Electro-Active Ionic Elastomers Motivated   by   the   low   voltage   driven   actuation   of   ionic   Electroactive   Polymers   (iEAPs)   [1]   [2],     recently   we   began   investigating   ionic   elastomers.   In   this   talk   I   will   discuss   the   preparation,   physical characterization   and   electric   bending   actuation   properties   of   two   novel   ionic   elastomers;   ionic polymer   electrolyte   membranes   (iPEM),   and   ionic   liquid   crystal   elastomers   (iLCE).[3]   Both   materials can   be   actuated   by   low   frequency   AC   or   DC   voltages   of   less   than   1   V.   The   bending   actuation properties   of   the   iPEMs   are   outperforming   most   of   the   well-developed   iEAPs,   and   the   not   optimized first   iLCEs   are   already   comparable   to   them.   Ionic   liquid   crystal   elastomers   also   exhibit   superior features,   such   as   the   alignment   dependent   actuation,   which   offers   the   possibility   of   pre-programed actuation   pattern   at   the   level   of   cross-linking   process.   Additionally,   multiple   (thermal,   optical   and electric)   actuations   are   also   possible.   We   also   study   issues   with   compliant   electrodes   and   possible soft robotic applications. [1]   Y.   Bar-Cohen,   Electroactive   Polyer   Actuators   as   Artficial   Muscles:   Reality,   Potential   and              Challenges, SPIE Press, Bellingham, 2004. [2] O. Kim, S. J. Kim, M. J. Park, Chem. Commun. 2018, 54, 4895. [3] C. Feng, C. P. H. Rajapaksha, J. M. Cedillo, C. Piedrahita, J. Cao,V. Kaphle, B. Lussem, T. Kyu, A. I. Jákli, Macromol. Rapid Commun. 2019, 1900299.
Current Research
Responsive Liquid Crystal/Polymer Fibers Airbrushing   of   a   homogeneous   LC   and   polymer   solution   to   make   LC/polymer   as   well   electro- spinning    and    force    spinning    are    techniques    via    which    piezoelectric    and    responsive    fibers    are obtained.    Quantitative    measurements    of    the    optical    response    of    liquid    crystal    (LC)/polymer composite    fiber    mats    to    toluene    and    acetone    vapors    have    been.    Reported    Our    analyses    in comparison   with   control   measurements   of   pure   LC   film   and   polymer   fiber   mats   show   that   the chemicals   can   pass   through   the   polymer   sheath   of   the   fibers   and   be   absorbed   by   the   LC   in   the   core. This   absorption   changes   the   optical   properties   of   the   fiber   mats   which   can   be   used   to   produce sensitive   and   reversible   detection. The   sensitive   response   at   low   concentrations   of   both   acetone   and toluene   demonstrates   the   feasibility   of   using   these   fibers   for   highly   sensitive   and   specific   sensors   for volatile organic compound detection. A    simple    process    is    demonstrated    to    clad    conventional    monofilament    fibers    with    low molecular    weight    liquid    crystals    stabilized    by    an    outer    polymer    sheath.   The    fibers    retain    the responsive   properties   of   the   LCs   in   a   highly   flexible/drapable   format.   The   monofilament   core   makes these   fibers   much   more   rugged   with   a   magnified   response   to   external   stimuli   when   compared   to previously reported LC core fibers produced by electrospinning or airbrushing.    The microscopic structure and the optical properties of round and flattened fibers are reported.  The   sensitivity   of   the   response   of   individual   fibers   can   be   tuned   over   a   broad   range   by   varying the   composition   of   the   liquid   crystals.   Complex   fabrics   can   be   easily   woven   from   fibers   that   respond to   different   external   stimuli,   such   as   temperature   variation,   chemicals   and   pressure. The   fabrics   can be fashioned into garments that can sense and report the state of health or the environment. [1]    Yu    Guan,    Dena    Mae    Agra-Kooijman,    Shaohai    Fu,    Antal    Jákli,    and    John    L.    West, “Responsive    Liquid-Crystal-Clad    Fibers    for   Advanced    Textiles    and    Wearable    Sensors”,   Advanced Materials, 1902168 (2019); DOI: 10.1002/adma.201902168 [2]      Md   Mostafa,   Deña   Mae   Agra-Kooijman,   Kelum   Perera,   Alex   Adaka,John   L.   West   and   Antal Jákli,   “Colloidal   Latex   /   Liquid   Crystal   Coatings   for   Thermochromic   Textiles”,   Colloid   and   Interface Science Communications, 52, 100693, 2023, https://doi.org/10.1016/j.colcom.2022.100693,
Biological Sensing With Liquid Crystal Liquid-crystal–based   biosensors   utilize   the   high   sensitivity   of   liquid-crystal   alignment   to   the presence   of   amphiphiles   adsorbed   to   one   of   the   liquid-crystal   surfaces   from   water.   They   offer inexpensive,   easy   optical   detection   of   biologically   relevant   molecules   such   as   lipids,   proteins,   and cells. The techniques use linear or circular polarizers to analyze the alignment of the liquid crystal.    [1]   Kelum   Perera,   Thiloka   M.   Dassanayake,   Mahesha   Jeewanthi,   H.   Nilanthi   Padmini,   Songping D.   Huang,   Edgar   Kooijman,   Elizabeth   Mann,   and   Antal   Jákli,   “Liquid   Crystal-based   Detection   of Antigens with ELISA Sensitivity”, Advanced Materials Interfaces, 2200891 1-8 (2022) Liquid Crystal Spherical Caps in Magnetic & Electric Fields We   carry   out   both   experimental   and   theoretical   studies   of   the   director   structure   in   magnetic and   electric   fields   of   nematic   liquid   crystal   drops   forming   spherical   cap   shape,   with   initial   director structure   perpendicular   to   the   air   and   glass   boundaries. At   sufficiently   high   magnetic   or   electric   fields a   metastable   inversion   wall   forms   in   the   middle   of   the   drop   perpendicular   to   the   fields   and   then moves   outward.   In   DC   magnetic   and   low-frequency   electric   fields,   the   wall   direction   is   unchanged during   the   motion,   while   under   high   frequency   (>120Hz)   electric   fields   the   defect   wall   rotates   parallel to the field. The   linear   displacement   of   the   electric   field-induced   defect   wall   combined   with   the   threshold for   director   deformation   enables   to   determine   both   the   bend   elastic   constant   and   the   rotational viscosity.   Drops   with   uniform   director   structure   can   be   used   as   tunable   optical   lenses,   where   the   focal length   can   be   controlled   by   light   polarization,   viewing   angle,   magnetic,   or   electric   fields.                  Uniform electric    field-induced    generation,    rotation,    and    linear    movement    of    defect    walls    is    a    unique phenomenon in soft matters.           Articles Published:             [1]   P.   Salamon,   Z.   Karaszi,   V.   Kenderesi,   Á.   Buka,   A.   Jákli,   Liquid   crystal   spherical   caps   in                 magnetic fields, Phys. Rev. Res. 2 (2020), https://doi.org/10.1103/physrevresearch.2.023261 023261.             [2]   Z.   Karaszi,   P.   Salamon,   Á.   Buka,   A.   Jákli,   Lens   shape   liquid   crystals   in   electric   fields, Journal   of   Molecular   Liquids   334   (2021)   116085,   https://doi.org/10.1016/j.molliq.2021.116085   0167- 7322.             [3]   Zoltán   Karaszi,   Marcell   Máthé,   Péter   Salamon,   Ágnes   Buka,   Antal   Jákli;   “Electric   field induced   buckling   of   inversion   walls   in   lens-shape   liquid   crystal   droplets”,   Journal   of   Molecular   Liquids 365, 120177-1-7 (2022)                               [4]   Zoltán   Karaszi,   Marcell   Máthé,   Péter   Salamon,   Ágnes   Buka,   Antal   Jákli;   “Lens-shaped nematic   liquid   crystal   droplets   with   negative   dielectric   anisotropy   in   electric   and   magnetic   fields”, Liquid Crystals, DOI: 10.1080/02678292.2022.2134594, published online (October 24, 2022)                [5]   Ágnes   Buka,   Péter   Salamon,   Marcell   Máthé,   Zoltán   Karaszi,   Antal   Jákli,   “Nematic liquid    crystals    in    lens    shape    geometry”,    Liquid    Crystals    (Invited    paper)    (January    30,    2023), 10.1080/02678292.2023.2168307
Flexo-ionic Effect of Ionic Liquid Crystal Elastomers (iLCE) Flexoelectricity    that    couples    electric    polarization    with    strain    gradient    has    been    studied independently   in   both   crystals   and   liquid   crystals   since   the   1960s[1,2].   In   crystalline   solids   the electric   polarization   is   attributed   to   the   electron   displacenet   of   centrosymmetric   crystals.   In   liquid crystals   it   arises   when   the   director   of   anisometric   (pear-   or   bent-shape)   molecules   have   splay   or bend deformations resulting in a net polarization. Recently,   a   new   class   of   electromechanical   coupling   is   introduced   which   is   very   similar   to   the flexoelectric   effect   except   for   that   the   induced   polarization   is   due   to   displacement   of   differently sized   of   cations   and   anions   [3–7]. These   materials   possess   very   large   flexo-ionic   coefficients   (29   –   323 μC/m), Such a large effect may be useful in soft robotics, sensors, and micro power generation. Motivated   by   those   work,   we   study   flexo-ionic   effects   of   a   new   class   of   materials,   ionic   liquid crystal   elastomers.   We   investigate   the   material   properties   (elastic   modulus,   phase   transition,   ionic conductivity, morphology) and the alignment dependence of flexo-ionic coefficients.   [1]   Mayer, R.M. Piezoelectric Effects in Liquid Crystals. Phys. Rev. Lett. 1969, 22, 25–29. [2]    Kogan,    S.M.    Piezoelectric    effect    during    inhomogeneous    deformation    and    acoustic scattering of carriers in crystals. Sov. Phys. Solid State 1964, 5, 2069. [3]   Rajapaksha,   C.P.H.;   Feng,   C.;   Piedrahita,   C.;   Cao,   J.;   Kaphle,   V.;   Lüssem,   B.;   Kyu,   T.; Jákli,   A.   Poly(ethylene   glycol)   Diacrylate   Based   Electro‐Active   Ionic   Elastomer.   Macromol.   Rapid Commun. 2020, 41, 1900636, doi:10.1002/marc.201900636. [4]      Feng,   C.;   Rajapaksha,   C.P.H.;   Cedillo,   J.M.;   Piedrahita,   C.;   Cao,   J.;   Kaphle,   V.;   Lussem, B.;   Kyu,   T.;   Jákli, A.I.   Electro-responsive   Ionic   Liquid   Crystal   Elastomers.   Macromol.   Rapid   Commun. 2019, 1900299, doi:DOI: 10.1002/marc.201900299. [5]      Piedrahita,   C.R.;   Yue,   P.;   Cao,   J.;   Lee,   H.;   Rajapaksha,   C.P.;   Feng,   C.;   Jákli,   A.;   Kyu,   T. Flexoelectricity   in   Flexoionic   Polymer   Electrolyte   Membranes:   Effect   of   Thiosiloxane   Modification   on Poly(ethylene   glycol)   Diacrylate   and   Ionic   Liquid   Electrolyte   Composites. ACS Appl.   Mater.   Interfaces 2020, 12, 16978–16986, doi:10.1021/acsami.0c02328. [6]     Albehaijan,     H.A.;     Piedrahita,     C.R.;     Cao,     J.;     Soliman,     M.;     Mitra,     S.;     Kyu,     T. Mechanoelectrical   Transduction   of   Polymer   Electrolyte   Membranes:   Effect   of   Branched   Networks. ACS Appl. Mater. Interfaces 2020, 12, 7518–7528, doi:10.1021/acsami.9b15599. [7]   A.   Albehaijan,   H.;   Cao,   J.;   R.   Piedrahita,   C.;   Jákli,   A.;   Kyu,   T.   Role   of   Cationic   Size   and Valency   in   Mechanoelectrical   Transduction   of   Ion-Containing   Polymers.   ACS   Sustain.   Chem.   & Eng. 2021, 0, doi:10.1021/acssuschemeng.0c08252.
Microlens Arrays The   LC-based   microlens   array   has   attractive   applications   in   optoelectronics,   integrated   optics, optical   fiber   switches,   information   processing,   optical   communications,   and   imaging   processing   etc. Most   of   the   Liquid   crystal   microlens   arrays   required   very   delicate   fabrication   process.   We   study cholesteric    liquid    crystal    microlens    arrays    with    different    configurations    which    shows    unique geometrical   and   optical   properties.   Our   focus   is   to   develop   simple,   cost-effective   fabrication   process for    microlenses    using    different    cholesteric    liquid    crystal    mixtures    and    investigate    the    optical capabilities of the microlenses for various applications.    [1]   K.   Perera,   A.   Nemati,   E.   Mann,   T.   Hegmann   and   A.   Jákli,   ”Converging   microlens   array using   nematic   liquid   crystals   doped   with   chiral   nanoparticles”, ACS Applied   Materials   and   Interfaces, 13, 4574-4582 (2021); DOI: https://dx.doi.org/10.1021/acsami.0c21044 -Cover Picture    [2]   Kelum   Perera,   H   Nilanthi   Padmini,   Elizabeth   Mann   and   Antal   Jákli,   “Polymer   Stabilized Paraboloid   Liquid   Crystal   Microlenses   with   Integrated   Pancharatnam–Berry   Phase”, Advanced   Optical Materials, 2101510 (1-8) (2021)    [3]   Kelum   Perera,   Nilanthi   Haputhantrige,   Md   Sakhawat   Hossain   Himel,   Md   Mostafa,   Alex Adaka,   Oleg   D.   Lavrentovich   and   Antal   Jákli,   “Electrically   tunable   chiral   liquid   crystal   lens   arrays” SPIE 12658-30 (August 1.2023)
Recent Cover Images
Textiles and Wearable Sensors Based   on   a   simple   process   we   proposed   recently[1]   to   clad      conventional   monofilament   fibers with        liquid    crystal/polymer    composites,    we    are    developing    fibers    that    retain    the    responsive properties of the LCs but in a highly flexible/drapable format. The   monofilament   core   makes   these   fibers   much   more   rugged   with   a   magnified   response   to external   stimuli   when   compared   to   previously   reported   LC-core   fibers   produced   by   electrospinning or   airbrushing.   The   sensitivity   of   the   response   of   individual   fibers   can   be   tuned   over   a   broad   range by   varying   the   composition   of   the   LCs.   Complex   fabrics   can   be   easily   woven   from   fibers   that   respond to   different   external   stimuli,   such   as   temperature   variation,   chemical   concentrations,   and   pressure. The   fabrics   can   be   fashioned   into   garments   that   can   sense   and   report   the   state   of   health   of   the wearer or the status of their environment. [1]   Guan   Y,   Agra-Kooijman   DM,   Fu   S,   Jákli   A,   West   JL   (2019)   Responsive   Liquid-Crystal-Clad Fibers     for     Advanced     Textiles     and     Wearable     Sensors.     Advanced     Materials,     :1902168-1–5. https://doi.org/10.1002/adma.201902168 [2]   Deña   Mae   Agra-Kooijman,   Md   Mostafa,   Mourad   Krifa,   Linda   Ohrn-McDaniel,   John   L.   West, Antal   Jákli,   Liquid   Crystal   Coated   Yarns   for   Thermo-Responsive   Textile   Structures,   Fibers,   11,   3 (2023);  https://doi.org/10.3390/fib1101000
Ferroelectric Nematic Liquid Crystals The   recently   discovered   ferroelectric   nematic   (N_F)   liquid   crystals   (LCs)   with   over   0.04   C/m2 ferroelectric    polarization    and    104    relative    dielectric    constants,    coupled    with    sub-millisecond switching,   offer   potential   applications   in   high-power   super   capacitors   and   low   voltage   driven   fast electro-optical devices. We    studied    electrical,    optical,    and    electro-optical    studies    of    a    ferroelectric    nematic    LC material   doped   with   commercially   available   chiral   dopants.   While   the   N_F   phase   of   the   undoped   LC is   only   monotropic,   the   chiral   N_F   phase   is   enantiotropic,   indicating   a   chirality   induced   stabilization of   the   polar   nematic   order.   Compared   to   undoped   N_F   material,   a   remarkable   improvement   of   the electro-optical   switching   time   is   demonstrated   in   the   chiral   doped   materials.   The   color   of   the   chiral mixtures   that   exhibit   a   selective   reflection   of   visible   light   in   the   chiral   N_F   phase,   can   be   reversibly tuned   by   0.02-0.1V/µm   in-plane   electric   fields,   which   are   much   smaller   than   typically   required   in full-color    cholesteric    LC    displays    and    do    not    require    complicated    driving    scheme.[1]    The    fast switchable   reflection   color   at   low   fields   has   potential   applications   for   LC   displays   without   backlight, smart windows, shutters and e-papers. We     studied     the     physical     properties     of     a     new     compound,     4-nitrophenyl     4-[(2,4- dimethoxylbenzoyl)oxy]-2-fluorobenzoate    (RT11001)    synthesized    by    RobertTwieg.    This    material exhibits   multiple,   highly   polar,   ferroelectric   nematic   phases   that   have   not   been   previously   reported. We    employ    a    wide    range    of    physical    characterization    methods    including    differential    scanning calorimetry   (DSC),   mass   density   measurement,   optical   birefringence,   polarizing   optical   microscopy (POM),   dielectric   spectroscopy,   electric   current   analysis,   electro-optical   switching,   small-angle   and wide-angle   x-ray   scattering   measurements   to   show   that   RT11001   has   multiple,   distinct   ferroelectric phases.   We   argue   that   the   highest   temperature   phase   is   a   polar   nematic   fluid   with   non-polar   smectic clusters.   Directly   below   appears   to   be   a   transition   to   another   polar   nematic   phase   containing   polar positionally   ordered   clusters.   Lastly,   there   are   indications   of   an   additional,   polar   biaxial   liquid crystal phase at lower temperatures. [2] We   presented   experimental   results   and   theoretical   considerations   of   novel   electromechanical effects   of   ferroelectric   nematic   liquid   crystal   droplets   coexisting   with   the   isotropic   melt.   We   find that   the   droplets   have   flat   pancake-like   shapes   that   are   thinner   than   the   sample   thickness   as   long   as there   is   room   to   increase   the   lateral   droplet   size.   In   the   center   of   the   droplets   a   wing-shaped   defect with   low   birefringence   is   present   that   moves   perpendicular   to   a   weak   in-plane   electric   field,   and then   extends   and   splits   in   two   at   higher   fields.   Parallel   to   the   defect   motion   and   extension,   the entire   droplet   drifts   along   the   electric   field   with   a   speed   that   is   independent   of   the   size   of   the droplet   and   is   proportional   to   the   amplitude   of   the   electric   field.   After   the   field   is   increased   above 1mV/m   the   entire   droplet   gets   deformed   and   oscillates   with   the   field.   These   observations   led   us   to determine   the   polarization   field   and   revealed   the   presence   of   a   pair   of   positive   and   negative   bound electric charges due to divergences of polarization around the defect volume. [3] In   collaboration   with   researchers   at   the   Wigner   Research   Centre   for   Physics,   we   studied   RM734 sessile   drops.   The   director   profile   was   found   to   be   radial   at   the   LC-air   interface   in   the   N   phase. When   the   top   surface   transitions   to   the   N_F      phase   while   the   bottom   is   still   at   the   N   phase,   the director   is   spiraling.   When   the   entire   drop   is   in   the   N_F      phase,   the   director   and   the   ferroelectric polarization   have   a   circular   distribution.   Additionally,   it   was   demonstrated   that   a   thermal   gradient- induces   a   circular   motion   of   particles   placed   on   the   drop. A   simple   model   shows   that   the   tangential arrangement   of   the   ferroelectric   polarization   combined   with   the   vertical   thermal   gradient   and   the pyroelectricity   of   the   fluid   drives   the   rotation   of   the   tracer   particles   that   become   electrically charged   in   the   fluid.[4]      In   frame   of   this   collaboration   we   also   studied   sessile   droplets   and   fluid bridges   of   a   ferroelectric   nematic   liquid   crystal   in   externally   applied   electric   fields   are   presented.   It is   found   that   above   a   threshold,   the   interface   of   the   fluid   with   air   undergoes   a   fingering   instability or   ramification,   resembling   to   Rayleigh-type   instability   observed   in   charged   droplets   in   electric fields   or   circular   drop-type   instabilities   observed   in   ferromagnetic   liquids   in   magnetic   field.   The frequency   dependence   of   the   threshold   voltage   was   determined   in   various   geometries.   The   nematic director   and   ferroelectric   polarization   direction   was   found   to   point   along   the   tip   of   the   fingers   that appear   to   repel   each   other,   indicating   that   the   ferroelectric   polarization   is   essentially   parallel   to   the director.    The    results    are    interpreted    in    connection    to    the    Rayleigh    and    circular    drop-type instabilities.  [5] Freestanding   slender   ferroelectric   nematic   fluid   filaments   forming   at   zero   electric   field   or stabilized    under    axial    electric    fields    between    suspending    wires    are    described.    The    electric stabilization   is   similar   to   those   observed   in   dielectric   fluids   such   as   water,   but   the   voltages   required are   three   orders   of   magnitude   smaller   in   ferroelectric   nematic   materials   than   in   dielectric   fluids. The   stabilization   can   be   also   achieved   by   low   frequency AC   voltages   that   lead   to   transversal   coupled damped   vibrations. The   analysis   of   the   results   can   provide   the   ferroelectric   tension   and   the   viscosity of   the   material,   while   the   measurements   of   the   transient   electric   current   can   provide   the   measure of   the   ferroelectric   polarization   and   the   switching   time.   [6]   The   observed   effects   are   not   only unique   and   novel,   thus   have   fundamental   scientific   merits,   they   may   also   prove   to   have   practical applications such as their use in nano-fluidic in micron-size logic devices, switches, and relays. [1]   Chenrun   Feng,   Rony   Saha,   Eva   Korblova,   David   Walba,   Samuel   N.   Sprunt,   and Antal   Jákli, “Electrically   Tunable   Reflection   Color   of   Chiral   Ferroelectric   Nematic   Liquid   Crystals”,   Adv.   Optical Mater. 2021, 2101230 [2]   Rony   Saha,   Pawan   Nepal,   Chenrun   Feng,   Md   Sakhawat   Hossein,   James   T.   Gleeson,   Samuel Sprunt,   Robert   J.   Twieg,   Antal   Jákli,   “Multiple   ferroelectric   nematic   phases   of   a   highly   polar   liquid crystal compound”,  arXiv:2104.06520v  and Liq. Cryst., 49, (13), 1784-1796 [3]   Kelum   Perera,   Rony   Saha,   Pawan   Nepal,   Rohan   Dharmarthna,   Md   Sakhawat   Hossain,   Md Mostafa,   Alex   Adaka,   Ronan   Waroquet,   Robert   J.   Twieg   and   Antal   Jákli,   Ferroelectric   Nematic Droplets   in   their   Isotropic   Melt,   ArXiv   2209.09363   (2022);   Soft   Matter,      19,   347   –   354   (2023),   DOI: 10.1039/D2SM01395A [4]   Marcell   Tibor   Máthé,   Ágnes   Buka, Antal   Jákli,   Péter   Salamon,   “Ferroelectric   nematic   liquid crystal thermo-motor”, ArXiv: 2201.07556 (2022); Physical Review E, 105, L052701 (2022) [5]    Marcell    Tibor    Máthé,    Bendegúz    Farkas,    László    Péter,    Ágnes    Buka,   Antal    Jákli,    Péter Salamon,   “Electric   field-induced   interfacial   instability   in   a   ferroelectric   nematic   liquid   crystal”,     arXiv:2210.14329v1, Scientific Reports, 13:6981 (2023) [6]    Marcell    Tibor    Máthé,    Kelum    Perera,    Ágnes    Buka,    Péter    Salamon,   Antal    Jákli,    “Fluid ferroelectric filaments”, ArXiv: 2307.16588,