Introduction to Quantitative Methods

Definitions, Concepts, and Rationale

Why are you here?

- Research
 - Consumers of psychological literature & research
 - Skills applicable to other disciplines as well
- Everyday applications
 - “9 out of 10 doctors…”
 - Election polls
- Pursuit of “truth”
Quantitative Methods

• Quantitative methods = empirical data
 – Administer “measures”
 • “On a 1 to 5 scale (with 1 being not at all and 5 being completely), please rate how depressed you currently feel.”
 – The data for EACH INDIVIDUAL who completes this question will be a value from 1 to 5
 » Individual 1 = 1
 » Individual 2 = 5
 » Individual 3 = 4
 » Individual X = Y
 – One way or another, all data analyzed using quantitative methods is collected in this or a similar fashion

Perspective

• Philosophy
 – Observe the world and draw conclusions
 • Conclusions informed by our perspectives
 – May be adversely impacted by our biases

• Scientific Method
 – Hypothesis → Empirical Data → Results
 • Use quantitative methods to evaluate empirical data which, in turn, informs the results we draw
 • Less biased...

• To be covered in Research Methods
Populations vs. Samples

• Population
 – *Entire collection of events in which you are interested*
 • People, men, women, college students, high-school students, individuals with depression, etc.
 • Example: depression study.
 • Example: SAT scores.
 – Populations can be large (men) or small (living U.S. Presidents)

Populations vs. Samples

• Population
 – Quantitative measures derived from populations are referred to as *parameters*
 • These are the real values we say we’re interested in when we conduct research
 • Note: you MUST, from the beginning, keep clear in your mind which values are *parameters*
 – Even though populations represent the very concept or relationships we’re interested in examining, it is often impractical to collect empirical data on all individuals in a population
 • How can you collect data on ALL depressed individuals?
Populations vs. Samples

• Sample
 – A limited subset of the entire population from which we attempt to infer characteristics about the population
 • NOTE: There are TWO parts to this definition
 • Typically, we use samples to conduct research
 – When we collect subsets of individuals or events from the populations…
 • Random sampling
 • Random assignment

Populations vs. Samples

• Sample
 – Quantitative measures derived from samples are referred to as statistics
 • Because, more often than not, we work with statistics, many people refer to the content of this class as “statistics”
 • Statistics are the estimates of parameters—estimates of the real values we are interested in studying
 – Estimate = imperfect
 • Note: you MUST, from the beginning, keep clear in your mind which values are statistics—don’t confuse statistics with parameters!
Variables

• Variables
 – Defined as an object that can take many different values
 • Example: Gender (Male, Female, …)
 • Example: Depression (Hi, Med, Lo OR 1-63)
 • Example: X (1, 4, OR 567,345,817)
 – Generally, we group the empirical data we collect into variables for further analysis
 • 1 Measure of depression = Depression
 • 10 Summed measures of depression = Depression

Types of Variables

• Discrete Variables
 – Variables that take only a limited number of values
 – Often, these are categories
 • Example: Gender (Male & Female)
 • High School Class: (Freshman, Sophomore, Junior, Senior)

• Continuous Variables
 – Variables that take any value between a high and low point on a scale
 • Example: Age (0 to 100+)
 • Example: Depression score on BDI (0 to 63)
Types of Data

• Measurement (Quantitative) Data
 – *Data derived from measurements*
 – Examples: weight, height, or depression score
 – The focus of this course

• Categorical (Qualitative) Data
 – *Data derived through the grouping of individuals into conceptually meaningful categories*
 – Categorical data often created from quantitative data
 – Example: depressed vs. non-depressed
 – Not a main focus of this course.
 • We WILL need to use categorical data at times, however.

Quantitative Data: Scale Types

• Nominal scales
 – Not *really* scales at all—categories assigned to data
 • Example: Gender (Male & Female)
 • Example: Political Orientation (Rep vs. Demo)

• Ordinal scales
 – A scale ordering individuals or events on a continuum
 • Example: Military ranks (privates have less authority than do captains and captains have less authority than general)
 – However, there is NO indication that the difference in authority between a private and a captain is equal to that between a captain and a general
 – Thus, the order is arbitrary—it’s not based on a measurable quantity
Quantitative Data: Scale Types

• Interval scales
 – Used when we need to talk about differences between points on a scale
 – Most scales in psychological research are interval scales
 – Assume than an equal difference has the same meaning anywhere on the scale
 • The difference between 10º F & 20º F is the same as the difference between 200º F & 210º F -- 10º F

Quantitative Data: Scale Types

• Interval scales (cont.)
 – However, we can’t talk about ratios using an interval scale
 • 40º F compared to 80º F (1:2 ratio)
 • 40º F compared to 20º F (2:1 ratio)
 – However, if F is converted to C…
 • 40º F → 4.4º C & 80º F → 26.7º C
 • 4.4º C compared to 26.7º C (1:6.07)
 – Since, when the temperature scale changes the ratio changes, we obviously can’t say that 40º F is half as hot as 80º F.
Quantitative Data: Scale Types

• Ratio scales
 – A scale with a true zero point (an absence of a quantity) allowing for ratio comparisons
 • Examples: Length, time, & weight
 – 10 lbs twice as much as 5 lbs (2:1)
 • 10 lbs → 4.52 kg & 5 lbs → 2.26 kg
 – 4.52 kg twice as much as 2.26 kg (2:1)

The Use of Variables

• Depending on the way a variable is used in research, we refer to it differently
• Independent variables (IVs)
 – *Any variable manipulated by a researcher used within a study*
 – Example: Experimental vs. Control conditions
 – Sometimes called *predictors*—IVs predict DVs
• Dependent variables (DVs)
 – *Variables outside the control of the experimenter*
 • i.e. The data resulting from manipulations of the IVs
 – Also known as *criterions*—the value IVs predict
The Use of Variables

- **Example**
 - **IVs**
 - Gender
 - Age
 - Social Support level (High vs. Low)
 - Treatment Group (IPT, CBT, or Control)
 - **DV s**
 - Depression
 - Anxiety
 - Work adjustment

Types of Statistics

- Depending on the goals of our study and analyses, we may wish to use different types of statistics
- **Descriptive statistics**
 - *Describe* the nature and structure of our data (typically, our variables)
- **Inferential statistics**
 - *Infer* qualities of the population from the observed data (prediction & estimation)
Future Directions…

• As you progress through the book, pay particular attention to the diagram on page 11
 – Understanding WHICH test to use is at least as important as knowing HOW to conduct a test
• Refer back to this diagram as the semester progresses