Descriptive Statistics

Graphing, Central Tendency, & Dispersion

The Process of Quantitative Analysis

1. Collect quantitative data
2. **Conduct descriptive statistics**
 - Preparation for inferential statistics
 - Missing values?
 - “Odd” values?
 - Violation of test assumptions?
 - Select appropriate analyses
 - Data (variable) type to analysis
 - Distribution to analysis
3. Conduct desired inferential statistics
4. Draw conclusions based on results of descriptive and inferential statistics
Descriptive Statistics

- Often, students consider descriptive statistics to be “optional”
 - Rarely answer the experimental questions we’re interested in asking, so they are ignored
 - Do NOT skip this process.
 - Essential for determining how and if further inferential statistics may be conducted
 - Violations of inferential test assumptions lead to incorrect conclusions
 - Descriptive statistics often allow us to test these assumptions

Types of Descriptive Statistics

- Graphical data representations
 - Frequency distributions
 - Histograms
 - “Other” (stem & leaf, boxplots, etc.)
- Measures of central tendency
- Measures of dispersion
Graphical Representations

• Frequency distributions
 – A way of organizing the data in which each type or category of response is listed by the number of times it appeared in the data set.
 • Identify out of place values (a 6 on a 1 to 5 scale)
 • Identify extreme high or low values = outliers
 • Provides a “rough” idea of how participants responded to our question(s)

<table>
<thead>
<tr>
<th>Age</th>
<th>Frequency</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>1</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>4.5</td>
<td>9.1</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>9.1</td>
<td>18.2</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>4.5</td>
<td>22.7</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>9.1</td>
<td>31.8</td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>18.2</td>
<td>50.0</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>9.1</td>
<td>59.1</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>4.5</td>
<td>63.6</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>9.1</td>
<td>72.7</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>4.5</td>
<td>77.1</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>4.5</td>
<td>81.8</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>4.5</td>
<td>86.4</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>4.5</td>
<td>90.9</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>4.5</td>
<td>95.5</td>
</tr>
<tr>
<td>82</td>
<td>1</td>
<td>4.5</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Graphical Representations

- Frequency Distribution for Gender

- Frequency Distribution for Height

<table>
<thead>
<tr>
<th>Gender</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>4</td>
<td>18.2%</td>
<td>18.2%</td>
<td>18.2%</td>
</tr>
<tr>
<td>Female</td>
<td>18</td>
<td>81.8%</td>
<td>81.8%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Height</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.0</td>
<td>1</td>
<td>4.5%</td>
<td>4.5%</td>
<td>4.5%</td>
</tr>
<tr>
<td>62.0</td>
<td>1</td>
<td>4.5%</td>
<td>4.5%</td>
<td>9.1%</td>
</tr>
<tr>
<td>63.0</td>
<td>4</td>
<td>18.2%</td>
<td>18.2%</td>
<td>27.3%</td>
</tr>
<tr>
<td>64.0</td>
<td>3</td>
<td>13.6%</td>
<td>13.6%</td>
<td>40.9%</td>
</tr>
<tr>
<td>65.0</td>
<td>2</td>
<td>9.1%</td>
<td>9.1%</td>
<td>50.0%</td>
</tr>
<tr>
<td>66.0</td>
<td>5</td>
<td>22.7%</td>
<td>22.7%</td>
<td>72.7%</td>
</tr>
<tr>
<td>67.0</td>
<td>2</td>
<td>9.1%</td>
<td>9.1%</td>
<td>81.8%</td>
</tr>
<tr>
<td>68.0</td>
<td>1</td>
<td>4.5%</td>
<td>4.5%</td>
<td>86.4%</td>
</tr>
<tr>
<td>69.0</td>
<td>2</td>
<td>9.1%</td>
<td>9.1%</td>
<td>95.5%</td>
</tr>
<tr>
<td>70.5</td>
<td>1</td>
<td>4.5%</td>
<td>4.5%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

Graphical Representations

- Creating Frequency Distributions
 - Take a set of values: 1, 2, 1, 5, 3, 4, 2, 1, 3, 4, 1, 2, 4, 3, 2, 1, 2, 3
 - Create a table reflecting how frequently they occur
 - Rounding error can produce totals slightly greater than 100%

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>28%</td>
<td>28%</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>28%</td>
<td>56%</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>22%</td>
<td>78%</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>17%</td>
<td>95%</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>6%</td>
<td>101%</td>
</tr>
<tr>
<td>Totals</td>
<td>18</td>
<td>101%</td>
<td></td>
</tr>
</tbody>
</table>
Graphical Representations

- Histograms
 - Provide a way of clumping observations together to provide a simplified graph of the results
 - Observe the general structure of the data
 - Demonstrate “trends”
 - Obscure “error”

Graphical Representations

- Frequency Distribution of GPA → Bar Chart
 - Hard to observe trends or systematic relationships in data
• So, we use a histogram
 – There were 16 distinct values of GPA
 – Reduce number of values to a series of “intervals”
 • *Intervals are ranges of values that we plot*
 – GPA of 3.00 and 3.10, for example, become 1 interval instead of two distinct values
 – Histograms ALWAYS have fewer intervals than values in the data set
 – The number of intervals used is arbitrary and up to the researcher
 » Typically, 5 to 10 intervals

Graphical Representations

• GPA, before and after
Graphical Representations

- The number of intervals chosen can distort the observed findings

Describing Distributions

- Generally, we describe distributions depending on their shape
 - Distributions are described in terms of their similarity to the prototypical distribution, the normal distribution
 - Scores distributed symmetrically around a central peak—the peak representing the mean, or the most frequent value.
 - The “bell curve”
Describing Distributions

• Parts of a distribution
 – Center (1)
 – Shoulders (2)
 – Tails (2)

• Normal distributions have the correct number of scores/observation in the center, shoulders, and tails

Describing Distributions

• Kurtosis
 – Reflects the relative distribution of scores in the center, shoulders, and tails of the distribution
 • Mesokurtic distributions have the correct number of scores in all of their parts – normal distribution
 • Leptokurtic distributions have distributions where scores are shifted from the shoulders to the center and tails – peaked center and thick tails
 • Platykurtic distributions have scores shifted from the tails and shoulders to the center – creating a “plateau-like” appearance
 – Kurtosis is not “all or nothing”
 • Distributions are more or less like one of these descriptors
Describing Distributions

• Modality
 – Refers to the number of “peaks” present
 • 1 peak = unimodal
 – The normal distribution is unimodal
 • 2 peaks = bimodal
 • 3 or more peaks = multimodal
 – Theoretically, a distribution can have any number of peaks
 • Very rare to see anything other than unimodal or bimodal distributions

Describing Distributions

• Skew
 – Refers to an asymmetrical distribution of values around the peak
 • No skew
 – The normal distribution
 • Positive skew – “tail” points towards high values
 – “Low base-rate” behaviors
 » Schizophrenia, suicide, lottery winning
 • Negative skew – “tail” points towards low values
 – “High base-rate” behaviors
 » High self-esteem
Describing Distributions

• Skew
 – Can be measured mathematically
 • No skew = skew statistic of 0
 • Positive skew = positive values
 • Negative skew = negative values
 – We will not use mathematical values of skew in this class
 • Used only to describe shape of distribution

• Examples
…The Road to Central Tendency

• Numerical representations of data from this point on
• However, before we begin, we need to agree on some basic terminology

Notation

• Consider the following sets of data
 1. 1, 1, 4, 4, 5, 6, 8
 2. 56, 78, 88, 89, 91, 123, 145
 3. A, B, C, D, E, F

 – Each set of data represents a different variable (1 = X, 2 = Y, & 3 = Z)
 – X & Y are continuous and quantitative
 – Z is discrete and categorical
Notation

1. 1, 1, 4, 4, 5, 6, 8
2. 56, 78, 88, 89, 91, 123, 145
3. A, B, C, D, E, F

• For variable X, we refer to each piece of data in that variable with a subscript
 – $X_1 = 1$, $X_2 = 1$, $X_3 = 4$, $X_4 = 4$, $X_5 = 5$, etc…
 – Here, $Z_4 = D$
 – Y_3, Y_6, Z_6?
 – We use this notation for all items in a variable, X_i

Notation

• Another very common symbol we will use is upper-case sigma, Σ
 – We translate sigma to mean “add it up”
 – So, if we see ΣX, we know to add up ALL the values for variable X
 • $\Sigma X = 1 + 1 + 4 + 4 + 5 + 6 + 8 = 29$
 – So, if we see ΣX^2, we know to square all of the X values and then to add all the squared values
 • $\Sigma X = 1^2 + 1^2 + 4^2 + 4^2 + 5^2 + 6^2 + 8^2$
 • $\Sigma X = 1 + 1 + 16 + 16 + 25 + 36 + 64 = 159$
Notation

• \sum (continued)
 – So, if we see $(\sum X)^2$: we know to add up ALL the values for variable X and then square them
 $$(\sum X)^2 = (1 + 1 + 4 + 4 + 5 + 6 + 8)^2 = 29^2 = 841$$
 – Similarly, if you see $\sum (Y - X)$, we know subtract the X values from Y and to then add the results
 $$\sum (Y - X) = (56 - 1) + (78 - 1) + (88 - 4) + (89 - 4) + (91 - 5) + (123 - 6) + (145 - 8)$$
 $$= 55 + 77 + 84 + 85 + 86 + 117 + 137 = 641$$

 – So, if we see $[\sum (Y - X)]^2$: we know to simply square the result we just obtained
 $$[\sum (Y - X)]^2 = 641^2 = 410,881$$
 – Finally, we resolve $\sum XY$ by first multiplying matching values of X and Y and summing the result
 $$\sum XY = (56*1) + (78*1) + (88*4) + (89*4) + (91*5) + (123*6) + (145*8)$$
 $$= 56 + 78 + 352 + 356 + 455 + 738 + 1160 = 3195$$
Notation

• Remember: if you’re confused about the order in which to calculate values
 – “Pretty-please my dear Aunt Sally.”
 • Powers
 • Parentheses
 • Multiply
 • Divide
 • Add
 • Subtract

Central Tendency

• Central tendency
 – *Refers to a set of measures that reflect where a distribution is located on a given scale*
 • Central tendency is often referred to as a measure of "location"
 • Measures of Central tendency
 – Mean
 – Median
 – Mode
Central Tendency

• **Mode**
 – *The most common score*
 • Graphically, reflected as the “peak” of a distribution
 • Often considered to be the least useful measure of central tendency
 • Most common score
 – 1, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 7, 8, 9: Mode = 4
 • When there is more than 1 common, adjacent score, use the average of the two values
 – 1, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 7, 8, 9: Mode = 4.5

Central Tendency

• **Mode**
 – *The most common score*
 • When there are 2 or more common, *non-adjacent* scores, the distribution is multimodal
 – 1, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 7, 8, 8, 8, 8, 9: Mode = 4,8
 • We might still consider a distribution multimodal if there are two common values with slightly different frequencies
 – 1, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 7, 8, 8, 8, 9: Mode = 4,8
Central Tendency

• Median
 – The point at which 50% of the scores are above and below—The 50th percentile
 • For odd numbers of scores, simply the middle value
 – 3, 5, 8, 9, 12, 15, 18: Median = 9
 • For even numbers of scores, the average of the two middle values
 – 3, 5, 8, 9, 12, 15: MEDIAN = (8+9)/2 or 8.5

• Median
 – The point at which 50% of the scores are above and below—The 50th percentile
 • One easy way to find where the median is located is to use the aptly named Median location formula
 – MEDIAN LOCATION = (N+1)/2
 – Where N= total number of data points
 • Thus, applying this formula to our first example:
 – MEDIAN LOCATION = (7+1)/2 = 4
 – 3, 5, 8, 9, 12, 15, 18
 • Our second example
 – MEDIAN LOCATION = (6+1)/2 = 3.5
 – 3, 5, 8, 9, 12, 15
Central Tendency

• Median
 – The point at which 50% of the scores are above and below—The 50th percentile
 • Often, we use the median to split a continuous variable into a two-value categorical variable
 – Continuous depression measure → Hi vs. Lo depression
 » This procedure is referred to as a median split
 » Hi depression above median
 » Lo depression below median
 – We will return to this concept throughout the semester

Central Tendency

• Mean
 – The average or
 • Population mean (parameter) = mu (µ)
 • Sample mean (statistic) = x-bar (\(\bar{x}\))

 • 3, 5, 8, 9, 12, 15, 18

 \[
 \bar{x} = \frac{\sum x}{n} = \frac{3 + 5 + 8 + 9 + 12 + 15 + 18}{7} = \frac{70}{7} = 10
 \]
Dispersion

• Dispersion or Variability
 – *The degree to which values around the mean, median, or mode vary*
 • How much values *disperse* from the mean
 – Are values tightly packed around the mean?
 » Low variability
 – Are values spread out away from the mean?
 » High variability
 – Graphical examples

Dispersion

• Measures of Dispersion or Variability
 – Range
 – Variance
 – Standard deviation
Dispersion

• Range
 – *Measure of distance between the highest and lowest score*
 • The least frequently used measure of dispersion
 – 1, 1, 2, 3, 3, 3, 4, 5, 6, 7, 8, 8, 8
 – Range = Highest score – Lowest score
 – Range = 8 – 1 = 7
 • Greatly affected by outliers
 – 1, 1, 2, 3, 3, 3, 4, 5, 6, 7, 8, 8, 255
 – Range = 255 – 1 = 254
 • Consequently, we must be cautious about interpreting the results of the range

Dispersion

• Variance
 – *We define the variance as the average\(^3\) of the squared\(^2\) deviations\(^1\) within our data*
 • A case of defining a value with an undefined value
 • Population variance (parameter) = sigma-squared (\(\sigma^2\))
 • Sample variance (statistic) = s-squared (s\(^2\))

1. Deviation
 – *The difference between a value within a data set and the mean of all the data within the data set*
 • Deviation score = \(x - \bar{x}\)
Dispersion

- Deviation\(^1\) scores
 - 3, 5, 8, 9, 12, 15, 18
 - Mean = 10

- Notice anything about deviation scores?

<table>
<thead>
<tr>
<th>Score</th>
<th>Mean</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10</td>
<td>-7</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>-5</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>-2</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>-1</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

Dispersion

- Variance
 - Average of the squared deviations within our data

- Squared Deviations\(^2\)

<table>
<thead>
<tr>
<th>Score</th>
<th>Mean</th>
<th>Dev.</th>
<th>Dev. Sq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10</td>
<td>-7</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>-5</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>-2</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
<td>8</td>
<td>64</td>
</tr>
</tbody>
</table>
Dispersion

- Variance
 - *Average of the squared deviations within our data*

- Average deviation\(^3\)
 - Once you have the squared deviations, sum them and divide by the total number of data points
 - \(\sigma^2 = \frac{49+25+4+1+4+25+64}{7} = \frac{172}{7} = 24.57\)
 - Note: this is the POPULATION value of the variance
 - \(s^2 = \frac{49+25+4+1+4+25+64}{(7-1)} = \frac{172}{6} = 28.67\)
 - Note: this is the SAMPLE value of the variance

- Why the difference? Stay tuned…

Dispersion

- Variance
 - \(\sigma^2 = \frac{\sum(x - \bar{x})^2}{n} = \frac{172}{7} = 24.57\)
 - \(s^2 = \frac{\sum(x - \bar{x})^2}{(n-1)} = \frac{172}{6} = 28.67\)
 - These are the equations we used.
Dispersion

• So, why the change?
 – Remember that x-bar is an estimate of μ
 • Whenever we estimate a value and expect to come up with a given value, we lose what is called a degree of freedom
 – We know that the mean of 1, 4, & 7 is 4
 – How many values can we freely change and still obtain the same mean?
 » Since we need to continue with the same mean, we can only freely change 2 values. The third is determined for us—it is not free to vary

Dispersion

• So, why the change?
 – Remember that x-bar is an estimate of μ
 • If we’re working in the population, we have the population mean μ—nothing needs to be estimated
 • However, if we’re working in a sample, we lose one degree of freedom because we expect the sample mean to equal the population mean
 – In practice, the sample and population means may not be equal—this is simply a mathematical practice that allows us to arrive at the most accurate estimates possible
Dispersion

• Variance
 – \(\sigma^2 = \frac{\sum (x - \bar{x})^2}{n} \)
 – \(s^2 = \frac{\sum (x - \bar{x})^2}{n-1} \)

\[
\sigma^2 = \frac{\sum (x - \bar{x})^2}{n} = \frac{172}{7} = 24.57
\]
\[
s^2 = \frac{\sum (x - \bar{x})^2}{n-1} = \frac{172}{6} = 28.67
\]
– The second form of the equations is a quicker, computational form.

Dispersion

• Standard deviation
 – Defined as the positive square root of the variance

\[
\sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{n}} = \sqrt{\frac{\sum x^2 - (\sum x)^2}{n}}
\]
\[
s = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}} = \sqrt{\frac{\sum x^2 - (\sum x)^2}{n-1}}
\]