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ABSTRACT

We consider the activity-based costing situation, in which for each of several compara-
ble operational units, multiple cost drivers generate a single cost pool. Our study focuses
on published data from a set of property tax collection offices, called rates departments,
for the London metropolitan area. We define what may be called benchmark or most
efficient costs per unit of driver. A principle of maximum performance efficiency is pro-
posed, and an approach to estimating the benchmark unit costs is derived from this prin-
ciple. A validation approach for this estimation method is developed in terms of what we
call normal-like-or-better performance effectiveness. Application to longitudinal data
on a single unit is briefly discussed. We also consider some implications for the more
routine case when costs are disaggregated to subpools associated with individual cost
drivers.

Subject Areas: Activity-based Costing, Data Envelopment Analysis, Mathemat-
ical Programming, Performance Evaluation, and Statistics.

INTRODUCTION

This paper considers an area of activity-based costing (ABC) that has received lit-
tle attention in the literature. In what may be called routine ABC, the general pro-
cedure for obtaining unit cost rates is as follows (Horngren, Foster, & Datar, 2000).
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Costs for an activity are accumulated in cost pools. A variable, called a cost driver,
is identified that measures the amount or extent of the activity performed, and that
varies proportionally with the cost pool level. Then, the cost per unit of driver is
found by dividing the cost pool by the associated driver level. The respective cost
drivers generally are used as the basis for allocation of costs to specific cost objects
(e.g., products or services). This procedure requires that costs can be disaggregated
in such a way so as to be associated to a single cost driver. In practice, it is quite
often possible to carry out ABC in this way by sufficient information refinement. In
some cases, however, more than one cost driver may drive a cost pool simulta-
neously. The data set considered in this paper, attributed to Dyson and Thanassoulis
(DT) (1988), and Thanassoulis, Dyson, and Foster (TDF) (1987), provides an
example and is discussed below. Also, in the comprehensive study of the airline
industry by Banker and Johnston (1993), two or more cost drivers were found to
drive the major cost pools with high statistical significance.

As shown in this paper, the multiple cost driver case can be incorporated into
a cost efficiency model useful for benchmarking comparable operational units in a
firm, industry, or other comparable grouping. In this paper we propose a model-
based method for benchmarking comparable operational units with multiple cost
drivers. The proposed method yields relative cost efficiencies of the units and also
provides estimates of what we call benchmark costs.

To clarify these concepts, suppose that x is a cost pool associated with the
two simultaneous cost driver levels, y1 and y2. We wish to determine what unit cost
rates or costs per unit (we call these simply costs when the meaning is clear) should
be associated with these two drivers. Let a1 and a2 be the cost rates per unit of y1
and y2, respectively. Then, under the assumptions of linearity (additivity and pro-
portionality) and constant returns to scale of the total cost function, these costs
must satisfy the total cost function equation, x = a1y1 + a2 y2. Of course, there is no
unique solution in this one observation case. However, if several observations of
xj, y1j, and y2j are available, then modeling possibilities exist for estimation of the
costs. In particular, regression through the origin with a model of the form:

xj = a1 y1j + a2 y2j + εj (1)

may be used to estimate what Dyson and Thanassoulis (1988) called “average
costs.” This type of regression model was also the basis of the approach used in
Banker and Johnston (1993). Thus, if data for several comparable units, or several
observations of the same unit over time are available, then regression through the
origin may be used to estimate costs (average unit cost rates) in the multiple simul-
taneous cost driver case.

However, there is a difficulty in the regression approach when the goal is to
compare the units for what we call cost efficiency. That is, for benchmarking the
efficient cost performance of the units it is desired to estimate the cost rates of the
most efficient unit(s). The specific difficulty is that for one or more of the units, the
xj value may be larger than necessary for the associated y1j and y2j due to cost inef-
ficiency. Namely, let a1° and a2° be the costs for the most efficient unit(s). We call
these the benchmark costs. Thus, in general we must have:
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a1° y1j + a2° y2j = xj° ≤ xj for all j, (2)

where xj° is the (unobserved) total cost associated with full efficiency, had it been
achieved by unit j. Furthermore, if a1j and a2j are the actual cost rates for unit j (also
unobserved), then the total cost function for unit j is:

a1j y1j + a2j y2j = xj, (3)

so that the inefficiency of unit j, if any, may be decomposed as:

sj = xj – xj° = (a1j – a1°)y1j + (a2j – a2°)y2j. (4)

This decomposition suggests that it is possible to attain both benchmark costs
simultaneously. Also, a measure of cost efficiency for the j-th unit is given by:

vj = xj° / xj. (5)

Hence, inefficiency, as considered in this paper, occurs for such units by their hav-
ing one or more unit cost rates higher than the corresponding benchmark cost rates.
While it might also be the case that similar inefficiencies could exist with respect
to the cost driver levels as well, we leave that case beyond the scope of the present
paper. In the data set considered here the cost driver levels are not assumed to be
under control of the units being compared.

Benchmarking and Its Importance

Many firms have voluntarily formed cooperative arrangements whereby they agree
to share benchmarking information (Elnathan & Kim, 1995). Other firms have col-
laborated (at an expense to their individual firms) and hired a management consult-
ing firm to study their costs. For example, in 1986, 16 major U.S. companies
(subsequent additions increased the total number of companies to 26) hired A.T.
Kearney to study their in-house accounting costs (Shank, 1993). Other firms have
used databases of external management consulting firms for benchmarking pur-
poses. For example, Lucent Technologies recently benchmarked various finance
processes to 22 other large companies (the source of the benchmarking data was an
outside consultant) in various industries (Francesconi, 1998). This benchmarking
study revealed that Lucent’s costs were significantly greater than those of the other
benchmarked firms. A second source of benchmarking data is that of trade and
industry associations (Kirby, 1988; Elnathan, Lin, & Young, 1996).

Many organizations that use benchmarking may incur significant related
costs. For example, the American Accounting Association (AAA) recently initi-
ated a benchmarking effort in which participating university accounting programs
provide data and pay an $800 annual fee to receive benchmarking data in order to
compare their program to peer programs (American Accounting Association,



4 Cost Efficiency Benchmarking

2000). Likewise, those firms that hire a management consulting firm incur signif-
icant costs. In addition to the out-of-pocket costs incurred to participate in a bench-
marking effort, there may be intangible costs associated with the sharing of
proprietary information.

While there may be significant costs associated with benchmarking, there are
also many benefits. Elnathan and Kim (1995) discussed three sources of changes
in profits that may accrue when firms collaborate in cooperative benchmarking.
First, firm profits may increase due to improvements in operations (increased pro-
ductivity or reduced production costs). Second, a firm’s competitive advantage
within its industry may change firm profits due to information sharing. Third, there
may be other political, social, or control-related effects of benchmarking.

In short, even though there may be significant costs associated with bench-
marking, firms undertake benchmarking efforts because they view the benefits to
be gained as outweighing the costs. Ideally, the benchmarking process should:
(1) identify organizational units whose practices or procedures can be improved in
terms of efficiency; (2) identify outstanding performers for emulation; (3) provide
an operational measure of efficiency; and (4) provide performance targets in terms
of unit costs of activities or similar figures to which management can relate. The
method proposed here addresses these needs.

The Rates Departments’ Data

The data for this study are attributed to Dyson and Thanassoulis (1988) and
Thanassoulis, Dyson, and Foster (1987). The reader is referred to those papers for
a detailed description. These data were collected for a set of 62 property tax collec-
tion offices, called rates departments, in the London Boroughs and Metropolitan
Districts. Total annual costs, measured in units of £100,000 for these offices (units),
were collected along with activity driver levels, called outputs in Dyson and Tha-
nassoulis and Thanassoulis et al., for four activities. The first three activities—col-
lection of non-council hereditaments, rates rebates generated, and summonses
issued and distress warrants obtained—were measured in units of £10,000, £1,000,
and £1,000, respectively. The fourth activity, net present value of non-council rates
collected, was measured in units of £10,000. This last activity was included to
reflect the additional administrative effort exerted to ensure the timely payment of
large revenue-producing accounts. Thus, this data set gives total costs and cost driv-
ers for four activities. Based on this data set we wish to determine the cost efficien-
cies of the units and estimate the activity units costs for the most efficient unit(s).

BENCHMARK MODELING APPROACHES

What we have called routine ABC appears to be the basis of most of the bench-
marking studies. Two model-oriented approaches were found in the literature for
benchmarking analysis. One of these is credited to Dyson and Thanassoulis
(1988), and was based on modified data envelopment analysis (DEA, Charnes,
Cooper, Lewin, & Seiford, 1994). Dopuch and Gupta (1997) recently proposed the
use of stochastic frontier estimation (SFE) for estimating benchmark standards in
a public education setting. Both of these approaches are reviewed in this section.
Further discussion of the routine ABC approach is given below.
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Thanassoulis et al. (1987) and Dyson and Thanassoulis (1988) considered the
application of DEA to the data set considered here. The weights estimated in DEA
models correspond to the cost estimates needed in this study. A shortcoming of
DEA, from the viewpoint of this paper’s goal, is that the particular weights that ren-
der one unit efficient may differ from those for another unit. This is called weights
flexibility by Dyson and Thanassoulis, and is discussed further below. In addition,
a relatively large number of units are typically declared fully efficient. Thus, no
consensus on weights is achieved in DEA. Dyson and Thanassoulis proposed a
heuristic modification of DEA. They first estimated average costs by regression
through the origin as discussed above. Then, half of the respective average costs
were used as reasonable lower bounds for values of the DEA weights. Although
this approach reduces the weights flexibility, it is not removed entirely. Also, it may
be argued, especially for benchmarking, that obtaining reasonable lower bounds on
the weights (benchmark costs) is a central part of the problem. From that perspec-
tive, the Dyson and Thanassoulis method may be considered as somewhat ad hoc,
even if reasonable. However, primary interest in that work was computation of effi-
ciency scores with weights that do not vary as widely as those in unmodified DEA.
While the present paper is also concerned with estimating efficiency scores, we
seek consensus on the benchmark cost estimates as well.

Dopuch and Gupta (1997) proposed a benchmarking model using a Stochas-
tic Frontier Estimation (SFE) method owing to Aigner, Lovell, and Schmidt
(1977). They applied their model to evaluating the cost efficiency of a segment of
the Missouri public school system in a data set similar to the one used here. In gen-
eral, SFE models first define a parametric frontier model, which represents best
possible performance, minimum or maximum depending on context. Then, actual
performance is modeled as the frontier model plus an error term composed of two
parts. The first error term is assumed to be normally distributed with mean zero. It
is usually regarded as accounting for uncertainty in the frontier model. The second
error term is a nonnegative one representing a measure of inefficiency or deviation
from the efficient frontier. The Aigner et al. (1977) method assumes that such non-
negative inefficiencies are distributed as half-normal. The method proposed here
does not require a preliminary assumption on the form of this density.

Other SFE approaches have also been proposed but do not appear to have
been applied to cost efficiency as defined here. Green (1990) considered a model
that assumes a gamma distribution for the inefficiency error terms. However, Ritter
and Léopold (1997) have found that such models are difficult to accurately esti-
mate. Recently, van den Broeck, Koop, Osiewalski, and Steel (1994) have also con-
sidered Bayesian SFE models.

MODEL DEVELOPMENT

Suppose we have j = 1, …, N comparable business units, achieving yrj units of
driver r = 1, …, R, respectively, and with associated cost pools, xj. In addition to
having the same activities and cost drivers, we further require that comparable
units be similar in the sense that the practices, policies, technologies, employee
competence levels and managerial actions of any one should be transferable, in
principle, to any other. Define ar° as the cost rates associated with the most effi-
cient unit or units under comparison. Then, in the equation
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for all j, (6)

sj may be interpreted as an inefficiency error term as in (4) and in the SFE models.
The ratio vj = ∑ ar° yrj / xj, is an efficiency measure for the jth unit when the ar° are
the true benchmark cost rates, and ∑ ar° yrj ≤ xj holds for all units.

A technique for estimating parameters in efficiency ratios of the above form
was proposed in Troutt (1995). In that paper the primary data were specific values
of decision variables. Here, a more general form of that approach called maximum
performance efficiency (MPE) is proposed and applied to estimate the benchmark
ar° values. Assume that each unit j = 1, …, N, seeks to achieve maximum (1.0)
efficiency. Then, the whole set of units may be regarded as attempting to maximize
the sum of these efficiency ratios, namely, ∑∑ ar° yrj / xj.

The maximum performance efficiency estimation principle proposes esti-
mates of the ar° as those that render the total or, equivalently, the average of these
efficiencies a maximum.

Maximum Performance Efficiency (MPE) Estimation Principle: In
a performance model depending on an unknown parameter vector,
select as the estimate of the parameter vector that value for which the
average performance efficiency ratio is greatest.

This estimation criterion is a variation of the maximum decisional efficiency
(MDE) principle (Troutt, 1995). The MPE approach is technically the same as
MDE but is applied to general performance measures rather than values of decision
variables. The MDE principle assumes that decisions are made, that is, decision
values are realized, in such a way as to maximize average efficiency relative to the
model in question. MPE is a restatement in that performance vector values are real-
ized in such a way as to maximize average efficiency relative to the model in ques-
tion again, but where the model is expressed in terms of the performance vectors.

Define the data elements Yrj by Yrj = yrj / xj, where yrj is the driver level (out-
put value in DT) for the rth activity in operational unit j, and xj is the total cost for
unit j. For the rates departments’ data we have N = 62 operational units and R = 4
cost drivers. The Yrj are the performance vectors to which the MPE estimation
method applies. We computed these values based on the data of DT. Then, the esti-
mation model for the benchmark ar° values is given by:

MPE: max Yrj (7)

subject to

 for all j (8)

ar°yrj sj+

r 1=

R

∑ xj=

 ar

r 1=

R

∑
j 1=

N

∑

arYrj

r 1=

R

∑ 1≤
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ar ≥ 0 for all r. (9)

The MPE model is a linear programming (LP) problem whose unknown variables
are the benchmark unit costs, the ar° values. Solution of this model provides values
for the ar° as well as the unit efficiencies, vj. The model was applied to the rates
departments’ data using the LP option of the Solver Tool in Microsoft Excel TM.
The resulting estimates were:

a1° = 0.00000, a2° = 0.08820, a3° = 0.2671, a4° = 0.0664. (10)

Unfortunately, there are two concerns about this raw MPE model solution.
First, as part of their analysis, DT obtained an estimate of the average costs by
regression through the origin as described above. Their results were:

 = 0.05042,  = 0.07845,  = 0.1765,  = 0.1940. (11)

Clearly, minimum (i.e., benchmark) activity unit cost estimates should not exceed
average ones. However, it can be noted that the estimates for both a2° and a3° from
the raw MPE model exceed the corresponding average cost estimates from the DT
regression model.

A second solution quality issue is the zero value estimated for a1°. In this
paper, we consider an estimated benchmark cost of zero for an activity to be unrea-
sonable. In the present data, activity 1 is a major activity that does, in fact, have
positive average costs. While it may be conceivable that some unit can achieve one
or more activities as cost-free by-products of one or more others, we believe that
positive identification of such cases requires further research.

Thus, it was necessary to modify the raw MPE model to improve the solution
quality of its estimates. To understand the modification, consider Figure 1, which
depicts a two-dimensional version of the present data set but uses hypothetical data
points. This figure indicates the efficient frontier formed by the three indicated
DEA efficient units with data vectors at points P1, P2, and P3. The linear functions
defining the efficient frontier facets A–D, respectively, are the candidate basic fea-
sible solutions to the raw MPE model. Suppose the solution associated with the
frontier segment D is the raw MPE solution. This would be a vertical line with
a°2 = 0, namely, a zero parameter estimate. Also, this solution would assign only
unit P1 as having full efficiency. However, if the model is constrained to require
that the unit at P2 be efficient, then Line L depicts feasible values of a1 and a2 for
the MPE model. The set of such feasible values has extreme points associated with
rotation of L until it is coincident with frontier segments B or C, respectively. Both
these segments have negative slope and, therefore, both parameter estimates will
be positive. Thus, the modified MPE model is as follows. A separate run of the
MPE model was made for each DEA efficient unit, requiring that unit to be fully
efficient. The seven DEA efficient units were previously identified in Dyson and
Thanassoulis (1988) and are shown in Table 1, Rows 1-7.

a1 a2 a3 a4
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In each such run it was only necessary to change the inequality constraint for
that unit to an equality constraint. The best of these seven solutions was identified
by having all positive cost estimates and otherwise the maximal value of the objec-
tive function. Thus, the modified MPE model preemptively requires a maximal
number of positive cost estimates. The efficiency values obtained are shown in
Table 1, Column 5. The corresponding cost estimates were:

a°1 = 0.261807, a°2 = 0.049353, a°3 = 0.139833, a°4 = 0.127998. (12)

This solution passes the two tests of reasonableness above. Namely, all
parameter estimates are positive, and no parameter value exceeds its average coun-
terpart from the regression model. In addition, this model identifies four of the
units as having maximal efficiency of unity. Four is the largest number of units that
can be declared fully efficient since four linearly independent efficient points
define a facet hyperplane of the efficient frontier for the dimensions of this data set.

Figure 1: Hypothetical two-dimensional version of the rates departments data.

Note: Segments A, B, C, and D make up the efficient frontier found by DEA. Line L 
depicts feasible values of a1 and a2 for the MPE model when P2 is required to be efficient. 
The set of such feasible values has extreme points associated with rotation of L until it is 
coincident with frontier segments B or C, respectively.

1: 2211 �� YaYaL  
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P2 
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Y1 
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We regard this as an additional measure of solution quality from the viewpoint of
consensus. Four units that agree on the cost estimates is the best consensus achiev-
able in this case. Thus, this solution has a number of desirable features. However,
it is subjected to a further statistical test of reasonableness below.

Figure 1 also helps to highlight the differences between DEA and the proposed
model. Application of DEA to this data set was fully discussed in Thanassoulis et al.
(1987) and Dyson and Thanassoulis (1988), with resulting DEA efficiency scores
as shown in Table 1. The seven fully DEA efficient units are in the first seven rows
of the table. In terms of the hypothetical data set of Figure 1, DEA would identify
the three fully DEA efficient units at P1, P2, and P3. That is, DEA identifies the
efficient frontier extreme points. Optimal DEA output weights would also be
obtained for each unit. These correspond to the cost estimates and describe the
coefficients in the lines that define the four facets, A–D, respectively. The solution
of the modified MPE model corresponds to facet C. The coefficients of the linear
function defining that facet are both positive and otherwise maximize the average
efficiency of all the units. Thus, DEA is useful prior to applying the present model
in order to determine the efficient frontier extreme points.

In the MPE model we have assumed only inefficiency error terms. This
appears to be justified since we are able to specify the benchmark total cost func-
tion exactly, up to the benchmark cost parameters. Hence, there is no need to con-
sider the additional normal error terms of the SFE approach.

It appears possible that there could exist data sets for which no solution of
the modified MPE model yields all positive weights. For example, if the Yrj data
for some operational unit dominates all the other data, then the efficient frontier
boundary of Figure 1 might resemble a rectangle. It that case, we would accept the
estimates obtained from the solution of the unmodified MPE model, provided such
solution is unique. Another possibility would be to consider the dominating oper-
ational unit for removal as a possible outlier. Failing these possibilities, it may not
be possible to obtain estimates of benchmark costs along the present lines.

A TEST OF MODEL APTNESS

A basic assumption underlying the MPE estimation principle’s applicability is that
the sample of units under analysis do in fact have the goal of achieving maximum
(1.0) efficiency. This is a model aptness issue that parallels the requirement of
N(0,σ2) residuals in OLS regression theory. In the present MPE case, the corre-
sponding issue is to specify a distribution characteristic of the vj that indicates con-
sistency with a goal or target of unity (1.0) efficiency. In this section we propose
what may be called the normal-like-or-better effectiveness criterion for these fitted
efficiency scores.

As a model for appropriate concentration on a target, we begin with an inter-
pretation of the multivariate normal distribution, N(µ,Σ), on Rn. If a distribution of
attempts has the N(µ,Σ) or even higher concentration of density at the mode µ, then
we propose this as evidence that µ is indeed a plausible target of the attempts. This
is exemplified by considering a distribution model for the results of throwing darts
at a bull’s-eye target. Common experience suggests that a bivariate normal density
represents such data reasonably well. Steeper or flatter densities would still be
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Table 1: Comparison of efficiency scores obtained by Data Envelopment
Analysis (DEA), the modified DEA method of Dyson and Thanassoulis (1988)
(DT), and the modified MPE model.

No.
Rates 

Department
DEA

Efficiency
DT

Efficiency
Modified MPE

Efficiency

1 Lewisham 1.000  .827  .790

2 Brent 1.000  .743  .695

3 Stockport 1.000 1.000 1.000

4 Bradford 1.000  .999 1.000

5 Leeds 1.000 1.000 1.000

6 City of London 1.000 1.000 1.000

7 Liverpool 1.000  .796  .760

8 Walsall  .996  .861  .840

9 Rotherham  .994  .849  .795

10 Wakefield  .993  .890  .866

11 Lambeth  .961  .834  .816

12 Sunderland  .942  .801  .753

13 Solihull  .931  .917  .899

14 Redbridge  .847  .827  .814

15 Calderdale  .842  .818  .802

16 Haringey  .822  .710  .690

17 Barking and Dagenham  .801  .644  .610

18 Newcastle-upon-Tyne  .798  .713  .703

19 Manchester  .789  .641  .626

20 Wolverhampton  .782  .686  .667

21 Trafford  .761  .756  .751

22 Tameside  .759  .705  .683

23 St. Helens  .757  .694  .670

24 Sutton  .746  .692  .659

25 Rochdale  .745  .718  .696

26 Barnsley  .714  .617  .599

27 Kirklees  .713  .697  .690

28 Oldham  .702  .687  .679

29 Sheffield  .702  .702  .695

30 Havering  .700  .698  .695

31 Dudley  .700  .672  .659

32 Sefton  .690  .677  .664

33 Bexley  .688  .682  .669

34 Gateshead  .686  .621  .605

35 Wigan  .683  .652  .639

36 Kensington and Chelsea  .676  .587  .570

37 Coventry  .674  .645  .631

38 Sandwell  .644  .604  .593
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indicative of effective attempts, but densities whose modes do not coincide with
the target would cause doubts about whether the attempts have been effective or
whether another target better explains the data. We call this normal-like-or-better
(NLOB) performance effectiveness. It is next necessary to obtain the analog of this
criterion for the efficiency performance data, Yrj, relevant to the present context.

If x is distributed as N(µ, Σ) on Rn, then it is well known that the quadratic
form, w(x) =  (x – µ)' Σ–1(x – µ) has the gamma distribution, g(α,β), where α = n/
2, and β = 2. This distribution is also called the Chi-square distribution with n
degrees of freedom (see Law & Kelton, 1982). We may note that for this case, w(x)
is in the nature of a squared distance from the target, here the singleton set {m}. It
is useful to derive this result by a different technique. Vertical density representation

No.
Rates 

Department
DEA

Efficiency
DT

Efficiency
Modified MPE

Efficiency

39 Bury  .639  .638  .632

40 South Tyneside  .635  .526  .483

41 Salford  .629  .590  .581

42 Hackney  .614  .468  .445

43 Camden  .597  .562  .556

44 Hillingdon  .588  .587  .587

45 Tower Hamlets  .568  .529  .523

46 Barnet  .568  .567  .563

47 Bolton  .557  .549  .543

48 Ealing  .556  .545  .542

49 Bromley  .548  .520  .506

50 Wandsworth  .543  .524  .511

51 Birmingham  .535  .500  .491

52 Enfield  .516  .512  .505

53 Southwark  .509  .470  .464

54 Knowsley  .500  .487  .481

55 Islington  .496  .420  .411

56 North Tyneside  .465  .465  .461

57 Kingston-upon-Thames  .442  .426  .413

58 Hounslow  .435  .433  .430

59 Richmond-upon-Thames  .431  .410  .396

60 Hammersmith and Fulham  .424  .373  .364

61 Newham  .333  .331  .329

62 Merton  .329  .302  .286

Mean  .705  .652  .637

Standard Deviation .187  .168  .166

Table 1:  (continued) Comparison of efficiency scores obtained by Data
Envelopment Analysis (DEA), the modified DEA method of Dyson and
Thanassoulis (1988) (DT), and the modified MPE model.
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(VDR) is a technique for representing a multivariate density by way of a univariate
density called the ordinate or vertical density, and uniform distributions over the
equidensity contours of the original multivariate density. VDR was introduced in
Troutt (1993). See also Troutt (1991), Kotz and Troutt (1996), Kotz, Fang, and
Liang (1997), and Troutt and Pang (1996). The version of VDR needed for the
present purpose can be derived as follows. Let w(x) be a continuous convex func-
tion on Rn with range [0,∞); and let g(w) be a density on [0,∞). Suppose that for
each value of u ≥ 0, x is uniformly distributed on the set {x: w(x) = u}. Consider
the process of sampling a value of u according to the g(w) density and then sam-
pling a vector, x, according to the uniform distribution on the set {x: w(x) = u}.
Next, let f(x) be the density of the resulting x variates on Rn. Finally, let A(u) be the
volume (Lebesgue measure) of the set {x: w(x) ≤ u}. Then, we have the following
VDR theorem that relates g(w) and f(x) in Rn. The proof is given in the Appendix.

Theorem 1: If A(u) is differentiable on [0, ∞) with A'(u) strictly positive, then x is
distributed according to the density f(x), where:

f(x) = φ(w(x)),

and

g(w) = φ(w) / A'(w). (13)

Theorem 1 can be applied to derive a very general density class for performance
related to squared distance type error measures. The set {x: (x – µ)' Σ–1(x – µ) ≤ u}
has volume, A(u), given by A(u) = αn |Σ|1/2  un/2, where αn = πn/2/n/2 Γ(n/2) (Fleming,
1977), so that A'(u) = n/2 αn |Σ|1/2 u n/2 – 1. The gamma g(a,β) density is given by:

g(u) = (Γ(α)βα)–1 uα – 1 exp{–u2/β}. (14)

Therefore, Theorem 1 implies that if w(x) = (x – µ)'Σ–1(x – µ) and g(u) = g(α,β), then
the corresponding f(x), which we now rename as ψ(x) = ψ(x; n,α,β), is given by:

ψ(x) = Γ(n/2)(πn/2Γ(α)βα)–1[(x – µ)'Σ–1(x – µ)]α – n/2

exp{–1/β(x – µ)' Σ–1(x – µ)}. (15)

For this density class we have the following observations:

(i) If α = n/2 and β = 2, then ψ(x) is the multivariate normal density, N(µ,Σ).

(ii) If α = n/2 and β ≠ 2, then ψ(x) is steeper or flatter than N(µ,Σ) according
to whether β < 2 or β > 2, respectively. We call these densities the nor-
mal-like densities.
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(iii) If α < n/2, then ψ(x) is unbounded at its mode, µ, but may be more or less
steep according to the value of β. We call this class the better-than-nor-
mal-like density class.

(iv) If α > n/2, then ψ(x) has zero density at the target, µ, and low values
throughout neighborhoods of µ. This suggests that attempts at the target
are not effective. The data may have arisen in pursuit of a different target
or simply not be effective for any target.

For densities in category (iii), the unbounded mode concentrates more prob-
ability near the target and suggests a higher level of expertise than that evidenced
by the finite-at-mode N(µ,Σ) class. It seems reasonable to refer to α in this context
as the expertise, mode, or target effectiveness parameter, while β is a scale or pre-
cision parameter. Thus, if α ≤ n/2, we call ψ(x) the normal-like-or-better perfor-
mance density. To summarize, if attempts at a target set in Rn have a basic squared
distance error measure, and this measure is distributed with the g(α,β) density with
α ≤ n/2, then the performance with respect to this target set is normal-like-or-bet-
ter (NLOB).

We extend this target effectiveness criterion to the present context as follows.
The target set is { Y ∈ R4: ΣarYr = 1, Yr ≥ 0 for all r} rather than the point set {µ}.
If ΣarYrj = vj, then the distance of Yrj from the target set is (1 – v) ||a||–1. Since 0 ≤
v ≤ 1, we employ the transformation w = (–ln v)2 = (ln v)2. This transformation has
the properties that w ≅ (1 – v)2 near v = 1, and w ∈ [0,∞). Therefore, w/
||a||2 = (ln v)2||a||2 is an approximate squared distance measure near the target set.
Since the ||a||2 term is a scale factor, it can be absorbed into the β parameter of
g(α,β). We therefore consider the NLOB effectiveness criterion to hold if w has the
g(α,β) density with α ≤ 4/2= 2. That is, such performance is analogous to that of
unbiased normal-like-or-better distributed attempts at a target in Rn.

There is one additional consideration before applying this effectiveness cri-
terion to the present data. In the LP estimation model, MPE, at least one efficiency,
vj, must be unity (and, hence, wj = 0). This is because at least one efficiency ine-
quality constraint must be active in an optimal solution of the MPE model. We
therefore consider the model for the wj to be:

pδ(0) + (1 – p)g(α,β), (16)

where p is the frequency of zero values beyond 1 (here, p = 3/62 = 0.048 from
Table 1), and δ(0) is the degenerate density concentrated at w = 0. For this data
we regard the NLOB criterion to hold if it holds for the gamma density after
omitting the zeroes. Thus, when the g(α,β) density is fitted to the strictly positive
w values, then NLOB requires that α ≤ 2. For the data of wj = (ln vj)

2 based on
Table 1, column 5, the parameter value estimates obtained by the Method of
Moments (see, e.g., Bickell & Doksum, 1977) are α = 1.07 and β = 0.32. This
method was chosen because the BestFit  (1995) software experienced difficulty
in convergence using its default Maximum Likelihood Estimation procedure.
The Method of Moments estimates parameters by setting theoretical moments
equal to sample moments. For the gamma density, µ = αβ, and σ2 = αβ2. If  andw
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s2 are the sample mean and variance of the positive wj values, then the α and β
estimates are given by:

 

and

. (17)

Tests of fit of the wj data to the g(α = 1.07, β = 0.32) density were carried out
using BestFit  (1995). All three tests provided there, the Chi-square, Kolmogorov-
Smirnov, and the Anderson-Darling indicated acceptance of the gamma model
with confidence levels greater than 0.95. In addition, for each of these tests, the
gamma model was judged best fitting (rank one) among the densities in the library
of BestFit . We therefore conclude that the NLOB criterion was met. The NLOB
criterion is important in establishing whether the estimated cost model is a plausi-
ble goal of the units being studied. The MPE model will produce estimates for any
arbitrary set of Yrj data. However, if the resulting vj data were, for example, uni-
formly distributed on [0,1], there would be little confidence in the estimated
model.

The requirement that g(v) be a gamma density is not critical. This assures,
together with an acceptable alpha parameter value, that the performance vectors
have a normal-like distribution, with mode equal to the target set estimated by the
model. A more general requirement with the same effect is that the performance
vectors be distributed as unimodal, with mode coinciding with the target set. If, for
example, g(v) has a Weibull density, then the steps of Theorem 1 can be reversed
to obtain the f(x) density. The resulting density can be checked for unimodality,
and its mode can, in principle, be directly compared to the target set.

DISCUSSION

In this section we discuss the managerial significance of the results. We also
briefly discuss the weights flexibility issue in DEA, longitudinal use of the
approach, and implications for the single driver-single cost pool case. In addition,
we mention some limitations and questions needing further research.

Few specifics on how to use the results of benchmark modeling analyses
have been reported in the literature. It appears that routine activity-based costing
has been the method used in most such studies. In that case, shared information
consists of unit costs for various common activities and benchmarking amounts to
seeing which operational unit is best on each activity unit cost. However, an oper-
ational unit indicated to be best on one cost might not, in general, be best on other
activity unit costs. Hence, routine ABC may not be able to indicate the overall best
performers and provide an overall rating of cost efficiency for the operational units
being compared. With the present modeling approach, cost efficiency ratings are
assigned to all the operational units, and best performers are identified for possible

â w
2

s
2⁄=

β̂ s
2

w⁄=
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transferability of practices and procedures. In the present results, the four rates
departments, Stockport, Bradford, Leeds, and City of London were identified as
cost efficient. Hence, their practices and procedures should be considered for
adoption, where possible, by the managements of less efficient operational units. It
may happen that some operational unit other than these four could have a lower
unit cost on activity 1, say, by direct comparison of results from routine ABC.
However, managements of other operational units should be cautious to imitate
such an operational unit. Assuming the validity of the model results, such an oper-
ational unit is not fully efficient and, therefore, may have performed poorly on one
or more other activity unit costs.

A question of accuracy also arises in the routine ABC approach. As noted by
Dopuch (1993), ABC is generally considered to result in “better” cost estimates
simply because there are more cost pools and cost drivers. Such a conclusion may
not be warranted without knowledge of the “true” cost numbers. In fact, Datar and
Gupta (1994) have shown that disaggregation can increase errors. Thanassoulis et
al. (1987) briefly discussed the possible disaggregation of the total costs for the
rates departments’ data. They indicated that this would have been possible to some
extent but decided against this for several reasons. Among these, it was felt that the
disaggregated data were less reliable. Therefore, additional tools like the proposed
method may be useful as a means of signaling possible errors from disaggregation.
Also, disaggregation may be expensive or impractical. We may also conjecture
that firms may be more willing to share data at the aggregation level needed for the
modeling approach than at a more detailed level. Therefore, the proposed multiple
cost driver approach provides management with a benchmarking tool that may
save costs as well as improve accuracy and promote wider sharing of data.

Weights Flexibility

From Table 1 it is clear that the proposed method is a more stringent measure of
efficiency than DEA. Comparing the proposed method only to DEA, it can be seen
that for all units, efficiency scores are largest for DEA and smallest for the pro-
posed method. Also, in each case except Bradford, the Dyson and Thanassoulis
(1988) efficiencies were between these bounds. This is as expected since DEA per-
mits maximal weights flexibility, and the proposed method permits no weights
flexibility. Thus, when used with DEA, a range estimate of the efficiency of each
unit is obtained. The proposed method assumes that all units are comparable and,
therefore, should have the same minimal unit cost goals. If this is not the case, then
DEA results should be considered as possibly more valid for one or more opera-
tional units.

Longitudinal Data

Suppose the data Yrt are given over time periods indexed by t for a single business
unit. Then, the MPE model with index j replaced by t might be applied as a model
for internal benchmarking. First, it would be necessary to adjust all the xt cost pool
figures and resulting Yrt data to reflect current dollars using a cost index. This
assumes that the estimated ar° cost rates are in terms of current dollars. Then, the
estimated ar° may be interpreted to be the costs achieved by the unit during its
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most efficient observation period or periods. The resulting vt suggest periods of
more or less efficiency, and would be a useful source for self-study aimed at pro-
ductivity and process improvements. The comparability issue for the units under
comparison should be easier to accept in this case. However, process or technology
and market or other environmental changes during the data time span could be
problematical. A more complete discussion of limitations for this case is left for
specific future application case studies.

Implications for the Single Driver-Single Cost Pool Case

The MPE model for this case simplifies to 

max ∑aYj, 

subject to

aYj ≤ 1, for all j, and a ≥ 0. 

The solution of this model is clearly a° = min Yj
–1. It may be verified that the

NLOB criterion requires α° ≤ 1/2 in this case. If this condition fails to hold, then
this minimum value may be unreasonably low, perhaps due to an outlier. Deletion
of one or a few tentative outliers would be well supported if the remaining data do,
in fact, pass the NLOB test. Otherwise, no credible a° estimate is forthcoming
from the present method.

Limitations and Further Research

In order to more fully parallel existing OLS theory for model aptness testing,
attention should be given to potential outliers, independence of the vj transforma-
tions, and constancy of the distribution of the vj from trial to trial (analogous to
homoscedasticity in OLS theory). See, for example, Madansky (1988) and Neter,
Wasserman, and Kutner (1985). Theory developments for these issues are not yet
available for the MPE approach and would be worthwhile for future research.

Thanassoulis et al. (1987) also discussed what we have called comparability
of these units. A concern was noted relative to activity four, whose monetary driver
level might have been affected by the prosperity of the community being served.
That is, units with above average property values might be considered as being
unfairly compared to the others. Other things being equal, units with an inappro-
priately inflated value of a driver level would be expected to exert a downward
influence on the corresponding estimate in model MPE. We believe this kind of
potential incomparability might be avoided by use of a property value index for
future research.

We have assumed that the benchmark unit costs should be strictly positive in
this paper. As noted above, it may be possible that for some situations and units
that an activity can be achieved as a cost-free by-product of others. It was pointed
out to us that this might not necessarily be inconsistent with the comparability
assumption when the practice or process responsible for such an advantage is
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transferable to the other units. The unadjusted MPE model appears capable of indi-
cating such situations. However, it should be validated on a known case of this
type for further research.

CONCLUSIONS

This paper proposes a new method for estimating cost efficiencies and benchmark
unit costs. The results provide a new tool for benchmarking studies in activity-
based costing. The estimated costs provide plausible operational goals for the
management of the units being compared. This method also provides efficiency
measures and suggests which organizational units or time periods are more or less
efficient, as well as an estimate of the degree of such inefficiency. Efficient units
or time periods provide benchmarks for imitation by other units, or can be studied
for continuous improvement possibilities. We also employ a new estimation tech-
nique that does not require prior specification of the distribution of the inefficiency
errors as is necessary in the stochastic frontier approaches. A model aptness crite-
rion was proposed for the new technique.

The proposed estimation approach was applied to a real data set previously
analyzed by a modified data envelopment analysis method. The resulting estimates
were compared with the average costs obtained by the previous method. The esti-
mated benchmark cost rates were uniformly and strictly lower than their average
rate counterparts, consistent with their definitions, and providing a strong measure
of face validity. [Received: September 27, 1999. Accepted: October 23, 2000.]
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APPENDIX

Proof of Theorem 1

This is a modification of a proof for a version of the theorem given in Troutt
(1993). By the assumption that x is uniformly distributed on {x: w(x) = u}, f(x)
must be constant on these contours, so that f(x) = ϕ(w(x)) for some function, ϕ(⋅).
Consider the probability P(u ≤ w(x) ≤ u + ε ) for a small positive number, ε. On the
one hand this probability is εg(u) to a first-order approximation. On the other hand,
it is also given by:

∫…∫ f(x)Πdxi ≅ ϕ (u) ∫…∫ Πdxi

{x: u ≤ w(x) ≤ u + ε} {w: u ≤ w ≤ u + ε}

≅  ϕ(u){A(u + ε) – A(u)}

Therefore,

ε g(u) ≅ ϕ (u){A(u + ε) – A(u)}.

Division by ε and passage to the limit as ε → 0 yields the result.
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