Sampling Distributions

Sampling Distribution of the Mean & Hypothesis Testing

Sampling

• Remember sampling?
 – Part 1 of definition
 • Selecting a subset of the population to create a sample
 • Generally random sampling—using randomization to identify a sample
 – Part 2 of definition
 • Sample used to infer qualities or characteristics of the population
 • How do we do that?
Sampling: Hows & Whys

• First, it’s important to realize that simple comparisons of sample values to populations values is meaningless
 – $\mu = 3$ compared to $x-bar = 4$
 • Measure of course satisfaction
 – Different values, yes… but are they different from one another in a meaningful way?

Sampling: Hows & Whys

• Second, we know that we can identify infrequent or exceptional values for any normally distributed variable
 – Thus, for any given mean value with a given standard deviation, we can identify values that fall outside of the 95% CI
Applied Example

• Imagine we’re interested in student attitudes regarding the General Psychology Course
 – Score of general satisfaction with course
 • 0 = poor to 6 = excellent
 – Collect from every student in the fall semester
 • 1080 students questioned
 • \(\mu = 3 \)
 • \(\sigma = 1.34 \)

Applied Example

• Population of 1080 students
 \[\mu = 3.00 \]
 \[\sigma = 1.34 \]
Caveat

• Generally, we would NOT know population values…
 – Depending on the population of interest, it may be impossible to determine population values
 – Contrived example to illustrate a concept

Applied Example

• Sample of 10 students from population of 1080 students
 \(x-bar = 3.00 \)
 \(\sigma = 1.25 \)
Applied Example

• Sample of 10 students from population of 1080 students
 \[\bar{x} = 3.90 \]
 \[\sigma = 1.37 \]

Applied Example

• Sample of 50 students from population of 1080 students
 \[\bar{x} = 3.02 \]
 \[\sigma = 1.41 \]
Applied Example

- Sample of 50 students from population of 1080 students
 \[x-bar = 3.34 \]
 \[\sigma = 1.45 \]

- Sample of 100 students from population of 1080 students
 \[x-bar = 2.94 \]
 \[\sigma = 1.24 \]
Applied Example

- Sample of 100 students from population of 1080 students
 - $x\bar{=}=3.02$
 - $\sigma=1.43$

Applied Example

- Sample of 540 students from population of 1080 students
 - $x\bar{=}=2.99$
 - $\sigma=1.36$
Applied Example

- 540 Students
- 1080 Students

Sampling Distributions

- For small samples:
 - Shape of sample distribution differed greatly from that of the population
 - Values of x-bar differed from μ
 - Values of s differed from σ
- For large samples ($n > 100$):
 - Shape of sample distribution and values of x-bar and s similar to population values
Sampling Error

• But why do small samples look different from the population of origin?
 – Sampling error
 • Defined as variability due to chance differences between samples
 • Reflects degree to which chance variability between samples influences statistics, changing them from “expected” population values

Sampling Error (cont.)

• Sampling Error (cont.)
 – RANDOM variance—can only be controlled through the collection of large samples (reduce chance error)
 – NOT due to experimenter mistakes, confounded variables, or design flaws—outside of our control
 • …excepting, of course, sample size

• The take home lesson is…
Sampling Distributions

• Probably the most important implication of the sampling process is the concept of the *sampling distribution*
 – Sampling distributions tell us:
 • Degree of variability we should expect from repeated samplings of a population as a function of sampling error
 • Tells us the values we should and should not expect to find for a particular statistic under a particular set of conditions

Sampling Distributions

• Typically derived mathematically, you won’t normally need to produce your own sampling distributions
 – Sampling distribution of the mean
 • The distribution of obtained means obtained from repeated samplings
Sampling Dist. Of the Mean

Population

Sample 1 Sample 2 Sample 3 Sample 4 Sample n

\[\bar{x} \quad \bar{x} \quad \bar{x} \quad \bar{x} \quad \bar{x} \]

Plot of Sample Means

Sampling Dist. Of the Mean: Example

- Population of 1080 students
- Draw 50 samples of 50
- Obtain the mean for each sample
- Plot the distribution of means
- Expect a fairly normal distribution of means
Sampling Dist. Of the Mean: Example

- Sampling Distribution of Mean Course Satisfaction Scores for \(n = 50 \)

- Histagram
 - \(n = 50 \)
 - \(x-bar = 2.995 \)
 - \(s = .15 \)
 - range = 2.70 → 3.32
 - 95% CI = 2.70 → 3.29

Sampling Dist. Of the Mean: Example

- For this case, 1 score falls outside the expected boundaries
 - 3.32 → not expected in this sampling distribution
 - We might conclude then, if we have a sample with this mean, that the sample we drew does not come from the population of interest
Sampling Dist. Of the Mean: Reality

• Statistical tests use a similar process that I’ve described to produce sampling distributions of the mean
 – Larger sample sizes (essentially infinite)
 – Closer n comes to ∞, closer sampling distribution will be to normal

Sampling Dist. Of the Mean: Reality

• When conducting statistical tests:
 – Compare our obtained value from our sample to the sampling distribution of the mean for the population
 – Look for extreme scores
• But where do these sampling distributions of the mean for the population come from?
 – Stay tuned to Chapter 7
Hypothesis Testing

• Sampling distributions inform the way in which we test our hypotheses
• Care only about sampling distributions because they allow us to test hypotheses
• Before exploring the process of hypothesis testing, need to understand types of hypotheses

Types of Hypotheses

• Hypothesis
 – Defined as an informed belief regarding the relationships between two or more variables
 • Social support → depression
 • Subliminal advertising → product sales
 – Must be an informed belief—guessing the relationships between variables is not a hypothesis
Types of Hypotheses

- **Research Hypothesis** (H₁)
 - *The hypothesis that we’re interested in testing with our experiment or study*
 - The beta blocker Atenolol reduces blood pressure
 - Group therapy reduces violent urges

- **Null Hypothesis** (H₀)
 - *The starting hypothesis, generally specifying no relationship between variables*
 - Atenolol has no effect on blood pressure
 - Group therapy has no effect on violent urges

The Null Hypothesis

- *Opposite* of what we’re trying to test!
- Why expect no differences?
 - Practical reason
 - Gives us a starting point
 - A place of comparison
 - Construct sampling distribution based on no effect (or difference) between groups of interest
The Null Hypothesis

• Why expect no differences?
 – Philosophical reason (Fisher)
 • We can never prove the truth of any proposition, only if it is false
 – “All swans are white”
 – “All squirrels are grey or red”
 – “Depressed individuals lack social supports”
 • 10,000:1
 • “Fail to reject” null hypothesis
 – Falsifying evidence may be right around the corner

The Null Hypothesis: Dissent

• Not all statisticians and mathematicians agree that we can’t accept the null hypothesis
 – Debate continues
 – “Benefit of the doubt”
 – Does “benefit of doubt” differ from “fail to reject”
Process of Hypothesis Testing

1. Identify a research hypothesis (H₁)
 • Specify hypothesis in quantitative terms
2. Identify null hypothesis (H₀)
 • Specify hypothesis in quantitative terms
3. Collect random sample of participants or events that can answer H₁

Process of Hypothesis Testing

4. Select rejection region and tail of the test
 • Rejection region (α)
 • The probability associated with rejecting H₀ when it is, in fact, false
 • Typically a low frequency value is selected
 • For Psychology, α = .05 for most situations
 • The 5% least frequent scores (-1.96 < z > 1.96)
 • “Tail” of test
 • Directionality: do we look at both ends of the distribution or only one end?
Tail of Test, $\alpha = .05$:

Two-tailed

Tail of Test, $\alpha = .05$:

One-tailed
Process of Hypothesis Testing

5. Generate sampling distribution of the mean assuming H_0 is true
 • This is done for us by the statistical test we choose to employ for the analysis
 • Essentially, we choose the test to use at this point

6. Given our sampling distribution:
 • What is the probability of finding a sample mean outside of our rejection region?
 • Conduct the statistical test
Process of Hypothesis Testing

7. On the basis of that probability:
 1. Reject H_0 when our sample mean falls within the boundaries of the rejection region
 • Supports H_1, but does not prove it
 • Remember, we can’t prove anything
 2. Fail to reject H_0 when our sample mean falls outside the boundaries of the rejection region
 • Supports H_0, but does not mean that H_1 is wrong...

Hypothesis Testing: Example

• You are a researcher testing the efficacy of a new antidepressant medication
• This is the first test of the new drug
• You decide to use two groups of depressed participants, 1 who receive the drug, 1 who receive no medication
• What is the process of hypothesis testing involved?
Hypothesis Testing: Example

1. H₁: The antidepressant medication will reduce the symptoms of depression
 • H₁: μₐ ≠ μₜ
 • H₁: μₐ < μₜ

2. H₀: The antidepressant medication will have no effect
 • H₀: μₐ = μₜ

3. Collect random sample of depressed individuals, assign randomly to 2 groups

4. Select:
 • Rejection region
 • α = .05
 • “Tail” or directionality
 • Probably want two-tailed
 • Uncertain of how the medication will work
 • Might be able to argue one-tailed
Hypothesis Testing: Example

5. Generate sampling distribution of the mean assuming H_0 is true
 • Select confidence intervals on z-distribution
6. Given our sampling distribution:
 • Conduct the statistical test

Sampling distribution of the mean:
 $\mu = 5$
 $\sigma = .5$
Sample of patients taking antidepressant:
 $\bar{x} = 6$
Hypothesis Testing: Example

• For depression scores:

\[x = \mu \pm 1.96\sigma \]
\[x = 5 - 1.96(.5) \]
\[x = 5 - .98 \]
\[x = 4.02 \]

\[x = \mu \pm 1.96\sigma \]
\[x = 5 + 1.96(.5) \]
\[x = 5 + .98 \]
\[x = 5.98 \]

• Thus, the 95% CI for depression scores is 4.02 to 5.98

Hypothesis Testing: Example

7. On the basis of that probability:
• 95% CI for depression = 4.02 to 5.98
• Obtained sample score = 6.00
• REJECT \(H_o \)!
 • Reject any value < 4.02
 • Reject any value > 5.98
 • Fail to reject values between 4.02 and 5.98
Hypothesis Testing: Example

\[x = 4.02 \quad \text{and} \quad x = 5.98 \]

\[\bar{x} = 6 \]

\[\mu = 5 \]

Reject \quad \text{Fail to reject} \quad \text{Reject}

Alpha (\(\alpha \))

- Represents the rejection region—where we are correct to reject the \(H_0 \)
- In Psychology, the convention is to use .05
 - A 1 in 20 chance of rejecting \(H_0 \)
- Sometimes, we want to be really conservative about the conclusions we draw—reduce errors
 - Might select \(\alpha = .01 \)
 - A 1 in 100 chance of rejection \(H_0 \)
- .05 is a convention, not an absolute rule
Error in Hypothesis Testing

- Hypothesis testing is not a perfect science
 - Errors occur
- Two types of errors can be made
- The probability of making an error is related to the probability of rejecting the H_0
- For example:

Error in Hypothesis Testing: Example

- You are a researcher attempting to determine the intelligence of a struggling student
- You administer a test of IQ to the student
- What is the process of hypothesis testing involved?
Error in Hypothesis Testing: Example

1. \(H_1 \): The student’s IQ is below the population mean
 - \(H_1: \mu_s < \mu_p \)
2. \(H_0 \): The student’s IQ is not different from the population
 - \(H_0: \mu_s = \mu_p \)
3. Test the student

Error in Hypothesis Testing: Example

4. Select:
 - Rejection region
 - \(\alpha = .05 \)
 - “Tail” or directionality
 - Two-tailed—poor performance could be a matter of low IQ, poor motivation, chaotic household, or a number of factors unrelated to IQ
Error in Hypothesis Testing: Example

5. Generate sampling distribution of the mean assuming H_0 is true
 • Select confidence intervals on z-distribution

6. Given our sampling distribution:
 • Conduct the statistical test

Error in Hypothesis Testing: Example

Sampling distribution of the mean:
\[\mu = 100 \]
\[\sigma = 15 \]

Sample of patients taking antidepressant:
\[\bar{x} = 63 \]
Error in Hypothesis Testing: Example

• For IQ:
\[x = \mu \pm 1.96\sigma \]
\[x = 100 - 1.96(15) \]
\[x = 100 - 29.4 \]
\[x = 70.6 \]
\[x = 100 + 1.96(15) \]
\[x = 100 + 29.4 \]
\[x = 129.4 \]

• Thus, the 95% CI for IQ is 70.6 to 129.4

Error in Hypothesis Testing: Example

7. On the basis of that probability:
• 95% CI for population = 70.60 to 129.40
• Obtained sample score = 63.00
• REJECT H₀!
 • Reject any value < 70.60
 • Reject any value > 129.40
 • Fail to reject values between 70.60 and 129.40
Error in Hypothesis Testing:
Example

\[
x = 70.6 \quad x = 63 \quad x = 129.40
\]

Error in Hypothesis Testing

- So we conclude that the child has a lower than average IQ…
 - …but are we correct in drawing this conclusion?
Error in Hypothesis Testing

• Remember: we defined the rejection region, α, as a probability
 – That means, sometimes our conclusions will be right, sometimes they will be wrong
 – In this case, the probability of an IQ score of 63 is low… but still possible, even in a sample of normal individuals!
 • Error associated with the test, sampling, etc.

Rationale of Hypothesis Testing

• Not testing extreme scores against the general population
• Testing if the sample score is so infrequent that we might conclude it comes from ANOTHER population
 – Population of normal IQ to low IQ individuals
Rationale of Hypothesis Testing

Population of normal IQ scores

Population of low IQ scores

Rationale of Hypothesis Testing

• Thus, the rationale isn’t that we look for extreme scores to conclude that the child’s IQ is outside the range of normal IQ
• We look at extreme scores to determine if the obtained value is so low that it probably comes from a population of individuals with low IQ
 – Note: probably—individuals from the population of normal IQ can score 63s as well!
Error in Hypothesis Testing

• In order to identify the types of errors and correct decisions we can make, we must look at two categories of behavior:
 – The decisions we make about H_0
 – The true state of H_0

• Note: we never really know the true state of H_0, this example is simply a theoretical way of looking at the quandary of error

Error in Hypothesis Testing

<table>
<thead>
<tr>
<th>Decision</th>
<th>H_0 True</th>
<th>H_0 False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reject H_0</td>
<td>Type I Error $p = \alpha$</td>
<td>Correct Decision $p = 1 - \beta = \text{Power}$</td>
</tr>
<tr>
<td>Fail to Reject H_0</td>
<td>Correct Decision $p = 1 - \alpha$</td>
<td>Type II Error $p = \beta$</td>
</tr>
</tbody>
</table>

True State of The World

- Type I Error “embarrassing type”
- Type II Error “unknown type”
Type I and Type II Errors

Trading Error for Error

• So, we might conclude that in order to avoid making “embarassing” Type I errors, we keep α as low as possible
 – $\alpha = .00000000000000000001$, anyone?
• Doing so, however, leads to a reduction in the power of the test—we may not make an error, but we won’t be right either!
 – Type II error increases—we lose the ability to find real differences when they occur
 – This is one reason we set $\alpha = .05$ (trade-off)
Trading Error for Error

- The Cliff’s Notes Version:
 - \downarrow Type I error lead to \uparrow in Type II error
 - \downarrow Type II error lead to \uparrow in Type I error

- Errors are inescapable
 - Seek to minimize error by using a compromise value of $\alpha = .05$

Power

- Power
 - An extremely important concept, defined as the ability to actually detect whatever you want to detect
 - Power is a measure of our tests ability to answer our hypotheses
 - Typically .80 or above is desirable (80% chance)
 - Outside the scope of this class, power has become a major consideration for psychologists in the past decade
 - See Cohen’s “A Power Primer” (1998)
Effect Size

- Since we can make errors in our hypothesis testing, statistical significance is often not sufficient
 - Effect size reflects, simply, the size of the effect or difference observed in our analysis
 - Standard deviation
 - Different measure for each test (stay tuned…)
- Statistical significance without meaningful effect size
- Meaningful effect size without statistical significance