Section 14.3: Constructions

CONSTRUCTION 1: Construct a line segment equal in length to a given line segment.

1. Let \overline{AB} be the given line segment. Adjust the radius of the compass to the length of \overline{AB} by putting the metal point on A and the pencil point on B.

2. Draw a line ℓ and mark a point on it (point C in the figure). Draw an arc with center C and radius AB that intersects the line (in the figure, the arc intersects ℓ in point D). $CD = AB$.

Example 1. Construct a line segment equal in length to AB.
CONSTRUCTION 2: To bisect a line segment.

1. Let \overline{AB} be the given line segment.

2. With A and B as centers, draw two arcs that have the same radius and that intersect each other in two points (C and D in the figure).

3. Draw \overrightarrow{CD}. \overrightarrow{CD} bisects \overline{AB}.

Example 2. Bisect the following line segment.
CONSTRUCTION 3: To construct the line perpendicular to a given line through a point on it.

1. Let ℓ be the given line and P a point on it.

2. With P as center, draw an arc that intersects ℓ in two points (A and B in the figure). Note that P is equidistant from A and B.

3. Use your compass to locate another point that is equidistant from A and B. (C in the figure).

4. Draw \overrightarrow{CP}.

Example 3. Construct a line perpendicular to the given line through the point P.

...
CONSTRUCTION 4: To construct the line perpendicular to a given line through a point not on it.

1. Let ℓ be the given line and P be a point not on it. The steps in the procedure, illustrated below, are similar to those in Construction 3.

Example 4. Construct the line perpendicular to the given line through P.
CONSTRUCTION 5: To construct an angle equal in measure to a given angle.

1. Let $\angle A$ be the given angle.
2. Draw a ray \overrightarrow{BC} as one side of the angle to be constructed.

3. With A as center, draw an arc that intersects the sides of $\angle A$ (points D and E in the figure at the left below).
4. Draw an arc with the same radius and with B as center that intersects \overrightarrow{BC} (point F in the figure at the right below).

5. Adjust the radius of the compass to the distance between points D and E.
6. With F as center, draw an arc having this radius so that it intersects the previous one (point G in the figure).

7. Draw \overrightarrow{BG}. $\angle B = \angle A$.

Example 5. Construct an angle equal in measure to angle A.
CONSTRUCTION 6: To bisect an angle.

1. Let \(\angle A \) be the given angle.

2. With \(A \) as center, draw an arc that intersects the sides of the angle (points \(B \) and \(C \) in the figure).

3. With \(B \) and \(C \) as centers, draw two arcs that have the same radius and that intersect each other in a point inside the angle (point \(D \) in the figure).

4. Draw \(\overrightarrow{AD} \). \(\overrightarrow{AD} \) bisects the angle.

Example 6. Bisect the given angle.
CONSTRUCTION 7: To construct the line parallel to a given line through a point not on it.

Let \(\ell \) be the given line and \(P \) a point not on it. Choose any point \(A \) on the line \(\ell \) and draw \(\overrightarrow{PA} \). Name one of the angles formed at \(A \) \(\angle 1 \) as shown in the second figure below. At \(P \), construct an angle equal in measure to \(\angle 1 \) as shown in the third figure below. Name it \(\angle 2 \). Because \(\angle 1 \) and \(\angle 2 \) are equal corresponding angles formed by lines \(m \) and \(\ell \) and transversal \(\overrightarrow{PA} \), \(m \parallel \ell \).

Example 7. Construct a line parallel to the given line through \(P \).