A Problem

\[C = 5 + 10q^2 \]

- Find TC, AC, and MC when \(q = 10 \)
- Find where MC = AC
- What level of output minimizes AC?
- When is MC = 60?

Finding TC, AC and MC (\(q = 10 \))

\[C = 5 + 10q^2 \]

\[TC = 5 + 10(10)^2 \]
\[TC = 5 + 10(100) = 1005 \]

Finding AC

\[C = 5 + 10q^2 \]

\[AC = \frac{TC}{q} = \frac{1005}{10} = 100.5 \]
Finding AC

\[C = 5 + 10q^2 \]

\[AC = \frac{C(q)}{q} \]
\[AC = \frac{5 + 10q^2}{q} \]
\[AC = \frac{5}{q} + 10q \]
\[AC = \frac{5}{10} + 10(10) = 100.5 \]

Finding MC

\[C = 5 + 10q^2 \]

The derivative of \(ax^2 + bx + c \) is
\[2ax + b \]

Finding MC

\[C = 5 + 10q^2 \]

The derivative of \(ax^2 + bx + c \) is
\[2ax + b \]
\[MC = 20q \]
\[MC = 200 \]

Find where MC = AC

\[C = 5 + 10q^2 \]
\[AC = \frac{5}{q} + 10q \]
\[MC = 20q \]
Find where $MC = AC$

$C = 5 + 10q^2$

$AC = \frac{5}{q} + 10q$

$MC = 20q$

$\frac{5}{q} + 10Q = 20q$

Solving the Problem

The Last Step

$C = 5 + 10q^2$

Find where $MC = AC$

$\frac{5}{q} = 10q$

$q = 0.5 \approx 0.707$

Solving the Problem

Minimizing AC

$C = 5 + 10q^2$

Solving the Problem

Minimizing AC

$C = 5 + 10q^2$

$AC = \frac{5}{q} + 10q$

Solving the Problem

Method I

$C = 5 + 10q^2$

Solving the Problem
Solving the Problem

Method I

\[C = 5 + 10q^2 \]

\[AC = \frac{5}{q} + 10q \]

\[\frac{dAC}{dq} = -\frac{5}{q^2} + 10 = 0 \]

When \(MC = 60 \)

\[C = 5 + 10q^2 \]

When is \(MC = 60 \)?

\[MC = 20q \]

\[20q = 60 \]

\[q = 3 \]

Method II

\[C = 5 + 10q^2 \]

\[-\frac{5}{q^2} + 10 = 0 \]

\[10q^2 = 5 \]

\[q \approx 0.707 \]

\[MC = AC \]

\[q = \frac{1}{2} \sqrt{2} \approx 0.707 \]
A Tabular Solution

\[C = 5 + 10q^2 \]

- Compute TC, AC, and MC when \(q = 10 \)
- Find where MC = AC
- What level of output minimizes AC?
- When is MC = 60?

<table>
<thead>
<tr>
<th>Q</th>
<th>C</th>
<th>AC</th>
<th>MC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>15.0</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>45</td>
<td>22.5</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>95</td>
<td>31.7</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>165</td>
<td>41.3</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>255</td>
<td>51.0</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>365</td>
<td>60.8</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>495</td>
<td>70.7</td>
<td>130</td>
</tr>
<tr>
<td>8</td>
<td>645</td>
<td>80.6</td>
<td>150</td>
</tr>
<tr>
<td>9</td>
<td>815</td>
<td>90.6</td>
<td>170</td>
</tr>
<tr>
<td>10</td>
<td>1005</td>
<td>100.5</td>
<td>190</td>
</tr>
</tbody>
</table>

Left for you to do

End

©2004 Charles W. Upton