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Nanosecond electro-optics of a nematic liquid crystal with negative dielectric anisotropy
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We study a nanosecond electro-optic response of a nematic liquid crystal in a geometry where an applied
electric field E modifies the tensor order parameter but does not change the orientation of the optic axis (director
N̂). We use a nematic with negative dielectric anisotropy with the electric field applied perpendicularly to N̂.
The field changes the dielectric tensor at optical frequencies (optic tensor) due to the following mechanisms:
(a) nanosecond creation of the biaxial orientational order, (b) uniaxial modification of the orientational order that
occurs over time scales of tens of nanoseconds, and (c) the quenching of director fluctuations with a wide range
of characteristic times up to milliseconds. We develop a model to describe the dynamics of all three mechanisms.
We design the experimental conditions to selectively suppress the contributions from the quenching of director
fluctuations (c) and from the biaxial order effect (a) and thus, separate the contributions of the three mechanisms
in the electro-optic response. As a result, the experimental data can be well fitted with the model parameters. The
analysis provides a rather detailed physical picture of how the liquid crystal responds to a strong electric field on a
time scale of nanoseconds. The paper provides a useful guidance in the current search for the biaxial nematic phase.
Namely, the temperature dependence of the biaxial susceptibility allows one to estimate the temperature of the
potential uniaxial-to-biaxial phase transition. An analysis of the quenching of director fluctuations indicates that
on a time scale of nanoseconds, the classic model with constant viscoelastic material parameters might reach its
limit of validity. The effect of nanosecond electric modification of the order parameter can be used in applications
in which one needs to achieve ultrafast (nanosecond) changes in optical characteristics, such as birefringence.
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I. INTRODUCTION

The uniqueness of nematic liquid crystal (NLC) materials
is defined by the long-range orientational order of their
constituent molecules, which have anisometric shapes and
permanent and induced dipoles [1]. The average orientation
of NLC molecules in a certain point in space, described by
the radius vector r, is called the director N̂(r), which coin-
cides with its optic axis. Director orientation can vary from
point to point in space or fluctuate in time.

Anisotropic optic and dielectric properties of NLCs,
namely, birefringence �n = ne − no, where ne and no are
the extraordinary and ordinary refractive indices, respectively,
and dielectric anisotropy �ε = ε|| − ε⊥, with ε|| measured
along and ε⊥ perpendicular to the optic axis, enabled a
wide range of electro-optic applications. Traditional electro-
optic applications of NLCs are based on the field-induced
reorientation of N̂, known as the Frederiks effect. For �ε > 0,
the director realigns parallel to an applied electric field
E, whereas for �ε < 0, it realigns perpendicularly to the
field. The characteristic switch-on time is τF

on = γ1/ε0|�ε|E2,
where γ1 is the rotational viscosity and ε0 is the electric
constant. The switch-off time τF

off = γ1d
2/Kπ2 is typically

slower, in the range of milliseconds, being determined by the
elastic constant K of the NLC (typically 10 pN) and the cell
thickness d (typically 5 μm).

An electro-optic response of the LC, however, can be
triggered without director realignment as it suffices to
modify the tensorial order parameter (OP) without altering
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its orientation [2–12]. An important feature of this approach
is that the OP modifications of both uniaxial and biaxial
natures take place on the molecular scale and, thus, are very
fast (nanoseconds and tens of nanoseconds [12,13]) for both
field-on and field-off drivings. For this reason, it is convenient
to call the pure OPs-related phenomenon a “nanosecond
electric modification of the order parameters” effect or the
NEMOPs effect. In addition to the modification of the OPs,
the applied field also quenches the director fluctuations
[1,11,14–25]. The later effect, being of macroscopic origin,
is typically much slower as determined by the length scale
of fluctuative director distortions. Both the fundamental
understanding and the practical applications of NEMOP
require one to separate the fast effects of NEMOP and the slow
effects of director fluctuations. This problem and its solution
represent one of the main focuses of the presented paper.

In this paper, we demonstrate how to separate the NEMOP
effect and the dynamics of director fluctuations by choosing
a particular geometry of light propagation through a cell
filled with a planar NLC of a negative dielectric anisotropy.
The electric field is applied perpendicularly to N̂. Section II
presents a theoretical model of the dynamics of the uniaxial
and biaxial modifications of the OP and the dynamics of
director fluctuations in the electric field. It is shown that the
contributions originating in the OP changes and in director
fluctuations can be separated from each other by testing the cell
under different angles of light incidence. Section III describes
the experimental setup to measure the field-induced optic
response, which occurs at short time scales down to nanosec-
onds. Our approach allows one to separate the field-induced
birefringence from parasitic effects, such as light scattering.
Section IV describes the fitting of the experimental results
with the proposed models. Section V discusses the physical
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mechanisms involved in the ultrafast electro-optic response of
an NLC and utilization of the data in evaluating the likelihood
of the appearance of a biaxial nematic phase in a field-free
state.

II. THEORY

Electro-optic processes could be considered using the free
energy functional describing the NLC in the presence of an
external electric field,

F =
∫

V

(fiso + fm + fe + fd )dV (1)

where fiso is the free energy density of the isotropic phase for
E = 0, fm = fm(Rjk) is the phenomenological microscopic
free energy density written in the Landau formalism that de-
pends on the scalar OPs Rjk , fe is the elastic free energy density
due to distortions of N̂, and fd = − 1

2ε0E ε E is the anisotropic
dielectric coupling energy density. The dielectric tensor ε

depends on the OPs Rjk and director fluctuations and can be
represented as ε(Rjk,N̂) = ε(0)(R(0)

jk ,N̂0) + δε(m)(Rjk,N̂0) +
δε(f l)(R(0)

jk ,N̂), where ε(0)(R(0)
jk ,N̂0) is the field-independent

tensor defined for a static and uniform (no fluctuations) director
N̂0, δε(m) is the field-induced modifications associated with
the OPs, and δε(f l) is the modification of the tensor caused
by the director fluctuations δN̂(r) = N̂(r) − N̂0, which depend
on the applied electric field. We neglect higher-order terms,
such as coupling between the director fluctuations and the
field-induced changes in OPs. The terms containing δε(m) in
the dielectric energy density fd define the effect of electrically
modified OPs. The term containing δε(f l) in fd influences the
spectrum of director fluctuations.

A. Dynamics of the NEMOP effect

The orientational OPs can be described by the averaged
Wigner D functions 〈DL

jk〉 [26–29] because DL
jk(�) forms a

complete set of orthogonal functions of the Euler angles � =
{ω1,ω2,ω3} [30]; � defines the molecular orientation through

rotation L
�→M from the laboratory frame L to the molecular

frame M. A set of OPs 〈DL
jk〉, obtained by averaging with

the single molecule orientational distribution function f (�),
is complete and equivalent to〈

DL
jk

〉 = ∫ DL
jk(�)f (�)d�. (2)

The nematic phases are described by the OPs with L = 2:
Rjk = 〈D2

jk〉. Consider the molecules that possess symmetry
C2v or D2h. The Schönflies symbol C2v is assigned to the
point group with symmetry operations of identity, rotation
around twofold symmetry axis C2, and two planes of mirror
symmetry containing the C2 axis. The symbol D2h refers to the
point group in which, besides the symmetries above, there are
two more C2 rotation axes, inversion, and the planes of mirror
symmetry perpendicular to the C2 axes. For these molecules,
we introduce the molecular frame M with the axes m̂i parallel
and perpendicular to the symmetry axis and symmetry plane.
The nematic phase formed by these molecules features four
independent OPs: two uniaxial OPs, denoted R00, R02 = R0−2

and two biaxial OPs, denoted R20 = R−20, R22 = R±2±2 in

the laboratory frame L = Oxyz defined by the directors
[27–29] with N̂0 = (0,0,1). The OPs R00 and R20 describe
the uniaxial and biaxial orientational orders, respectively,
of the long molecular axes m̂3 and determine the diago-
nal form {−(R00 − √

6R20)/3,−(R00 + √
6R20)/3, 2R00/3}

of the traceless tensor OP Q = 〈m̂3 ⊗ m̂3〉 − I/3 [1,14]
in the laboratory frame along the directors. The uniaxial
OP R00 is nothing else but the standard nematic OP S,
R00 = S. The OPs R02 and R22 describe the uniaxial and
biaxial orderings, respectively, of the short axes m̂1, 2 and
are equivalent to the tensor B = 〈m̂1 ⊗ m̂1 − m̂2 ⊗ m̂2〉 [31],
which has the diagonal form {−(

√
2R02 − 2

√
3R22)/3,

− (
√

2R02 + 2
√

3R22)/3, 2
√

2R02/3} in the laboratory frame
along the directors. Without the electric field, the NLC under
consideration is uniaxial with the equilibrium uniaxial OPs
R

(0)
00 and R

(0)
02 , whereas the biaxial OPs are zero, R

(0)
20 =R

(0)
22 =0.

The electric field E changes the OPs δRjk = Rjk − R
(0)
jk

through δε(m). When δRjk is small and the field is applied
along one of the laboratory axes, the diagonal elements
{δεx,δεy, δεz} of the dielectric tensor δε(m) are

δεi =
∑

j,k=0,2

εi,jkδRjk, i = x,y,z, (3)

where εi,jk = ∂εi/∂(δRjk)
ε=ε(0) . Rotation of L by π/2 around

Oz changes the sign of the biaxial OPs δR2k but does not affect
the uniaxial OPs δR0k . This results in the following properties:
(a) εz,2k = 0 and, therefore, δεz contains only the uniaxial
OPs δR0k , (b) the relation εy,jk = (−1)j/2εx,jk stands, and (c)
the quadratic expansion of microscopic fm near the zero-field
equilibrium value f (0)

m with Rjk = R
(0)
jk does not contain cross

terms of the uniaxial and biaxial OPs:

fm = f (0)
m + 1

2

∑
j,k,k′

Mjk,jk′δRjkδRjk′ , (4)

where Mjk,jk′ = (∂2fm/∂Rjk∂Rjk′)
Rjk=R

(0)
jk

are the Taylor co-

efficients that can be determined from the Landau expansion
of the free energy for uniaxial and biaxial nematics [32]
and indices j , k, and k′ run through two values 0 and 2.
Because we consider processes with characteristic times less
than a microsecond, the heat transfer is negligible [33], and
therefore, Mjk,jk′ corresponds to the expansion under adiabatic
conditions.

We model the dynamics of the four OPs, δRjk = δR00,
δR02, δR20, and δR22 using the standard Landau-Khalatnikov
approach [34],

γjk

d(δRjk)

dt
= −∂(fd + fm)

∂(δRjk)

= GjkE
2(t) −

∑
k′

Mjk,jk′δRjk′ , (5)

where Gjk = ε0
2

∑
i εi,jke

2
i , ei are the components of the unit

vector ê directed along the applied electric field E(t), and γjk is
the rotational viscosity for the OP δRjk . We neglect the effects
of the director reorientation and associated flows on the OPs,
discussed in Refs. [35,36], because we consider the geometries
when the applied electric field stabilizes the director N̂0. Four
Eqs. (5) are two independent pairs of linear inhomogeneous
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ordinary differential equations with constant coefficients for
the uniaxial δR0k and biaxial δR2k OPs and could be written
in a vector form

ξ (j )
d

dt
R(j ) = ξ−1

(j )G
(j )E2(t) − M̄(j )ξ (j )R

(j ), (6)

where R(j ) = (δRj0
δRj2

), G(j ) = (Gj0
Gj2

), ξ (j ) = (
γ

1/2
j0 0

0 γ
1/2
j2

), and

M̄(j ) is the 2×2 symmetric matrix with elements M̄
(j )
kk′ =

γ
−1/2
jk Mjk,jk′γ

−1/2
jk′ . The solution for Eq. (6) R(j )(t) can be

expressed through the vector of decoupled relaxation modes

r(j )(t) = (r
(j )
0 (t)

r
(j )
2 (t)

),

R(j )(t) = ξ−1
(j )V

(j )r(j )(t), (7)

where V(j ) is the matrix of eigenvectors of M̄(j ) that obeys

the equation M̄(j )V(j ) = V(j )�(j ); here �(j ) = (λ
(j )
0 0
0 λ

(j )
2

) is

a diagonal matrix of the eigenvalues λ
(j )
0,2. Since M̄(j ) is a

symmetric positively defined matrix, V(j ) = (cos φj − sin φj

sin φj cos φj
)

is an orthogonal matrix and is determined by the eigenvector
angle φj , which satisfies the equation,

tan 2φj = 2M̄
(j )
02

/(
M̄

(j )
00 − M̄

(j )
22

)
. (8)

It is also convenient to use φj in the expression for λ
(j )
0,2 =

1
2 [M̄ (j )

00 + M̄
(j )
22 ± (M̄ (j )

00 − M̄
(j )
22 )/cos 2φj ] because selection

|φj | < π/4 as the range of solutions of Eq. (8) ensures that the
dynamics of the uniaxial OPs δRjk are mainly controlled by
r

(j )
k (t) with the corresponding relaxation time τ

(j )
k = 1/λ

(j )
k ,

r
(j )
k (t) = g

(j )
k

∫ t

0
E2(t ′) exp

[
(t ′ − t)

/
τ

(j )
k

]
dt ′, (9)

where g
(j )
k are the components of the vector g(j ) =

(V(j ))−1ξ−1
(j )G

(j ).
To describe the optic manifestation of the NEMOP effect,

we use the OPs-related deviation δε̃(m) of the dielectric tensor
at optical frequency (optic tensor) from its zero-field value
ε̃(0). Here and in what follows, tildes represent a reference
to the material parameters at the optical frequencies. In the
laboratory frame Oxyz along the directors, the tensor δε̃(m)

has the diagonal form {δε̃x,δε̃y,δε̃z} and can be split into an
isotropic δε̃iso, uniaxial δε̃u, and biaxial δε̃b contributions,

δε̃x = δε̃iso − 1
3δε̃u + 1

2δε̃b,

δε̃y = δε̃iso − 1
3δε̃u − 1

2δε̃b,

δε̃z = δε̃iso + 2
3δε̃u.

(10)

Since δε(m) and δε̃(m) are the same tensor at different
frequencies, the deviations δε̃i =∑j,k=0,2 ε̃i,jkδRjk should
be also linear in δRjk , where ε̃i,jk = ∂ε̃i/∂(δRjk)

ε̃=ε̃(0) have
the same symmetry properties as εi,jk . Then, the dynamics
of δε̃iso and δε̃u are controlled by the uniaxial OPs δR0k and
therefore, by the vector of uniaxial modes r(0)(t), whereas δε̃b

is controlled by the biaxial OPs δR2k and by r(2)(t),

δε̃iso(t) = h̃(iso)ξ−1
(0) V(0)r(0)(t) ,

δε̃u(t) = h̃(u)ξ−1
(0) V(0)r(0)(t),

δε̃b(t) = h̃(b)ξ−1
(2) V(2)r(2)(t),

(11)

where h̃(iso), h̃(u), and h̃(b), respectively, are vectors with
components h̃

(iso)
k = 1

3 (ε̃x,0k + ε̃y,0k + ε̃z,0k), h̃
(u)
k = ε̃z,0k −

(ε̃x,0k + ε̃y,0k)/2, and h̃
(b)
k = ε̃x,2k − ε̃y,2k .

The dynamics of the NEMOP effect is described by two
uniaxial and two biaxial relaxation modes, Eqs. (9) and (11).
When E is perpendicular to the Oz axis (chosen parallel to
the director) and �ε < 0, all four modes should contribute
to the optic response. However, as we will show below our
experimental data for dielectrically negative material 4′-butyl-
4-heptyl-bicyclohexyl-4-carbonitrile (CCN-47) are fitted well
by the simplified version of the model with one uniaxial mode
and one biaxial mode. We explain this fact with the assumption
that the NEMOP effect is controlled by the following two
modes: (i) r

(0)
0 (t), associated mainly with the uniaxial OP

R00 = S of the long molecular axes, and (ii) r
(2)
2 (t), associated

mainly with the biaxial OP R22 of the short molecular axes.
These two OPs are predicted to be dominant in the spontaneous
(field-free) uniaxial and biaxial NLC [32,37]. The same OPs
are expected to play a major role in the NEMOP experiments
since δR00 causes strong changes in optic anisotropy (large
h̃

(u)
0 ) and δR22 is strongly affected by the interactions between

the transverse molecular dipoles and the electric field (large
G22). In this two-mode assumption, the isotropic δε̃iso, uniaxial
δε̃u, and biaxial δε̃b contributions Eq. (11) are simplified

δε̃j̄ (t) = αj̄

τj̄

∫ t

0
E2(t ′) exp[(t ′ − t)/τj̄ ] dt ′, (12)

where j̄ reads iso, u, or b depending on the nature of
contribution, τu = τiso = τ

(u)
0 ≈ γ00/M00,00 and τb = τ

(b)
2 ≈

γ22/M22,22 are the uniaxial and biaxial relaxation times,
and αu ≈ h̃

(u)
0 G00/M00,00 and αb ≈ h̃

(b)
2 G22/M22,22 are the

effective uniaxial and biaxial susceptibilities, respectively. One
can expect that τu , determined by reorientation of the long
axes, is substantially larger than τb , determined by rotation of
the short axes because the former process is associated with the
larger moment of inertia and requires stronger readjustment of
the neighboring molecules. For the electric field parallel to the
Ox axis ê = (1,0,0), one can estimate

αu ≈ ε0εx,00ε̃x,00/2M00,00,

αb ≈ ε0εx,22ε̃x,22/M22,22. (13)

The uniaxial δε̃u and biaxial δε̃b terms provide the main
contributions to the NEMOP. The dynamics of the isotropic
term δε̃iso is similar to that of δε̃u, but its contribution is
relatively small: δε̃iso = 0 under the assumption that ε̃ is an
orientational average of the molecular polarizability tensor
because Tr ε̃ =∑i ε̃i = const in this case [32], and the only
nonzero contribution to δε̃iso stems from the dipole-dipole
resonance and dispersion intermolecular interactions [38].
Moreover, δε̃iso does not contribute to the response caused
by changes in birefringence.

B. Dynamics of director fluctuations in the electric field

Besides the NEMOP effect, the electric field provides an
additional electro-optic response, which is of macroscopic
nature. In NLCs with a negative dielectric anisotropy, the
electric field E = (E,0,0) does not reorient the average
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N̂0 = (0,0,1) but modifies the director fluctuations δN =
N̂ − N̂0. We analyze this effect using the macroscopic part
of free energy F̄ = ∫

V
(fe + f̄d )dV , where V = d×Ly×Lz

is the active volume of the cell, covered by the electrodes of
the area Ly×Lz and d is the thickness of the NLC layer. The
elastic energy density fe is

fe = 1
2 [K1(div N̂)

2 + K2(N̂ · curl N̂)
2 + K3(N̂×curl N̂)

2
],

(14)

where K1, K2, and K3 are the Frank elasticity constants
for splay, twist, and bend, respectively. The dielectric en-
ergy density associated with the director distortions f̄d =
− 1

2ε0E ε̄ E is determined by the corresponding part of the

dielectric tensor ε̄ = ε(0)(R(0)
jk ,N̂0) + δε(f l)(R(0)

jk ,N̂) = ε
(0)
⊥ I +

(ε(0)
|| − ε

(0)
⊥ )N̂ ⊗ N̂, where I is the unit tensor, ε

(0)
⊥ and ε

(0)
|| are

the dielectric constants, perpendicular and parallel to N̂0, and
⊗ denotes the outer product.

We assume that the director fluctuations δN =
[Nx(r),Ny(r),0] are small, periodic in the Oyz area of V ,
and obey the strong anchoring boundary conditions at the
substrates. Thus we expand δN in Fourier series, similar to
[39]

δN(r) =
∑

q

N(q) sin(qxx) exp[i(qyy + qzz)], (15)

where q = (qx, qy, qz) = (π
d
k, 2π

Ly
l, 2π

Lz
m) are discrete wave

vectors with k > 0, l, and m being integers.
Using Eq. (15) and integrating over V , we obtain F̄

associated with the director fluctuations in the Gaussian
approximation,

F̄ = V

4

∑
q

[(
K1q

2
x + K2q

2
y + K3q

2
z − ε0�ε(0)E2

x

)∣∣N2
x (q)

∣∣
+ (K1q

2
y + K2q

2
x + K3q

2
z

)∣∣N2
y (q)

∣∣]+ 2πiLz(K1 − K2)

×
∑
q,q′

[Nx(q)N∗
y (q′) + N∗

x (q′)Ny(q)]
klk′

(k2 − k′2)
, (16)

where the latter sum contains the cross terms of Nx(q)
and Ny(q′) with (k − k′) being an odd number, l = l′,
and m = m′.

To describe the dynamics of fluctuations, we start with the
Langevin equation by including the random force ζα(t,q) in
the viscous relaxation equation for Nα(t,q), α = x,y [1,16,25]
and use the splay-twist one-constant approximation K1 =
K2 = K̄ , which diagonalizes the free energy Eq. (16) with
respect to Nx(q) and Ny(q),

ηα (q̂)
dNα (t,q)

dt
= −fα(t,q)Nα (t,q) + ζα (t,q) , (17)

where fy(t,q) = fK (q) = K̄(q2
x+q2

y )+K3q
2
z , fx(t) = fK (q) +

fE(t,q), fE(t) = ε0|�ε|E2(t), and ηα(q̂) = γ1 − �ηα(q̂) is
the effective director viscosity; here γ1 is the director rotational
viscosity and �ηα(q̂) is the backflow effect’s correction,
which, in the hydrodynamic limit of small q, depends on
q̂ = q/|q| [1,16,25]. The random force ζα(t,q) has the standard

“white noise” properties with the noise strength Zα(t,q),

〈ζα(t,q)〉 = 0,

〈ζα(t,q)ζ ∗
α′ (t ′,q′)〉 = Zα(t,q)δ(t − t ′)δqq′δαα′ , (18)

where the brackets 〈· · · 〉 denote an ensemble average. The
solution of Eq. (17),

Nα(t,q)

= e−Sα (t,q)

[
Nα(0,q) + η−1

α (q̂)
∫ t

0
eSα (t ′,q)ζα(t ′,q)dt ′

]
, (19)

where Sα(t,q) = η−1
α

∫ t

0 fα(t ′,q)dt ′ allows us to derive the
equation that controls the dynamics of ensemble averaged
fluctuations 〈|N2

α(t,q)|〉,

τα(t,q)
d
〈∣∣N2

α (t,q)
∣∣〉

dt
= Zα(t,q)

2ηα(q̂)fα(t,q)
− 〈∣∣N2

α(t,q)
∣∣〉, (20)

where τα(t,q) = ηα(q̂)/2fα(t,q) is the characteristic relax-
ation time. For the stationary electric field E, the averaged fluc-
tuations 〈|N2

α (t,q)|〉 can be calculated using the equipartition
theorem and the free energy Eq. (16), 〈|N2

α (t,q)|〉E = 2kBT
V fα (t,q) ,

thus Zα(t,q) = 2kBT
V

ηα(q̂).
The fluctuations along the y axis are not affected by the

applied field 〈|N2
y (t,q)|〉 = 〈|N2

y (0,q)|〉, and only the dynamics
of 〈|N2

x (t,q)|〉 affects the optic response. Introducing the field-
induced quenching of fluctuations N(t,q) = 〈|N2

x (0,q)|〉 −
〈|N2

x (t,q)|〉, which satisfies the initial condition N(0,q) = 0,
we obtain the solution of Eq. (20) as

N(t,q) = 4kBT

V ηx(q̂)fK (q)

∫ t

0
fE(t ′) exp

[
−
∫ t

t ′

dt ′′

τx(q)

]
dt ′.

(21)

For a strong applied field, the electro-optic response is
caused by the quenching of director fluctuations with a broad
range of q. Thus, we neglect the hydrodynamic effects and use
an approximation of the constant effective rotational viscosity
γeff for the director fluctuations in the entire range of q. In this
case the solution Eq. (21) is simplified to

N(t,q) = 2kBT

V γefffK (q)
e−S(t)

∫ t

0
fE(t ′)

× exp

[
−fK (q)(t − t ′)

γeff

]
eS(t ′)dt ′, (22)

where S(t) = 1
γeff

∫ t

0 fE(t ′)dt ′ and γeff ≈ γ1/2.
Because the electric field affects only the director fluctua-

tions along the x axis 〈N2
x (t,r)〉, the associated modifications

of the optic tensor are

δε̃(f l)
z (t,r) = −δε̃(f l)

x (t,r)

= −(〈N2
x (t,r)

〉− 〈N2
x (0,r)

〉)(
n2

e − n2
o

)
, (23)

where no and ne are the ordinary and extraordinary refractive
indices, respectively, measured in the field-free state E = 0.

In our experiments, we use a probing laser beam of half
millimeter diameter and measure the phase retardation which
is an integral along the cell thickness; thus, the fluctuations’
contribution is determined by Eq. (23) averaged over the active
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volume of the cell,

δε̃f (t) = V −1
∫

V

δε̃(f l)
z (t,r) dr =

(
n2

e − n2
o

)
2

∑
q

N(t,q).

(24)

The applied electric field affects the fluctuations for
which q < qc =

√
�ε ε0E2/K̄ as follows from the inequality

fK (q) < fE . For the strong electric field (E ∼ 108 V/m), the
number of these fluctuations is very large as the maximum
values of the integer indices are as follows: kmax > 103 and
lmax,mmax > 105. Thus, we neglect the discrete nature of q and
transform the sum Eq. (24) into an integral where we stretch
qz, q → q̄ = (qx, qy,

√
K3/K̄qz). This transformation makes

the elastic term fK (q̄) = K̄ q̄2 isotropic and, therefore, N(t,q̄)
also becomes isotropic,

δε̃f (t) = (n2
e − n2

o

) V
√

K̄

8π3
√

K3

∫
Vq̄

N (t,q̄) dq̄, (25)

where the integration volume Vq̄ is defined by conditions
q̄x � π/d and q̄ < qc = π/ac. Here the first condition stems
from the strong anchoring at the substrates, and ac is the
characteristic distance that corresponds to the breakdown of
continuum theory. Integrating (25) using (22), we obtain the
contribution of the field-quenched director fluctuations for
modification of the optic tensor,

δε̃f (t) = A
e−S(t)

√
γeff

∫ t

0

fE(t ′)eS(t ′)
√

t−t ′

{
erf

√
t−t ′

τc

− erf

√
t − t ′

τd

−
√

t − t ′

πτd

[
E1

(
t − t ′

τd

)
− E1

(
t − t ′

τc

)]}
dt ′,

(26)

where A= (n2
e − n2

o) kBT

2π3/2K̄
√

K3
, τd = γeffd

2

K̄π2 ≈ τF
off/2, τc = γeff

K3q2
c
,

and E1(t) = ∫∞
t

e−t ′

t ′ dt ′ (t > 0) is the exponential integral, see,
e.g., Chap. 5 of Ref. [40].

C. Analysis and optimization of experimental geometries

We describe optical properties using the normalized wave
vectors k̃ = λ

2π
k of the optical modes, where λ is the

wavelength of a probing beam in vacuum. The tangential
components k̃y and k̃z are preserved at interfaces between
different layers: glass, indium tin oxide (ITO), polymer,
nematic, etc., and are the same for all optical modes. The
optical retardance between the two forward modes propagating
through the field-induced (effectively biaxial) states of an
NLC � = �neffd is determined by the NLC thickness d and
the effective birefringence �neff = k̃(1)

x − k̃(2)
x , where k̃(1)

x and
k̃(2)
x are solutions of the Fresnel equation for two forward

propagating modes k̃x > 0 in the biaxial medium,

ε̃x k̃
4
x − Q2k̃

2
x + Q0 = 0, (27)

where Q2 = ε̃x(ε̃y + ε̃z) − k̃2
y(ε̃x + ε̃y) − k̃2

z (ε̃x + ε̃z) and
Q0 = (ε̃y ε̃z − ε̃y k̃

2
y − ε̃zk̃

2
z )(ε̃x − k̃2

y − k̃2
z ). In the field-free

uniaxial state, modes 1 and 2 are the extraordinary k̃(1)
x = kxe =√

n2
e(1 − k̃2

z

n2
o
) − k̃2

y and ordinary k̃(2)
x = kxo =

√
n2

o − k̃2
y − k̃2

z

waves, respectively. An applied electric field causes a change in
the effective birefringence δneff = (k̃(1)

x − kxe) − (k̃(2)
x − kxo),

calculated from Eq. (27),

δneff = δε̃x k̃xe

(
k̃2
z k̃xek̃xo − k̃2

yn
2
o

)+ δε̃y

(
k̃2
y k̃

2
z k̃xo − k̃xen

2
ok̃

2
xo

)+ δε̃z

(
n2

o − k̃2
z

)2
k̃xo

2k̃xek̃xon2
o

(
n2

o − k̃2
z

) . (28)

The optic tensor modifications δε̃x , δε̃y , and δε̃z contain
the uniaxial δε̃u and isotropic δε̃iso contributions associated
with the field-enhanced uniaxial order, the term stemmed from
the field-induced biaxial order δε̃b, and the contribution δε̃f

caused by the quenching of director fluctuations along the
x axis. In real samples, there is also an additional “pretilt”
term because the surface alignment direction at the bounding
plates is practically never strictly parallel to the plate due to
the small pretilt angle β induced by rubbing of the aligning
layer. Nonzero β implies that the zero-field director and the
field are not strictly orthogonal and that there is a nonzero
dielectric torque on the director. The corresponding change in
the effective birefringence is proportional to (β̄ − β̄0), where
β̄ and β̄0 are the averaged angles between the director and
the substrate plane with and without the applied electric field,
respectively. One can show that β̄0 is the arithmetic mean of
the pretilt angles at the top and bottom plates.

Using Eqs. (10) and (23) for the discussed contributions,
we obtain from Eq. (28),

δneff = σbu

(
δε̃u + 3

2δε̃b

)+ σuf

(
δε̃u + 3

2δε̃f

)+ σβ(β̄ − β̄0),
(29)

where σbu = 1
6n2

o(n2
o−k̃2

z )
[k̃2

z (k̃xe − k̃2
y

k̃xe

) + n2
o(k̃xo − k̃2

y

k̃xo

)], σuf =
1

3n2
o
[ n2

o−k̃2
z

k̃xe

+ k̃2
yn

2
o−k̃2

z k̃xok̃xe

k̃xo(n2
o−k̃2

z )
], and σβ = n2

e−n2
o

n2
o

k̃z are the weighting

coefficients dependent on an experimental geometry. Note that
δε̃iso does not contribute to δneff and therefore cannot be
extracted from the phase retardance measurements. We also
cannot completely separate δε̃u, δε̃b, and δε̃f by staging three
different experimental geometries because these terms appear
in Eq. (29) in two combinations. However, as we will show
below, there is a possibility to determine δε̃u, δε̃b, and δε̃f

independently utilizing their distinct dynamics.
We perform experiments for the following three geometries

that provide the simplest interpretation:
(a) “Biaxial-uniaxial” (BU) geometry in which the contri-

bution of director fluctuations is eliminated, σuf = 0, and only
the biaxial and uniaxial OPs contribute to the optic response.

(b) “Uniaxial-fluctuations” (UF) geometry: Only the uni-
axial OPs and director fluctuations contribute to the optic
response, whereas the biaxial contribution does not, σbu = 0.

(c) “Normal” (N) geometry with the perpendicular in-
cidence of a probing beam in which case all the three
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FIG. 1. (Color online) Three experimental schemes for testing
an electro-optic response of a nematic cell with the laser beam
(horizontal red line). (a) BU geometry probing biaxial and uniaxial
contributions to the optic response. (b) UF geometry probing uniaxial
and fluctuations quenching modifications. (c) N geometry, all three
mechanisms contribute to the optic response.

mechanisms (uniaxial, biaxial, and fluctuation quenchings)
contribute to the measured signal, but the experimental setting
and weighting coefficients in Eq. (29) are simple.

1. Biaxial-uniaxial geometry

The simplest of the BU geometries, that satisfies the
condition σuf = 0, is the one in which the incidence plane
of a probing beam contains the director k̃y = 0, and the

incidence angle obeys the condition k̃z = n2
o√

n2
e+n2

o

, Fig. 1(a).

The field-induced change δnBU for this BU geometry is

δnBU = no/ne + 1 + ne/no

6
√

n2
e + n2

o

(
δε̃u + 3

2
δε̃b

)

+ n2
e − n2

o√
n2

e + n2
o

(β̄ − β̄0). (30)

The last term is a potential contribution of the finite pretilt
angle at the boundaries. Because of the finite pretilt, the applied
field can realign the director,

β̄(ton � t � toff) = β̄0 exp

(
− t − ton

τF
on

)
, (31)

where β̄0 is the arithmetic mean of the pretilt angles at
the top and bottom plates when there is no field. After the
field is switched off, the director relaxes back to the initial

state,

β̄(t > toff) = β̄0 − [β̄0 − β̄(toff)] exp

(
− t − toff

τF
off

)
. (32)

At a time scale (1–1000) ns of interest, Eq. (32) yields a
practically constant value of β̄(t > toff).

2. Uniaxial-fluctuative geometry

Among the UF geometries determined by the condition
σbu = 0 in Eq. (29), we choose the one with the incidence
plane of a probing beam perpendicular to the director k̃z = 0
and the incidence angle obeying the condition k̃y = no/

√
2,

Fig. 1(b). The corresponding field-induced birefringence δnUF

is

δnUF = 1

3
√

2

(
1

no

+ 2√
2n2

e − n2
o

)(
δε̃u + 3

2
δε̃f

)
. (33)

If the refractive indices of NLC ne and no are close to the
refractive index of the glass substrate ng , then the incident
angles in BU and UF geometries are close to 45°.

3. Normal geometry

In N geometry the probing light is perpendicular to the cell
k̃y = k̃z = 0, and Eq. (29) reduces to

δnN = 1

6no

(
δε̃u + 3

2
δε̃b

)
+ 1

3ne

(
δε̃u + 3

2
δε̃f

)
. (34)

III. EXPERIMENTAL METHODS

We used commercially available NLC CCN-47 (Nematel
GmbH). The material parameters measured at T = 40 ◦C are
as follows: dielectric constants ε|| = 3.9, ε⊥ = 9.0, dielec-
tric anisotropy �ε = −5.1, all determined within the field
frequency range of 1–50 kHz; birefringence �n = 0.029 at
λ = 633 nm. The transverse dipole of CCN-47 molecules
is large μD = 12.3×10−30 C m (3.7 D) as calculated using
CHEMOFFICE software. The structural formula of CCN-47 is
shown in Fig. 2(a).

FIG. 2. (Color online) (a) Molecular structure of CCN-47. (b) Schematic RC circuit. (c) Design of cell electrodes. (d) Electro-optic setup
for geometries BU and UF.
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The cells were constructed from two parallel glass plates
separated by spacers. The inner surfaces of these plates contain
ITO electrodes and unidirectionally rubbed polyimide layers
PI-2555 (HD MicroSystems), which are separated by a gap
d in the range (3.5–8.2) μm. When a voltage pulse U (t)
is applied, an electric field E(t) inside the liquid crystal is
controlled by the RC circuit, Fig. 2(b), formed by the resistance
R of the electrodes and the equivalent capacitance C =
CNLCCP /(CNLC + CP ) created by the capacitances of the NLC
CNLC and the polymer films CP . Most of the experiments were
performed with an NLC cell of the thickness d = 4.2 μm and
the RC time τRC = RC = 7 ns. In order to reduce the RC time,
we used the electrodes of low resistivity (10 �/square) and a
small area Ae = 3×3 mm2, Fig. 2(c). The dielectric constant
of the polyimide PI-2555 is εP = 3.5 [41]. The effective
thickness for the capacitor formed by the two polymer films is
dP = 0.2 μm. The rubbing directions at the plates are parallel
to each other in order to minimize the effects of nonzero
pretilt. The typical pretilt angle at the used substrates was about
0.7°. To satisfy the conditions of the BU and UF geometries,
Fig. 1, the NLC cell is sandwiched between two right angle
glass prisms with the refractive index ng = 1.52, which is
close to ne = 1.50 and no = 1.47 measured at T = 40 °C and
λ = 633 nm. The temperature of the cells was controlled with
an accuracy of 0.1 °C by a LTS350 hot stage (Linkam Scientific
Instruments) and a Linkam TMS94 controller.

The cells were tested with a He-Ne laser beam (λ =
632.8 nm), linearly polarized along the direction that makes
an angle of 45° with the incidence plane. The beam passes
through the cell, the Soleil-Babinet compensator, and two
crossed polarizers, Fig. 2(d). The transmitted light intensity
was measured using a photodetector TIA-525 (Terahertz
Technologies, response time <1 ns).

The change in light intensity caused by the applied field
can be presented as

I (t) = [Imax(t) − Imin(t)]sin2

{
π [δn(t) + �neff]d

λ
+ φSB

2

}
+ Imin(t), (35)

where φSB is the variable phase retardance controlled by the
Soleil-Babinet compensator and Imin and Imax are the minimum
and maximum values, respectively, of the light intensity. The
values of Imin and Imax are different from 0 and the ideal
maximum because of parasitic effects, such as light reflection
at interfaces, light scattering, and absorption. These parasitic
effects might be sensitive to the applied field, which is why
both Imax and Imin are shown as time dependent in Eq. (35).
The role of the variable Soleil-Babinet phase difference φSB is
to eliminate the contribution of these parasitic effects from the
effects affecting the birefringence, i.e., the OPs modifications
and quenching of the director fluctuations, as explained below.

The measurements are performed with two different values
of the Soleil-Babinet phase retardation φA = 2π

λ
( λ

4 − �neffd)
and φB = 2π

λ
( 3λ

4 − �neffd). At these values, the transmit-
ted light intensity in the field-free state is I (t = 0) =
[Imax(0) + Imin(0)]/2, Fig. 3(a), which means that the sen-
sitivity of light intensity to the changes in optical properties
is maximized. Furthermore, extraction of the useful contri-
bution from the parasitic effects is achieved by evaluating

FIG. 3. (Color online) (a) Two settings of the Soleil-Babinet
compensators A and B, which correspond to the maximum sensitivity
of light intensity to changes in optical retardance. The two settings
also allow one to separate the field-induced retardance changes
from parasitic effects. (b) The optic response to U0 = 626 V pulse
measured at T = 43 °C, d = 4.2 μm for the two settings of the
compensator φSB = φA and φSB = φB . (c) Half-difference �I−(t)
and half-sum �I+(t) of the two optic response curves shown in (b).

the half-difference �I−(t) = 1
2 [�IA(t) − �IB(t)] = π δn(t)d

λ

[Imax(0) − Imin(0)] and the half-sum �I+(t) = 1
2 [�IA(t) +

�IB(t)] = 1
2 [�Imax(t) + �Imin(t)] of the optical measure-

ments recorded for φA and φB , Figs. 3(a) and 3(c). As seen
in Fig. 3(c), the half-difference �I−(t) signal is significantly
larger than the half-sum �I+(t) signal, which indicates the
prevalence of the field-induced birefringence δn(t) effect over
the parasitic factors.

Voltage pulses of amplitude U0 up to 1 kV with nanosec-
onds’ rise and fall fronts were produced by a pulse generator
HV 1000 (Direct Energy, Inc.). The profiles of voltage pulses
U (t) and optic responses I (t) were experimentally determined
with an oscilloscope Tektronix TDS 2014 (sampling rate 1
Gsample/s).
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FIG. 4. (Color online) Dynamics of field-induced birefringence in geometries (b) BU, (c) UF, and (d) N in response to the applied voltage
pulses (a); temperature T = 49 °C. The curves in (a)–(d) from top to bottom correspond to voltage pulses with U0 = 626, 484, 344, and 197 V,
respectively.

IV. OPTIC RESPONSE DYNAMICS AND
EXPERIMENTAL DATA FITTING

Short voltage pulses of duration 394 ns applied to the
NLC cell, Fig. 4(a), produce the optic responses shown in
Figs. 4(b)–4(b) for geometries BU, UF, and N, respectively.

In order to evaluate the dynamics of an optic response and to
separate different contributions, one needs to know the profile
of the voltage pulse. The latter can be presented as a sum of
the exponential functions,

U (t < ton) = 0,

U (ton � t � toff) = U0(e−(t−ton)/τa − e−(t−ton)/τon ), (36)

U (t > toff) = U (toff)e
−(t−toff )/τoff ,

where ton and toff are the moments of time when the voltage
is switched on and off, respectively; U0 is the characteristic
amplitude of the pulse applied to the electrodes of the cells, τon

is the characteristic rise time of the front edge of the pulse, τoff

is the characteristic decay time of the rear edge of the pulse, and
τa is the characteristic time of the slowly decaying amplitude
of the pulse. The parameters U0, τa , τon, and τoff are obtained
by fitting the experimental profile, Fig. 5(a). It is convenient
to represent the voltage pulse as a sum of the exponential
functions because it allows us to solve the Kirchhoff equation

TABLE I. Coefficients ai and νi for exponential expansion of
EON(t).

i 1 2 3

ai
τa

τa−τRC

−τon
τon−τRC

−(τa−τon)τRC

(τa−τRC )(τRC−τon)

νi 1/τa 1/τon 1/τRC

for an RC circuit with characteristic time τRC , which is 7 ns for
the cell of thickness 4.2 μm. Thus, the electric field inside the
NLC E(t < ton) = 0, EON(ton � t � toff) and EOFF(t > toff)
is

EON(ton � t � toff) = E0

∑
i

aie
−νi (t−ton),

EOFF(t > toff) = EON(toff)
∑

j

bj e
−μj (t−toff ), (37)

where E0 = U0εP /(ε⊥dP + εP d). In our experiment for the
switching-on dynamics ton � t � toff , the summation index i

runs through the values 1–3; ai and νi are presented in Table I.
And for the switching-off dynamics t > toff , the summation
index j runs through the values 1 and 2; bj and μj are presented
in Table II.

The exponential form representation of E(t) streamlines
the fitting procedure because it allows one to evaluate Eq. (12)
in an analytic form for the uniaxial δε̃u(t) and biaxial δε̃b(t)
OPs dynamics as well as Eq. (26) for the quenching of director
fluctuations δε̃f (t).

A. Biaxial-uniaxial geometry fitting

The typical response of CCN-47 to the applied voltage
pulse of a duration of 394 ns, recalculated in terms of the

TABLE II. Coefficients bj and μj for exponential expansion of
EOFF(t).

j 1 2

bj 1 − εP U (toff )
(ε⊥dP +εP d)EON(toff )

τoff
τoff−τRC

εP U (toff )
(ε⊥dP +εP d)EON(toff )

τoff
τoff−τRC

μj 1/τRC 1/τoff
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FIG. 5. (Color online) (a) Experimentally measured voltage profile fitted by Eq. (36) (solid red line) with U0 = 626 V, τa = 18.5 μs,
τon = 3.2 ns, τoff = 3.2 ns, ton = 93 ns, and toff = 487 ns. (b) Optic response in BU geometry at T = 46 °C (gray dots) fitted with Eqs. (12), (30),
(31), and (32) for one uniaxial and one biaxial mode τb = 1.95 ns, τu = 29 ns, αb = 5.4×10−20 m2/V2, αu = 8.9×10−20 m2/V2, β̄0 = 0.06◦,
and τF

on = 85 ns (solid black line). The blue dashed line is the biaxial contribution.

field-induced birefringence change δn, is fitted according
to Eq. (30), Fig. 5(b). The last term in Eq. (30) is the
contribution due to the nonzero averaged pretilt angle β̄(t),
which is described by Eqs. (31) and (32). We extract this
contribution using τF

on and considering that β̄(t) = β̄(toff) is
responsible for remaining a constant bias when in the range of
500–1000 ns, and Eq. (32) yields a practically constant value
of β̄ = 0.1◦. Two main contributions are the field-induced
uniaxial δε̃u(t) and biaxial δε̃b(t) contributions of the NEMOP
effect. Experimental data in the middle of the nematic phase fit
well with the simplified model with two OPs Eq. (12), and the
fitting clearly reveals two processes with substantially different
relaxation times: slow in the range of tens of nanoseconds and
fast in the range of nanoseconds. We assign the slow process
with relaxation time τu = 28 ns to the uniaxial OP of long
axes δR00 and the fast process with τb = 1.95 ns to the biaxial
OP of short axes δR22. This assignment is verified by the
experimental results for UF geometry, discussed in the next
section. Although the experimental data should be generally
discussed with four OPs, the data analysis shows that it suffices
to use just two different OPs and that the introduction of the
third and fourth OP does not improve the fitting.

The experimental data, fitted with four parameters
αb, αu, τb, and τu, clearly demonstrate that τb is the shortest
time scale of the dynamic processes, being on the order of

a few nanoseconds or even shorter. For all temperatures, the
fitted values of τb are always shorter than 2.4 ns. A more accu-
rate determination is not possible as τb is at the edge of the
experimental accuracy of setting and monitoring the voltage
pulses. Importantly, the three other fitting parameters αb, αu,

and τu show very little changes with different values of τb as
described in Appendix A. In what follows, we set τb = 1 ns
and fit the experimental data with Eq. (30) using only three
fitting parameters: τu, αu, and αb.

B. Uniaxial-fluctuative geometry fitting

The response of CCN-47 in UF geometry shown in Fig. 6(a)
is obtained at the same voltage and temperature as the response
in BU geometry, Fig. 5(b). The optic response has two
contributions in Eq. (33): the modification of the uniaxial OP
and the quenching of director fluctuations. The contribution
of the director fluctuations described by Eq. (26) can be
simplified for our fitting procedure because τd ≈ 60 ms for
the cell thickness 4.2 µm and τc < 10 ns for qc ≈ 1 nm−1.
Therefore, the term inside the curly brackets in Eq. (26) is
close to unity and

δε̃f (t) = A
e−S(t)

√
γeff

∫ t

0

fE(t ′)√
(t − t ′)

eS(t ′)dt ′, (38)

FIG. 6. (Color online) Optic response measured in UF geometry at 46 °C. Uniaxial component δε̃u(t) parameters αu and τu obtained from
BU geometry at voltage U0 were used to fit UF geometry data and to obtain A and γeff . (a) αu = 9.5×10−20 m2/V2 and τu = 28 ns for the
applied voltage pulse U0 = 626 V yield parameters A = 1.7 μs (m/kg)1/2 and γeff = 25 mPa s. (b) αu = 9.6×10−20 m2/V2 and τu = 30 ns
for U0 = 197 V pulse yield A = 1.7 μs (m/kg)1/2 and γeff = 15 mPa s. The experimental points are fitted with our model (solid red line), and
the dashed line is the uniaxial contribution δε̃u(t), obtained from BU geometry.
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where A and γeff are the fitting parameters. Substituting
Eq. (37) into Eq. (38), we represent δε̃f (t) by two analytical
expressions: switching-on dynamics δε̃ON

f (ton � t � toff) and
the switching-off dynamics δε̃OFF

f (t > toff) (see Appendix B
for details). The switching-on fluctuations dynamics is

δε̃ON
f (ton � t � toff)

= A
f0e

−2ν1(t−ton)

√
γeff

[
a2

1

√
πτ̄f erf

(√
t − ton

τ̄f

)

+ 2e−(t−ton)/τ̄f

3∑
i,i ′=1

′
aiai ′

D(
√

λii ′(t − ton))√
λii ′

]
, (39)

where
∑′3

i,i ′=1 is the sum with the term i = i ′ = 1 being ex-
cluded; f0 = ε0|�ε|E2

0 ; λii ′ = νi + νi ′ − a2
1/τf ;τf = γeff/f0;

τ̄f = |λ11|−1 = τf /(a2
1 − 2τf ν1) is the characteristic time

for the dynamics of fluctuations’ quenching; and D(z) =
e−z2 ∫ z

0 et2
dt is Dawson’s integral; see Chap. 7 in Ref. [40].

In Eq. (39), the first term with the error function provides the
main contribution, whereas the terms with Dawson’s integrals
describe small corrections caused by the nonsquare shape of
the electric pulse in the NLC. In the case of an ideal square
electric pulse, τa → ∞, τon → 0, and τRC → 0, the terms with
Dawson’s integrals disappear, and τ̄f = τf .

The switching-off dynamics is

δε̃OFF
f (t > toff) = A

f0
√

π√
γeff

⎛
⎝a2

1ge−2ν1(toff−ton)
√

τ̄f e(t−toff )/τ̄f

[
erf

√
t − ton

τ̄f

− erf

√
t − toff

τ̄f

]

+ 2√
π

g

3∑
i,i ′=1

′ aiai ′√
λii ′

{e−a2
1 (toff−ton)/τf D(

√
λii ′(t − ton)) − e−(νi+νi′ )(toff−ton)D(

√
λii ′(t − toff))}

+ f ON
E (toff)

f0

2√
π

2∑
j,j ′=1

bjbj ′√
μj + μj ′

D(
√

(μj + μj ′)(t − toff))

⎞
⎠ , (40)

where g = exp[− f ON
E (toff )
γeff

∑2
j,j ′=1

bj bj ′
μj +μj ′ ].

Fitting the experimental data with the corresponding
Eqs. (12), (39) and (40) reveals that the characteristic time of
the fastest process is about 30 ns, and there is no process with
the characteristic time on the order of 1 ns, which we observe in
BU geometry, Fig. 5(b). Therefore, the UF experiment proves
our earlier assignment that the relatively slow (30 ns) process
in BU geometry is related to the modification of the uniaxial
OP and the fast nanosecond process is caused by the induced
biaxial OP.

The reliable fitting of the uniaxial and fluctuations contri-
butions with Eqs. (12), (39), and (40) might be challenging,
especially for higher electric fields, when the characteristic
times τ̄f and τu are on the same order. On the other hand,
τb and τu are more than one order of magnitude different, and
fitting BU geometry allows us to obtain the biaxial and uniaxial
contributions with high accuracy. Therefore, we separate
the uniaxial contribution from the experimental data in UF
geometry using the corresponding fitting parameters αu and
τu obtained from BU geometry for the same temperature and
voltage pulse. Then we fit the remaining part corresponding to
the director fluctuations with Eqs. (39) and (40). Although we
use only two fitting parameters A and γeff , the experimental
data fit for UF geometry is encouraging, both for higher electric
fields when the optic response is faster, Fig. 6(a) and for lower
fields when the response is slower, Fig. 6(b).

C. Normal geometry

Using an arbitrary direction of the probing beam propa-
gation in our experimental system, one can obtain a linear
combination of two independent experimental sets of data
Eq. (29). More specifically, the optic response in N geometry

can be presented as the linear combination of respective
responses in BU and UF geometries. In order to validate the
two experimental sets of data taken in BU and UF geometries,
we perform an experiment in N geometry.

With a probing beam impinging normal on the substrates,
N geometry contains the contributions of all three processes
Eq. (34): the field-enhanced uniaxial OP, field-induced biaxial
OP, and the quenching of director fluctuations. Equations (30),
(33), and (34) show that the linear combination of the optic
responses in BU, UF, and N geometries expressed as

δn0(t) = δnN(t) −
√

n2
e + n2

o

n2
o

/
ne + no + ne

[
δnBU(t)

− n2
e − n2

o√
n2

e + n2
o

(β̄ − β̄0)

]

−
√

2no

√
2n2

e − n2
o

ne

(√
2n2

e − n2
o + 2no

)δnUF(t) (41)

should be zero. This quantity can be used as an estimate of the
experimental error. In all our experiments, the field-induced
phase difference δn0(t), described in Eq. (41), deviates from
zero by no more than 1.4×10−4 (except at the moments of
time corresponding to the front and rear edges of the voltage
pulse), Fig. 7.

V. DISCUSSION

A. Biaxial-uniaxial geometry

The experimental data follow our model fairly well,
Figs. 5(b) and 13(a). In particular, at the temperatures
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FIG. 7. (Color online) Optic responses measured in geometries BU, UF, and N at (a) 36 °C and (b) 53 °C. The lowest black curve corresponds
to δn0(t) defined in Eq. (41). Applied voltage pulse U0 = 626 V.

T = 31, 46, and 49 °C, Fig. 8, that are far from the nematic-to-
isotropic (TNI = 56.5 °C) phase transition, the fitting parame-
ters, namely, the biaxial αb and uniaxial αu susceptibilities and
the characteristic uniaxial time τu, do not depend on the electric
field as expected, see Eq. (12). Close to TNI at T = 54 °C,
αu and τu decrease, whereas αb increases with the electric
field. Such a behavior in the pretransitional region might be
attributed to the following factors. First, we restrict our model
by the second-order term of the free energy density expansion
Eq. (4). One can expect that near the TNI, the higher-order terms
should be taken into account. Second, although our model
describes the NEMOP effect through four OPs Eq. (11), we fit
experimental data with the assumption of only two OPs being
significant (R00 and R22) Eq. (12).

The temperature dependences of αu and τu, shown in Fig. 9,
are obtained for E0 = 74 V/μm. Such a field is not very
strong, yet the induced optic response is sufficiently large to
provide reasonable accuracy.

When the temperature approaches TNI, both the uniaxial
susceptibility αu and the relaxation time τu increase, Fig. 9(a).
In the theory, both quantities are inversely proportional to
∂2fm/∂Rjk∂Rjk′ , see Eq. (4), i.e., αu ∝ 1/M00,00 and τu ∝
1/M00,00. The experimentally observed increase in αu and
τu is, thus, explained by the flattening of the free energy

density profile as a function of R00 near the phase transition
temperature. Therefore, the experimental behavior of αu and
τu is consistent with the Landau-Khalatnikov description close
to the phase transition [34].

The reciprocal quantities 1/αu and 1/τu demonstrate a
quasilinear behavior at both low and high temperatures of
the nematic range, Fig. 9(b). Close to TNI, this behavior could
be explained by the Landau–de Gennes theory for the nematic
phase, where M00,00 has a quasilinear temperature dependence
and adopts a zero value at the absolute temperature limit T ∗∗
of overheating of the nematic phase, Fig. 9(b).

At the lower temperature limit of the nematic phase, the
value of αu slightly increases, Fig. 9(b), which could be
attributed to the formation of fluctuative smectic clusters near
the nematic-to-smectic phase transition, which is enhanced
by the electric field. Clusters might also explain the increase
in the response time τu at the low temperatures.

The biaxial susceptibility αb shows a well-pronounced
increase as the temperature is lowered, Fig. 10(a), which
can be explained in the following way. In our model, αb is
proportional to M−1

22,22 Eq. (13). According to the Landau
theory, the biaxial second-order coefficient M22,22 in the
uniaxial phase Eq. (4) has to go to zero at the temperature
Tub of the uniaxial-biaxial nematic phase transition, and this

FIG. 8. (Color online) Electric-field dependence of (a) biaxial αb, (b) uniaxial αu susceptibilities, and (c) uniaxial time τu at different
temperatures: 31 °C (•), 46 °C (�), 49 °C (×), and 54 °C (�).
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FIG. 9. Temperature dependences of (a) uniaxial susceptibility
αu(�) and uniaxial characteristic time τu(�) measured at E0 =
74 V/μm and (b) their reciprocal values α−1

u and τ−1
u fitted with

straight lines.

dependence is linear M22,22 ∝ (T − Tub). Therefore, one can
expect that α−1

b ∝ (T − Tub) and the experimental data show
such a linear dependence for temperatures far below TNI,
Fig. 10(b). The slope of the linear temperature dependence
of α−1

b shows that the hypothetical uniaxial-to-biaxial nematic
phase transition temperature is Tub = 5 ◦C, Fig. 10(b). This
temperature is well below the uniaxial-to-smectic A transition
temperature TNA = 30 ◦C observed for CCN-47. Thus, the
molecular structure of CCN-47 is not conducive for the search
of a biaxial nematic phase. On a general note, the temperature
dependence of αb can serve as an indicator of how close
a uniaxial nematic material might be to forming a biaxial
nematic phase in the absence of the external electric field.

B. Uniaxial-fluctuative geometry

This geometry offers a convenient way for analyzing the
nanosecond dynamics of the quenching of director fluctuations
because the biaxial contribution is absent and the uniaxial
contribution in Eq. (33) can be separated from the fluctuative
contribution since the values of αu and τu are already known
from the fit of the experimental data in BU geometry. The
electric-field dependences of the fitting parameters A and γeff

for several temperatures are shown in Fig. 11. As expected,
the amplitude coefficient A, describing the changes in the
optic tensor caused by the quenching of director fluctuations
Eq. (26), remains almost field independent and increases
with temperature, Figs. 11(a) and 12. However, the value of
A is about two times bigger than the value expected from
its definition in Eq. (26), calculated with the known elastic
constants [42] and the measured ne = 1.50 and no = 1.47.

FIG. 10. (Color online) Temperature dependences of (a) biaxial
susceptibility αb (•) and (b) its reciprocal α−1

b fitted with a straight
line.

The obtained effective viscosity γeff demonstrates a weak
monotonous increase with the electric field, Fig. 11(b) and is
slightly smaller than the macroscopic viscosities of CCN-47
homolog compounds and their mixtures [43]. As expected,
in the nematic phase, γeff increases with a decrease in
temperature, Fig. 12. The increase is especially pronounced
near the transition to the smectic A phase. The latter can be
attributed to the pretransitional phenomena, such as fluctuative
cybotactic smectic clusters.

FIG. 11. Fitting parameters (a) A and (b) γeff obtained from
experimental data at 31 °C (•), 46 °C (�), 49 °C (×), and
54 °C (�).
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FIG. 12. Temperature dependence of A (©) and γeff (�) at
E0 = 74 V/μm.

VI. CONCLUSION

In this paper, we explored both theoretically and experi-
mentally the electro-optic response of an NLC cell in which
the electric field does not cause director reorientation. We
demonstrated three mechanisms contributing to the field-
induced change in optical birefringence: nanosecond electric
modification of (a) biaxial, (b) uniaxial OPs, and (c) quenching
of the director fluctuations. Our observations reveal that these
mechanisms have different characteristic times. For CCN-47,
these times are (a) less than 2 ns for the biaxial NEMOP,
(b) tens of nanoseconds for the uniaxial NEMOP, and (c) a
wide range of characteristic times from tens of nanoseconds
to milliseconds for the quenching of director fluctuations.

We developed a model of the NEMOP effect using two
uniaxial and two biaxial nematic OPs. Their dynamics are
described by two uniaxial and two biaxial modes Eq. (5). We
used a simplified two-mode version of the model to fit our
experimental data for CCN-47; the uniaxial OP of the long
molecular axes and the biaxial OP of the short molecular axes
appear to be the dominant OPs for this material.

We describe the dynamics of director fluctuations using the
macroscopic viscoelastic approach Eq. (20) with Frank-Oseen
elastic energy in splay-twist one-constant approximation K1 =
K2 and with a constant effective viscosity. Within these
approximations, we derived the contribution for the quenching
of director fluctuations to the field-induced modifications of
the optic tensor Eq. (26).

Experimentally, we determine the field-induced changes in
the effective birefringence δneff , which contains the uniaxial
δε̃u, biaxial δε̃b, and fluctuational δε̃f contributions Eq. (29).
In order to separate these contributions, we used the so-called
BU and UF geometries in which one of the three contributions
is nullified. We also independently validated the separation
of different mechanisms by measuring the optic response in
normal incidence (N) geometry, Fig. 7.

In BU geometry, with no contribution from the fluctuations
quenching, the dynamics of the electro-optic response devel-
ops over time scales of nanoseconds and is well described
by two different characteristic times τu (tens of nanoseconds)
and τb (about 2 ns or less). We associate these characteristic
times with the uniaxial and biaxial modifications, respectively,
of the optic tensor, see Eqs. (30) and (12). The assignment
of the fastest relaxation time τb to the biaxial modification
is justified by the measurements in UF geometry in which

the nanosecond relaxation is absent. The biaxial susceptibility
shows a strong temperature dependence at low temperatures
αb ∝ (T − Tub)−1, which indicates a possible phase transition
from the uniaxial to the biaxial nematic phase in a field-free
state at some temperature Tub. The extrapolated value is
Tub = 5 ◦C, much lower than the temperature 30 °C of the
actual phase transition from the uniaxial nematic to the
smectic A phase. Therefore, in the explored material CCN-47,
the hypothetical biaxial nematic state is suppressed by the
occurrence of the smectic A phase. A similar test can be used
to find Tub in other materials in order to facilitate the search
for potential biaxial nematics.

UF geometry provides interesting information about the
behavior of director fluctuations on nanoseconds’ time scales.
In this geometry, the biaxial modifications in the optic tensor
δε̃b are eliminated, and the uniaxial changes can be evaluated
by employing the values of parameters αu and τu obtained
from the slow component of the BU response. The remaining
changes δε̃f in the optic tensor can be attributed to the quench-
ing of director fluctuations. The director fluctuations model
provides a good fit to the experimental optic response, Fig. 6.
As expected, the amplitude of director fluctuations grows with
temperature, whereas the effective viscosity decreases with
temperature, Fig. 12. The amplitude coefficient A does not
depend on the electric field but is bigger than theoretically
expected, Fig. 11(a), which can be attributed to the simplifying
assumptions of the theory. The most intriguing feature is that
the effective viscosity increases with the field, Fig. 11(b),
thus, possibly indicating that the classic viscoelastic theory
with constant material parameters might approach its limit of
validity when applied to the nanoseconds dynamics in strong
electric fields.

The presented NEMOP effect should be distinguished from
the classic Kerr effect. The Kerr effect consists of field-induced
birefringence emerging in the otherwise isotropic fluid. It is
an essentially uniaxial effect with the induced optic axis being
always parallel to the applied field. The Kerr effect can be
observed in nonmesogenic fluids [44–46] and in the isotropic
phase of mesogenic compounds [47–52]. In the first case,
the effect is practically temperature independent, whereas
in the second case, it shows a strong enhancement near the
isotropic-to-nematic phase transition [50,52]. In comparison,
the NEMOP response of CCN-47 with a negative dielectric
anisotropy features both uniaxial and biaxial optical changes.
The biaxial changes are faster than the uniaxial changes at the
same temperature and in the same electric field as discussed
above. Similar to the case of electro-optic effects in uniaxial
and biaxial nematics [53], one could expect that the biaxial part
of NEMOP would be generally faster than the uniaxial part. It
is also expected that as the relative contributions of the biaxial
and uniaxial change, the amplitude and relaxation times of
these changes would be strongly dependent on the molecular
structure as the NEMOP effect is essentially a molecular-scale
phenomenon. Indeed, our recent results [13] demonstrate that
different mesogenic materials show very different amplitudes
of the field-induced NEMOP birefringence that exceed the
data presented for CCN-47 by at least one order of magnitude.

From the fundamental point of view, NEMOP represents an
opportunity to analyze the complex uniaxial-biaxial response
of the orientationally ordered medium to the applied electric
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field on the scale of nanoseconds. In this paper, we explored
only one material. Further studies should expand to materials
with different molecular structures and material parameters.
For instance, the NEMOP effect can be observed not only
in materials with a negative dielectric anisotropy as is the
case of CCN-47, but also in materials with positive dielectric
anisotropy. It would be of interest to compare the parameters
of the NEMOP effect to the parameters of the Kerr effect in the
isotropic phase of the same compound. These studies would
shed some light on which mode of optic response would be the
most beneficial for the nanosecond electro-optic applications.
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APPENDIX A: FITTING PROCEDURE
FOR BIAXIAL-UNIAXIAL GEOMETRY

In this appendix, we explain the procedure to fit the
experimental data obtained in BU geometry. There are three
processes that are relevant in the dynamics of optic response in

this geometry, namely, director reorientation associated with
the finite pretilt and biaxial and uniaxial changes in the OPs.

The slowest one is the dynamics of the pretilt angle β̄(t),
described by Eqs. (31) and (32). When the field is switched
on, the characteristic time τF

on ≈ γ1/(ε0|�ε|E2) of the pretilt
dynamics with γ1 ≈ 0.1 Pa s being the rotational viscosity and
E ≈ 2×108 V/m being the typical electric field is about 100
ns, which is longer than the rate of uniaxial and biaxial changes
τu ∼ 30 and τb < 2 ns. When the electric field is switched off
at t = toff , the relaxation time of the pretilt angle becomes
even longer τF

off ≈ γ1d
2/(π2K1) ∼ 10 ms. At the scale of

nanoseconds relevant to our experiments, this extremely slow
relaxation yields a practically time-independent contribution
to the overall optical signal that reveals itself in Fig. 13(a)
as a negative-valued “tail” in the time dependence of δn

[see also Figs. 3(c) and 5(b)]. Since the uniaxial and biaxial
modifications relax much faster than the pretilt angle, we use
the optic signal measured at t > toff + 500 ns to determine the
value of β̄(t > toff); the value of β̄0 follows from Eq. (31).
Note that the overall effect of β̄(t) is small, contributing less
than 5% to the optic response.

After the exclusion of the pretilt angle contribution, the
remaining dynamics is associated with the uniaxial and biaxial
changes in the OPs that occur on short time scales (1–100) ns.
We fit the experimental data with Eq. (30) in which β̄(t) is
defined as explained above. The fitting is performed through
minimization of the residuals function,

var = 1

N − 4

N∑
i=1

[δn(ti) − δnBU(ti ,αu,αb,τu,τb)]2, (A1)

FIG. 13. (Color online) (a) Optic response at T = 43 °C (gray dots) fitted with Eq. (30) for one uniaxial and one biaxial mode, τb =
1.76 ns, τu = 31 ns, αb = 5.8×10−20 m2/V2, and αu = 8.0×10−20 m2/V2 (solid black line). The blue dashed line is the biaxial contribution.
(b) Dependence of the residuals function on the preselected value of τb, obtained from the fitting of the optic response at T = 43 °C, U0 = 626 V
with Eq. (30). Dependence of the fitted values of (c) αu, αb and (d) τu on the preselected value of τb. The big marker on the plots corresponds
to τb = 1.76 ns, obtained as a free fitting parameter.
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where N is the number of experimental data points {ti ,δn(ti)}
and δnBU is the fitting function as defined in Eq. (30).

The fitting clearly reveals two different relaxation processes
with substantially different relaxation times: τu in the range of
tens of nanoseconds and τb in the range of nanoseconds. For
example, the optic response to the voltage U0 = 626 V yields
τb = 1.8 and τu = 31 ns, Fig. 13(a). As long as τb is less than
2 ns, the fitting produces practically the same values of the
three other parameters, αu, αb, and τu, Figs. 13(b)–13(d).

APPENDIX B: ANALYTIC DESCRIPTION
OF THE DYNAMICS OF DIRECTOR

FLUCTUATIONS QUENCHING

In this appendix, we derive an expression for the dynamics
of the fluctuative contribution described by Eq. (38). To
simplify derivation we set ton = 0. The function fE(t) =
ε0|�ε|E2(t) reads from Eq. (37) as

f ON
E (t � toff) = f0

3∑
i,i ′=1

aiai ′e
−(νi+νi′ )t ,

f OFF
E (t > toff) = f ON

E (toff)
2∑

j,j ′=1

bjbj ′e−(μj +μj ′ )(t−toff ), (B1)

where f0 = ε0|�ε|E2
0 , E0 = U0εP /(ε⊥dP + εP d) is the char-

acteristic amplitude of the electric field inside the NLC
Eq. (37), i = 1–3, see Table I of the main text, and j = 1,2,
see Table II.

For the switching-on process, t � toff , SON(t � toff) =
1

γeff

∫ t

0 f ON
E (t ′)dt ′, therefore, exp[SON(t)] in Eq. (38) can

be presented in a form exp[SON(t)] =∏3
i,i ′=1 Pii ′ (t), where

Pii ′ (t) = exp[ aiai′
τf (νi+νi′ )

(1 − e−(νi+νi′ )t )] and τf = γeff/f0. One
can see from Table I that |ai | ∼ 1 and νi satisfy the conditions
ν1τf � 1 and νiτf � 1 for i = 2,3. Thus, the exponential
term in parentheses can be expanded for P11(t) = exp(a2

1 t/τf )
and neglected for all other terms Pii ′ = exp[ aiai′

τf (νi+νi′ )
]. There-

fore, Eq. (38) can be presented as

δε̃ON
f (t � toff) = A

√
π

f0√
γeff

e−a2
1 t/τf

3∑
i,i ′=1

aiai ′I (λii ′,0,t),

(B2)

where λii ′ = νi + νi ′ − a2
1

τf
and I (λ,t0,t) = ∫ t

t0

e−λt ′√
t−t ′

dt ′. The
integral I (λ,t0,t) yields either the error function or Dawson’s
integral, see, e.g., Chaps. 5 and 7 of Ref. [40],

I (λ,t0,t) =
⎧⎨
⎩

√
π e|λ|t√|λ|erf

√|λ|(t − t0), if λ < 0,

2 e−λt0√
λ

D(
√

λ(t − t0)), if λ > 0.
(B3)

One can see from Table I that λ11 < 0 and λii ′ > 0 for all
other cases; thus, Eq. (38) for the switch-on dynamics t � toff

becomes

δε̃ON
f (t � toff) = A

f0√
γeff

e−a2
1 t/τf

[
√

π
a2

1e
|λ11|t

√|λ11|
erf
√

|λ11|t

+ 2
3∑

i,i ′=1

′ aiai ′√
λii ′

D(
√

λii ′ t)

]
, (B4)

where
∑′3

i,i ′=1 is the sum with the term i = i ′ = 1 being
excluded. Equation (B4) is presented as Eq. (39) in the main
text.

For the switching-off process t > toff , we can split
S(t > toff) into two parts S(t > toff) = SON(toff) +
SOFF(t > toff), where

SOFF(t > toff) = 1

γeff

∫ t

toff

f OFF
E (t ′)dt ′

= f ON
E (toff)

γeff

2∑
j,j ′=1

bjbj ′

(μj + μj ′ )

× (1 − e−(μj +μj ′ )(t−toff )). (B5)

Thus, Eq. (38) is also divided into two parts,

δε̃OFF
f (t > toff)

= A√
γeff

e−SOFF(t)

[
e−SON(toff )

∫ toff

0

f ON
E (t ′)eSON(t ′)

√
t − t ′

dt ′

+
∫ t

toff

f OFF
E (t ′)eSOFF(t ′)

√
t − t ′

dt ′
]
. (B6)

During the switching-off process, μjτf � 1, thus we
can neglect the exponential term in Eq. (B5) so that

exp[−SOFF(t)] ≈ exp[− f ON
E (toff )
γeff

∑2
j,j ′=1

bj bj ′
μj +μj ′ ] = g ≈ 1.

Therefore,

δε̃OFF
f (t > toff)

= A√
γeff

[
gf0e

−a2
1 toff/τf

3∑
i,i ′=1

aiai ′

∫ toff

0

e−λii′ t ′

√
t − t ′

dt ′

+ f ON
E (toff)

2∑
j,j ′=1

bjbj ′

∫ t

toff

e−(μj +μj ′ )(t ′−toff )

√
t − t ′

dt ′

⎤
⎦ . (B7)

Representing the integrals in the first sum of Eq. (B7)
as
∫ toff

0 dt ′ = ∫ t

0 dt ′ − ∫ t

toff
dt ′ and using Eq. (B3), we obtain

Eq. (40).
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