Relative to Newton's Absolute Space
- · Detecting the Ether offered a chance - to define an Absolute Frame of Reference
- · Using E&M offered a chance to evade - Galileo's Principle of Relativity

More Problems

· According to Galileo-Newtonian relativity <u>All</u> Forces are <u>INVARIANT</u>

· This contradicts Maxwell!

- Magnetic Force is <u>**RELATIVE**</u>: F = q v B- Depends on Frame of Reference
- Depends on Relative Velocity!
 - Velocity

109

More Problems

- · This could be used to violate - Galileo's Principle of Relativity
- · Measure the Force on a moving Charge - In two different Frames of Reference
 - The Lab (at rest relative to Earth)
 - A Car (moving relative to Earth)

· Compare results

- Gives information on the velocity of the Earth!

Special Relativity

The situation around 1900 was this:

- · No experimental evidence for the ether - None at all!
- · Relative nature of the Magnetic Force
 - on a moving Electric Charge
 - violates Galilean-Newtonian Relativity!

The Problem

- No experimental evidence for the ether!
- · The experimental apparatus could detect - an effect 40 times smaller than the theory predicted
- · Yet it detected nothing, zero, nada, zilch, zip - A "null result"
 - We still detect nothing even today!

Albert Michelson (1852 – 1931)

- · Born in Strzelno, Poland
- Came to U.S. in 1855 at age 3

112

115

Albert Michelson (1852-1931)

- Graduated from U.S. Naval Academy @ 21
 Stayed on for 4 years as a science instructor
 - Measured the speed of light so well that his value was the standard for the next 30 years!
 Won the Nobel Prize in 1907
- Was a Professor of Physics at CWRU (1883)
 Met Chemistry Prof Edward Morley there

111

114

• First Chair of the new Physics Dept at the University of Chicago.

Michelson-Morley Experiment

- Conducted for the 1st time in Germany
 While serving as a Naval Attaché prior to WWI
- Repeated multiple times in Cleveland - Over a 25 year span
 - All with negative results

The Problem

Relative nature of the Magnetic Force

- Maxwell's successful theory of E&M...
 Predicted the value for the Speed of Light
 Explained all Electromagnetic phenomena
- ...contradicted Galilean-Newtonian relativity

 Which claimed all Forces are ABSOLUTE!

The Solution

- There were many scientists
 - Working on these problems
 - Some were <u>very</u> close to a breakthrough
- Many were ready for a new theory

 And accepted the new one quickly
 Even though it was revolutionary!
- But only one solved the problems...

Albert Einstein (1879-1955)

· Recently voted top

- Physicist

Scientist
Person

- He was a generally nice guy!
 Unlike others we have seen...
- Of the 20th century
- · Born Ulm, Germany

Albert Einstein

- · Showed no particular intellectual promise
- · A somewhat "typical" student
- Did very well in what interested him

 Math and Science
- Did badly in most others
 And dropped out of high school

118

121

124

Albert Einstein

- After leaving high school
- Bummed around in Italy for a while
 To avoid compulsory German military service
- Renounced his German citizenship in 1896
- Entered college in 1895 in Switzerland
 Had to cram for the entrance exam
 Barely passed the non-science parts

119

Albert Einstein

- Not a particularly good college student

 Disliked regimented style
 Skipped classes often to read Physics
- Caused an explosion in a lab

 He was a horrible experimentalist!
 Good thing he became a theorist!
- Graduated only with the help of a friend – who shared his class notes

120

Albert Einstein

- · Graduated in 1900
- Tried to get an academic position

 No letters of recommendation
 Told he'll "never amount to anything"
- Not a Swiss citizen, because he was a Jew – Eventually gained citizenship in 1901
- No connections ⇒ No academic job!

Albert Einstein

- Accepted a job in 1901

 Junior official at the Swiss Patent Office for 8 years
- Worked on Physics in his spare time
 Kept a notebook in his desk drawer
- No academic connections

 Just him and his wonderful brain
 Performing "thought experiments"

122

Thought Experiments

- The Physics version of "what if ... "
- Imagine a physical situation

 Apply the laws of physics
 In a logical and consistent manner
 - Analyze what happens
- Special Relativity was the result - Of such thought experiments

123

Albert Einstein

- Sometime during his "drop out" year
 When he was only 16
- Einstein first asked himself this:
 "What would happen if I was moving at the speed of light."
- Later in college he changed it slightly: "What would a light ray look like to an observer moving at the speed of light?"

 Recall what Maxwell said about Light "A wave of changing Electric and Magnetic Fields moving at the Speed of Light."

Light

Light

- This is called a "traveling wave"
 A wave that travels from one place to another
- Consider a simple analogy

 A wave moving down a taut rope
- Snap one end of the rope

 A single wave travels along the rope

Light

- A "stationary" observer - Sees a moving wave
- An observer moving with the wave
 In the same direction with the same speed
 Sees the wave just standing there

127

c + v

-c

v

130

133

· This is called a "standing wave"

Light

- So, to our moving observer – moving at the Speed of Light
- The Light wave would be "A standing wave of changing Electric and Magnetic Fields"
- But Standing Waves are <u>NOT</u> allowed
 in Maxwell's E&M theory!

128

131

Maxwell and the Speed of Light

- In Theory (believed by most to be correct),
 The only speed allowed for Light

 is <u>the</u> Speed of Light: c = 186,000 miles/sec
- There is no allowance for the Speed of Light
 Relative to an inertial observer
 It was an Absolute quantity!
- And Einstein noticed another problem... – While riding on the train to work

129

- · Measure the Speed of Light
 - On a moving Train
 - Subtract Maxwell's value

Determine Inertial motion

The Solution

- The Special Theory of Relativity – Published in 1905 by Einstein
- A big part of his "miracle year"

 Published 5 papers and got his Ph.D. in 1905
 Received the Nobel Prize in 1921
- Only two such years in history of Physics – Newton's year in 1666
 - Einstein's year in 1905

Albert Einstein

- · All five were landmark papers
- One on the Photoelectric Effect:

 quantum theory of light
 Nobel Prize material
- Two on Brownian Motion
 proved the existence of molecules
- Two on Special Relativity
 Our current topic

132

The Two Postulates

- Einstein resolved all these problems
- By making two postulates
 A Postulate is an <u>assumption</u>
- He knew that if the postulates were right - then all the problems are solved

The Two Postulates

- His was a theoretical explanation

 "On the Electrodynamics of Moving Bodies"
- Both postulates have since been confirmed - experimentally and conceptually
- Einstein simply recognized
 - "the way it should be and must be"
 - Knew they were correct even without an experiment!

134

The First Postulate

- "The Laws of Physics are <u>INVARIANT</u> in all <u>inertial</u> reference frames."
- The Laws of Physics are <u>ABSOLUTE</u>.

This postulate is not difficult to accept!

The First Postulate

· This is an upgrade of Galileo's statement

Laws of Mechanics \rightarrow Laws of Physics

 Now there is <u>no way</u> to determine Inertial Motion without looking outside
 - Not just no mechanical experiment

136

139

- But no experiment at all!
 - sut no experiment at an:

The First Postulate

- Since the Laws of Physics are <u>ABSOLUTE</u>
- We can not determine Absolute Motion
 by any experiment

137

- All Inertial Reference Frames

 are <u>equally</u> valid
- So <u>all</u> Forces are <u>RELATIVE</u>!

The Second Postulate

- 2. "The Speed of Light is <u>INVARIANT</u> in all <u>inertial</u> reference frames."
- The Speed of Light is <u>ABSOLUTE</u>.
- This one gets a little strange if you really think about it, which we will...

138

The Second Postulate

- Eliminates all the Speed of Light loopholes – which violated the Principle of Relativity
- But this is new and different!
 The Speed of Light is <u>ABSOLUTE</u>
- The Speed of Light is independent – of the motion of the observer

The Second Postulate

- No matter what the relative speed...
 between the Light Source and the Observer
- ... the observer always measures the same value for the Speed of Light: $c = 186,000 \frac{\text{miles}}{\text{sec}}$

146

145

- The Speed of Light is <u>ABSOLUTE</u>!!!
- This has been experimentally proven true
 many, many times

- Its existence cannot be determined!

Special Relativity

With pure genius, Einstein had "fixed" it!
 He concluded the Ether concept was garbage
 Completely unnecessary!

148

151

- But there are other consequences – of his revolutionary new postulates
- The rest of the theory... – and this chapter
- · ... are about those consequences!

To review:

- Trouble with Light
- No experimental evidence for Ether
- Speed-of-Light "standing wave" not allowed
- Measure Speed of Light while moving
 Detect Inertial Motion
 - Violates Principle of Galilean-Newtonian Relativity
- · Relative nature of Magnetic Force
 - Violates Principle of Relativity
 - Contradicts Newton

- · The Solution: Einstein's 2 Postulates
- Laws of Physics are <u>INVARIANT</u>
 There is <u>no way</u> to detect inertial motion by doing <u>any</u> experiment
- Speed of Light is <u>INVARIANT</u>

 All inertial observers measure the Speed of Light to be c = 186,000 miles over
 - This value is independent of the relative speed between the Observer and the Light Source

150

147

Special Relativity

- Einstein's Two Postulates

 had many surprising consequences
 - Redefined the meaning of some basic concepts
- We'll need new concepts of Space and Time
 The Space interval between two events
 - The Time interval between two events

Special Relativity

- The "Special" in Special Relativity
 Refers to the fact that it refers only to
 <u>Inertial Reference Frames</u>
- Special Relativity applies to

 motion at constant velocity only!
 No Accelerations!

152

Four Consequences

- Four consequences of the Postulates
 - Space and Time Intervals
 The Addition of Velocities
 - 3. Inertia
- 4. Energy
- Plus a bonus story...
- · Now, things get tricky...

- · Space and Time are abstract concepts - We need a simple definition.
- · Einstein's definitions: Space is what a meter stick measures. - Time is what a clock measures.
- · These practical definitions are - based on physical measurements and - the Light that carries the information

154

157

- · Let's start with the Time Interval - between two events as seen in two different Inertial Reference Frames
- Our two events: "Tick" and "tock"!
- · We'll use a Light Clock - measure the Time Interval between two events - using the Speed of Light

155

- · Light source emits one flash of Light
- · The Light reflects off the mirror - That's a "Tick"
- · Then Light returns to the source - That's a "Tock"

The Clock Frame

- · First we'll look at the Time Interval... - Between "Tick" and "Tock"
- ... in the Clock Frame:
- · The Inertial Reference Frame - that is at rest relative to the clock.
- · We and the Clock are in the same Frame - No relative velocity between us!

159

The Clock Frame

- · In the Clock Frame
- · The Clock is at the same place - when the "Tick" and "Tock" happen
- · This Time Interval is called the Proper Time - The Time Interval measured in the reference frame where the Clock is in the same place

161

Space and Time

· Basic Physics review for Inertial Motion - Motion at constant velocity

> Distance Time = Speed

• Drive 100 miles at 50 miles per hour... - The trip takes 2 hours

The Clock Frame

- For our Light Clock
 in the Clock Frame
- The Distance traveled is twice the Length - Back and forth

163

• The Speed is the Speed of Light - Light is doing the traveling

The Lab Frame

167

170

- When the Light hits the mirror - the Clock has moved to a different place
- The Light follows a different path - than it does in the Clock Frame
- In the Lab Frame - the Light has a longer path to travel

The Lab Frame

- · In the Lab Frame
- The Clock is <u>not</u> at the same place
 when "tick" and "tock" happen
- During the Time between the two events - the Clock has moved

169

Space and Time

- Now recall the 2nd Postulate
 The Speed of Light is ABSOLUTE
- The Light's speed between "Tick" and "Tock" - is the same in both Frames
- That's what ABSOLUTE means!
 Same value in ALL Inertial Reference Frames

Space and Time

- In the Lab Frame

 the Light travels a longer distance: D > L
 at the <u>same</u> speed: c
- Time Interval is <u>Longer</u> in the Lab Frame

 Longer distance at the same speed!
 The clock is running <u>slower</u> in the Lab!
- This is a direct result of the 2nd Postulate! – The Speed of Light is ABSOLUTE!

172

175

178

- This is called Time Dilation

 Dilate means "to become larger"
- The Time Interval in the Lab Frame... - between the same two events
- The same "Tick" and "Tock"
- ...is <u>larger</u> than that in the Clock Frame!

173

176

Moving Clocks Run Slow!

- This has nothing to do with our Clock – It is after all a rather strange clock
- This is a property of TIME - Not a property of Clocks
- · The Clock just measures TIME

Time Dilation

- This applies to biological clocks too!
 Such as reproducing bacteria
- Humans have many built-in clocks
 Daily, monthly, yearly cycles
 The aging process
- Time Intervals are <u>RELATIVE</u>!

Time Dilation

The faster you move through Space,

the slower you move through Time!

Space and Time

- Now let's look at the Space Interval
 between two events as seen in two different
 Inertial Reference Frames
- Same two events: "Tick" and "Tock"!
- We'll still use the Light Clock

 Measure the Space Interval between two events
 Using the Speed of Light

177

174

Space and Time

- · Now we'll lay our Light Clock on its side
- So it is moving in the direction

 that is parallel to its Length
 Before it was moving perpendicularly
- The analysis is similar to the Time Interval
 We'll skip the details... ^(C)

A Light Clock \leftarrow Rest Length = L_0 At rest Moving \leftarrow Length = L \downarrow

Length Contraction

- This is called Length Contraction

 Contract means "to reduce in size"
- The Space Interval

 between the same two events
 The same "Tick" and "Tock"
- ... is shorter for the moving Clock

Length Contraction

- If the object is a meter stick – its Rest Length is 1 meter
- Moving at 60% of the Speed of Light - its velocity is v = (3/5)c
- We would measure its Length to be ⁴/₅ meter - Only 80% of its Rest Length!

181

184

187

Moving Objects Are Shorter!

- They are shorter

 <u>along</u> the direction of the motion
 so their height is not affected at all!
- This is a property of SPACE
 Not a property of objects
- · The object just occupies the SPACE
- Space Intervals are <u>RELATIVE</u>!

182

185

Length Contraction

The *faster* you move through Space,

the *less* Space you occupy!

(along the direction of motion only)

183

Space and Time

- Both of these effects are a direct result

 of the 2nd Postulate
- · Remember what "speed" means

 $\begin{aligned} \text{Speed of Light} &= \frac{\text{Distance Traveled by Light}}{\text{Elapsed Time}} \\ &= \frac{\text{Space Interval}}{\text{Time Interval}} \end{aligned}$

Space and Time

- Both intervals change so that their ratio – The Speed of Light
- · Remains INVARIANT
- Space and Time are interrelated
 Both are part of one entity called Space-Time
- We live in a 4-dimensional Universe! - 3-D Space + 1-D Time = 4-D Space-Time

Space and Time

- The concepts of Space and Time...
 Space interval between two events
 Time interval between two events
- ...are no longer separate!
 Space-Time interval between two events

Space-Time

- Einstein showed the Space-Time Interval – between two events
- Is INVARIANT!

 All observers agree on the Space-Time Interval Between two events
- This too is a direct result of the 2nd Postulate
 The Speed of Light is ABSOLUTE

2. Addition of Velocities

- How does the speed of an object...
 in one Inertial Frame of Reference
- · ...transform into another Inertial Frame?
- By the Addition of Velocities
 Remember the kids playing catch in the truck?
- Let's assume this time that you (a pedestrian) are playing catch with someone in the back of the truck.

Addition of Velocities

- · According to Isaac Newton - If u is the speed of the ball relative to the truck - If v is the speed of the truck relative to you
- · Then the speed of the ball relative to you is

u + v

190

Addition of Velocities

- · Now suppose we replace our thrower - with a Light Source
- · According to Newton - If v is the speed of the truck relative to you - If c is the Speed of the light relative to the truck
- · Then the speed of light relative to you is C + V

192

Addition of Velocities

- This violates the 2nd Postulate !! - You get a different result when you measure the Speed of Light
- · Suppose the truck is very fast - Very, very fast
 - Its speed is 1/2 c: half the speed of Light
- Then you measure 3/2 c as Light Speed - Bigger than "c"

194

Addition of Velocities

- · Space and Time are RELATIVE
- · We need a rule for adding velocities that - includes the different rate of Time and the different size of Space for the two different Reference Frames
- · Einstein provides us with such a rule - Of course... It's his theory, it's his solution!

· According to Einstein - If **u** is the speed of the ball relative to the truck – If $\boldsymbol{\nu}$ is the speed of the truck relative to you · Then the speed of the ball relative to you is

Addition of Velocities

Addition of Velocities

- Why don't we notice this different rule?
- There is an extra term in Einstein's rule: $\frac{uv}{c^2}$ - It is very small at everyday speeds
- The " c^{2} " is a huge number: $\approx 10^{17} \text{ m}^2/\text{s}^2$

 $1 + \frac{uv}{c^2} = 1 + a$ tiny number

и	v	Newton	Einstein
60 mph	30 mph	90 mph	90 mph
186 mps	18.6 mps	204.6 mps	204.59998 mps
0.6 <i>c</i>	0.3 <i>c</i>	0.9 <i>c</i>	0.763 <i>c</i>
0.5 <i>c</i>	0.5 <i>c</i>	с	0.800 <i>c</i>
0.75 <i>c</i>	0.75 <i>c</i>	1.5c	0.960 <i>c</i>
0.9 <i>c</i>	0.6 <i>c</i>	1.5c	0.974 <i>c</i>
с	0.5 <i>c</i>	1.5c	с
с	с	2 <i>c</i>	с

Addition of Velocities

- The effects of Special Relativity

 are noticeable <u>only</u> at very high speeds
- Even at 186 miles per second (¹/1000 c)
 Newton and Einstein are very close
- The human speed record: ¹/₂₇₀₀₀ c

 The Apollo astronauts returning from the moon
 6.89 miles/sec = 24,800 mph
- There seems to be an upper limit on speed...
 A "cosmic speed limit"

Addition of Velocities • So what about our moving Light source? • According to Einstein: $\frac{u+v}{1+\frac{uv}{c^2}} = \frac{c+\frac{1}{2}c}{1+\frac{(c)(\frac{1}{2}c)}{c^2}} = \frac{\frac{3}{2}c}{\frac{3}{2}} = c$ • The 2nd Postulate holds!

202

205

• The 2nd Postulate still holds!

3. Newton's Laws and Inertia

- The Speed of Light is a natural speed limit

 No object's speed can ever exceed
 or <u>even</u> equal the Speed of Light
- It is a consequence of the 2nd Postulate
- · But there is <u>no</u> speed limit in Newton's Laws

203

Newton's Laws
• Recall Newton's 2nd Law

$$F = ma \iff a = \frac{F}{m}$$

• Relates cause and effect
– Cause: Force
– Effect: Acceleration (changes in motion)

Newton's Laws

- Apply a constant Force
 produce a constant Acceleration
- · According to Newton...
- If you push long and hard enough

 your speed will exceed the Speed of Light
- For an acceleration of one "g" (9.80 m/s²)
 it takes about a year to get to Light Speed

Newton's Laws

- This is <u>not</u> allowed in Special Relativity
- But even Einstein can't change

 how hard you can push
 or how long you can push
- So how can he limit the speed of the object?
 Where does the cosmic speed limit come from?

207

So what does happen??

209

212

Newton's Laws

- The faster the object is moving – the more Mass it has
- · The increase in Mass
 - produces smaller and smaller AccelerationsThe speed is always less than Speed of Light

· Mass is RELATIVE

4. Energy

- Under Newton's Laws

 the Kinetic Energy is ¹/₂mv²
 Mass is ABSOLUTE
- Einstein showed that Mass is RELATIVE – More velocity ⇒ more Mass
 - Even more Kinetic Energy

Energy • Einstein also showed that $E = mc^2$ • <u>Mass is a form of Energy</u> - All Mass is equivalent to Energy • This is a conversion formula - Mass \leftrightarrow Energy

213

214

211

- even at rest, an object has Energy
- A <u>LOT</u> of Energy...

Energy Speed of Light $I_{squared}$ $E_0 = m_0 c^2$ $I_{Rest Energy}$ Rest Energy Rest Mass

Energy

- The " c^{2} " is a huge number: $\approx 10^{17} \text{ m}^2/\text{s}^2$
- So a small amount of Mass
 can be converted to a <u>huge</u> amount of Energy
- One kilogram of Mass (about 2.2 pounds)
 completely converted to Energy
 - would run the entire U.S. for 9 hours

Energy

- Unfortunately (The Big IF!)
 - there is only one way known
 - to completely convert Mass to Energy
- · Combining Matter and Antimatter
 - Just like on Star Trek
 - Not yet feasible technologically or economically
 - Antimatter is expensive to make, hard to handle

217

220

223

The Relativistic Factor: γ

- All of these new relativistic effects

 are extremely small for everyday velocities
- There is a way to calculate how small

 The Relativistic Factor: γ (gamma)

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

The Relativistic Factor: γ

- The bigger the Relativistic Factor – the more important Relativity is
- For speeds small compared to Light Speed
 we have γ≈1
- For speeds large compared to Light Speed we have larger and larger γ

219

The Relativistic Factor: y

- At a speed of ¹/₁₀ c, we have γ = 1.005

 about 67 million miles per hour
- The predictions of Newton and Einstein

 are only different by ½ percent
 - About 1 part in 200
- So if Newton says the answer is 200 - Einstein says it is 201

The Relativistic Factor: y

- At the human speed record: ¹/₂₇₀₀₀ c

 about 25000 miles per hour = 0.000037c
 γ = 1.000000007
- The predictions of Newton and Einstein

 are different by only 1 part in a Billion!
 Too small to notice without experimentation
- · Can be measured with atomic clocks though

The Tale of the Traveling Twin

- · Let's do our own thought experiment...
- Suppose we have two twin astronauts
- Each is 30 years old at the start of the trip
 One travels to a some star and returns
- The other stays on the Earth

• When they are reunited – which twin is older?

The Tale of the Traveling Twin

- Let Twin A be the Space Traveler
 So Reference Frame A is her point of view
- Then Twin B is the Mission Controller
 Reference Frame B is the Earth's point of view
- · Let's see what Special Relativity has to say

The Tale of the Traveling Twin

- Let's go to the star Vega

 Distance: 25 light years (in Frame B)
- Let's travel at a speed of v = 0.999c- 99.9% of the Speed of Light
- At this speed we have
 Relativistic Factor: γ = 22
- · We expect Relativity to be important here

225

224

Frame of Reference A

- · As measured by clocks on the Ship
- · This trip takes a time of

 $t_A = \frac{2L_A}{v} = 2$ years, 3 months

230

233

Twin A is 2 years, 3 months older
 So she is 32 years, 3 months old!

The Tale of the Traveling Twin

- Twin A sees Earth and Vega moving - so the distance between them is contracted - In her Frame of Reference
- They are closer in her frame: $L_A < L_B$
- So the trip takes less time in her frame - Same relative speed, shorter distance

231

234

The Tale of the Traveling Twin

- By traveling at a very fast speed - very near the Speed of Light
- · Traveler A slowed her rate of time
- Moving fast through Space
 Moving Slowly through Time

The Tale of the Traveling Twin

- This effect is sometimes called – The Twin Paradox
 - Paradox: "something that seems to contradict or oppose common sense"
- Why?

232

The Tale of the Traveling Twin

- Twin B sees Twin A move off and return
 So Twin A's clocks run slowly
 - Twin A ends up younger
- Twin A sees Twin B move off and return

 So Twin B's clocks run slowly
 Twin B ends up younger
- Is each point of view is equally valid?

The Tale of the Traveling Twin

- No!
- Special Relativity says
 All *Inertial Reference Frames* are equally valid
- Twin A uses two Inertial Frames
 - One "out" and one coming back
 She turns around
 - She turns around
 - <u>So there were Forces and Accelerations</u> • No longer inertial reference frames!!

235

238

Minkowski Diagrams

- Also called "Space-Time Diagrams"
- A graph of Time versus Distance – Time is plotted on the vertical axis
 - Space is plotted in the horizontal axis
- · Let's look at our two Twins

236

Minkowski Diagrams

- Twin B stays at the same place - Only "moves" through Time
- Twin A changes location in Space

 And also "moves" through Time
 We see that see used two Inertial Frames!
- She will be younger!
- · Let's look at some different trips...

· Both will be at the same age upon return

Minkowski Diagrams

- · Twin A leaves first
- · Twin B stays home for a while, leaves later
- · Travels faster and catches up to Twin A
- · Meet at the same place at the same Time
- Twin B will be younger
 Can prove this after much much math!

242

Summary of Special Relativity

- Moving Clocks run slower
 Time Dilation
- Moving Objects are Shorter
 Length Contraction
- Space, Time, and Mass are RELATIVE – Space-Time is ABSOLUTE

243

Beyond the Special Theory of Relativity

· The Special Theory of Relativity only covers the "special" case

- of inertial reference frames non-accelerated reference frames

- · It gives the correct equations for transformations - between two reference frames moving at constant velocities with respect to each other

244

247

Beyond the Special Theory of Relativity

- · Einstein wanted equations which were much more general than these special ones - so he devised a "general" theory to cover all reference frames, inertial and non-inertial.
- This theory is called the General Theory of Relativity and is <u>MUCH</u> more difficult mathematically.
 - Took 10 years of work to develop this new theory (published in 1916).

245

248

251

The General Theory of Relativity

- · Called GenRel for short
- · He started with an observation that both Newton's 2nd Law and his Universal Gravitation Law both contained the same quantity - the object's mass F = maInertial mass in the former

 - <u>Gravitational mass</u> in the latter $F = G \frac{m_1 m_2}{2}$

The General Theory of Relativity

- · Since these were two separate laws, the masses did not necessarily need to be the same
- · Precision experiments were carried out which proved the two masses were in fact the same
 - Einstein thought that this was not coincidental and that the acceleration in the 2nd law was related to the gravitational acceleration in the gravitational law.

The General Theory of Relativity

- · Proposed his Equivalence Postulate - It is impossible to distinguish a gravitational force from an equivalent acceleration induced <u>force</u>
 - If you were standing in a space ship moving with an acceleration of g, then you would feel the same force as if you were standing on the Earth's surface

· You couldn't tell the difference!

The General Theory of Relativity

- · A force is being *simulated* by an acceleration
- · Any effect which could be described by an accelerated reference frame
 - could also be described as a gravitational effect

249

The General Theory of Relativity Gravity is being <u>simulated</u> by As seen from outside the spaceship's acceleration sam or ficer of Path of a ball thrown horizontally on the Earth's surface! from ins For different tal speeds 250

The General Theory of Relativity

- · In an accelerated reference frame, even a beam of light would be bent
- · This led Einstein to conclude that a gravitational field would alter (bend) the path of a beam of light!

The General Theory of Relativity

- · Einstein interpreted the bending of the light as representing a curvature of space itself - Since the motion of the ship occurs in curved space,
 - gravity was just an effect induced by moving through this curved space.
- · Large concentrations of mass (stars, planets) curve the space around them - Any motion through this space causes an acceleration due to the curvature which we feel as gravity
 - · Just as you "feel" a force pushing you outward as you round a curve in your car 252

The General Theory of Relativity

- The General Theory is much more than this; I've just scratched the surface
- The General Theory has been tested many times and has always been found correct!

253

256

The General Theory of Relativity

- General Relativity says that the properties of space
- are dependent on gravitational forces and the presence of matter
- It also says the properties of space-time are determined by light rays
 - Electromagnetic waves

The General Theory of Relativity

- · Einstein believed these effects were related
- He spent the rest of his life trying to "unify" them into one overall theory
- The effort continues today to discover this single <u>unified-field theory</u>
 More on this in Chapter 9

