HOW IT’S DONE

DIY BYOD
Six years ago, Miami-Dade [FL] County Public Schools couldn’t afford to institute a one-to-one laptop program but knew that Internet access would become more available and less expensive. “Our strategy was to lift the systems that were client-server or site based and bring them to an enterprise level and make them all Web enabled,” says Deborah Karcher, chief information officer. Today every system, from grade books and scheduling to instructional software, is Web accessible. Karcher designed an interface so that all systems look the same online, including the very old-student information system, which sits on a mainframe. She buys only digital textbooks, so that students can access them at classroom portals. The district refurbished old laptops and had wireless cards donated. Recently it received a broadband stimulus grant that provides 10,000 Internet connections and 6,000 computers free for the next six years. “How do we get to one-to-one with this?” Karcher asks. “We are tackling it in several ways. We built our system for every platform except for iPad. We’re trying to make campuses wireless through eRate money so kids can bring smartphones and use them. And we’re giving out free laptops to people without access.”

MAKE IT SAFE
One of the biggest concerns with a “BYOT” model is how to keep a district network secure. To address this concern, Eric Willard, chief technology officer of Community Unit School District [CUS D] 300 in Carpentersville, Illinois, developed the following “Willard’s Pyramid:”

Funding and leadership. These crucial elements are the base of the pyramid, he says. “Without those in place, don’t bother going forward.”

Technology planning and support. “Make sure all stakeholders are involved from the beginning. Figure out what you have and where you want to go. Build a team that supports what’s in place today or you won’t get the credibility to continue.”

Standards and infrastructure. After the tech planning, it’s time to develop a series of standards, including hardware, software, instruction, networking, and infrastructure. “At this point you’ll know if you need fiber between buildings, and so on. Then you can start buying hardware and software.”

MAKE IT CLEAR
Lisa Nielsen posted a recent blog about the Acceptable Use Policy Guide from The Consortium of School Networking (CoSN), which offers administrators guidelines for revising Acceptable Use Policies to reflect the current socio-mobile learning landscape. The guidelines address topics such as: How does policy differ from procedure and does the difference matter?; What are the two major approaches used to develop district AUP policies?; Is the district’s AUP a part of or the totality of the district’s technology policy?; What are the key federal laws affecting Internet access, safety, and social networking in schools? You can visit the complete guidelines and samples here.

IMPROVE MATH SCORES
The Charlotte Mecklenberg School District in Charlotte, North Carolina has substantially improved math score in schools where it has deployed Texas Instrument’s MathForward program. For instance, at Cochrane Middle School, 33.9 percent of 7th graders were ranked as being proficient in math. In contrast, 8th graders who had experienced a year of the MathForward program scored as 63.8 percent proficient in math.

To get results, MathForward combines innovative teaching with math-specific software and hardware technology. But what really made the difference was the program’s intensive teacher training, says Dr. Cindy Moss, STEM Director at Charlotte Mecklenberg School District. “We did intensive PD during the summer and ongoing PD with our teachers as the program rolled out,” she says. “In tandem with TI’s MathForward support, which included in-class teaching coaches, the result is that my average teachers are now performing like superstars.” Ideally, a teacher needs 80 hours PD annually “just to change their teaching style,” Dr. Moss notes.