Current Research
Recent Cover Images
Electro-Active Ionic Elastomers
Motivated  
by  
the  
low  
voltage  
driven  
actuation  
of  
ionic  
Electroactive  
Polymers  
(iEAPs)  
[1]  
[2],  
 
recently  
we  
began  
investigating  
ionic  
elastomers.  
In  
this  
talk  
I  
will  
discuss  
the  
preparation,  
physical
characterization  
and  
electric  
bending  
actuation  
properties  
of  
two  
novel  
ionic  
elastomers;  
ionic
polymer  
electrolyte  
membranes  
(iPEM),  
and  
ionic  
liquid  
crystal  
elastomers  
(iLCE).[3]  
Both  
materials
can  
be  
actuated  
by  
low  
frequency  
AC  
or  
DC  
voltages  
of  
less  
than  
1  
V.  
The  
bending  
actuation
properties  
of  
the  
iPEMs  
are  
outperforming  
most  
of  
the  
well-developed  
iEAPs,  
and  
the  
not  
optimized
first  
iLCEs  
are  
already  
comparable  
to  
them.  
Ionic  
liquid  
crystal  
elastomers  
also  
exhibit  
superior
features,  
such  
as  
the  
alignment  
dependent  
actuation,  
which  
offers  
the  
possibility  
of  
pre-programed
actuation  
pattern  
at  
the  
level  
of  
cross-linking  
process.  
Additionally,  
multiple  
(thermal,  
optical  
and
electric)  
actuations  
are  
also  
possible.  
We  
also  
study  
issues  
with  
compliant  
electrodes  
and  
possible
soft robotic applications.
[1]  
Y.  
Bar-Cohen,  
Electroactive  
Polyer  
Actuators  
as  
Artficial  
Muscles:  
Reality,  
Potential  
and  
  
  
  
 
Challenges, SPIE Press, Bellingham, 2004.
[2] O. Kim, S. J. Kim, M. J. Park, Chem. Commun. 2018, 54, 4895.
[3] C. Feng, C. P. H. Rajapaksha, J. M. Cedillo, C. Piedrahita, J. Cao,V. Kaphle, B. Lussem, T.
Kyu, A. I. Jákli, Macromol. Rapid Commun. 2019, 1900299.
Responsive Liquid Crystal/Polymer Fibers
Airbrushing  
of  
a  
homogeneous  
LC  
and  
polymer  
solution  
to  
make  
LC/polymer  
as  
well  
electro-
spinning   
and   
force   
spinning   
are   
techniques   
via   
which   
piezoelectric   
and   
responsive   
fibers   
are
obtained.   
Quantitative   
measurements   
of   
the   
optical   
response   
of   
liquid   
crystal   
(LC)/polymer
composite   
fiber   
mats   
to   
toluene   
and   
acetone   
vapors   
have   
been.   
Reported   
Our   
analyses   
in
comparison  
with  
control  
measurements  
of  
pure  
LC  
film  
and  
polymer  
fiber  
mats  
show  
that  
the
chemicals  
can  
pass  
through  
the  
polymer  
sheath  
of  
the  
fibers  
and  
be  
absorbed  
by  
the  
LC  
in  
the  
core.
This  
absorption  
changes  
the  
optical  
properties  
of  
the  
fiber  
mats  
which  
can  
be  
used  
to  
produce
sensitive  
and  
reversible  
detection.
The  
sensitive  
response  
at  
low  
concentrations  
of  
both  
acetone  
and
toluene  
demonstrates  
the  
feasibility  
of  
using  
these  
fibers  
for  
highly  
sensitive  
and  
specific  
sensors  
for
volatile organic compound detection.
A   
simple   
process   
is   
demonstrated   
to   
clad   
conventional   
monofilament   
fibers   
with   
low
molecular   
weight   
liquid   
crystals   
stabilized   
by   
an   
outer   
polymer   
sheath.  
The   
fibers   
retain   
the
responsive  
properties  
of  
the  
LCs  
in  
a  
highly  
flexible/drapable  
format.  
The  
monofilament  
core  
makes
these  
fibers  
much  
more  
rugged  
with  
a  
magnified  
response  
to  
external  
stimuli  
when  
compared  
to
previously reported LC core fibers produced by electrospinning or airbrushing.   
The microscopic structure and the optical properties of round and flattened fibers are reported. 
The  
sensitivity  
of  
the  
response  
of  
individual  
fibers  
can  
be  
tuned  
over  
a  
broad  
range  
by  
varying
the  
composition  
of  
the  
liquid  
crystals.  
Complex  
fabrics  
can  
be  
easily  
woven  
from  
fibers  
that  
respond
to  
different  
external  
stimuli,  
such  
as  
temperature  
variation,  
chemicals  
and  
pressure.
The  
fabrics  
can
be fashioned into garments that can sense and report the state of health or the environment.
[1]   
Yu   
Guan,   
Dena   
Mae   
Agra-Kooijman,   
Shaohai   
Fu,   
Antal   
Jákli,   
and   
John   
L.   
West,
“Responsive   
Liquid-Crystal-Clad   
Fibers   
for  
Advanced   
Textiles   
and   
Wearable   
Sensors”,  
Advanced
Materials, 1902168 (2019); DOI: 10.1002/adma.201902168
[2]  
  
Md  
Mostafa,  
Deña  
Mae  
Agra-Kooijman,  
Kelum  
Perera,  
Alex  
Adaka,John  
L.  
West  
and  
Antal
Jákli,  
“Colloidal  
Latex  
/  
Liquid  
Crystal  
Coatings  
for  
Thermochromic  
Textiles”,  
Colloid  
and  
Interface
Science Communications, 52, 100693, 2023, https://doi.org/10.1016/j.colcom.2022.100693,
Biological Sensing With Liquid Crystal
Liquid-crystal–based  
biosensors  
utilize  
the  
high  
sensitivity  
of  
liquid-crystal  
alignment  
to  
the
presence  
of  
amphiphiles  
adsorbed  
to  
one  
of  
the  
liquid-crystal  
surfaces  
from  
water.  
They  
offer
inexpensive,  
easy  
optical  
detection  
of  
biologically  
relevant  
molecules  
such  
as  
lipids,  
proteins,  
and
cells. The techniques use linear or circular polarizers to analyze the alignment of the liquid crystal.
  
[1]  
Kelum  
Perera,  
Thiloka  
M.  
Dassanayake,  
Mahesha  
Jeewanthi,  
H.  
Nilanthi  
Padmini,  
Songping
D.  
Huang,  
Edgar  
Kooijman,  
Elizabeth  
Mann,  
and  
Antal  
Jákli,  
“Liquid  
Crystal-based  
Detection  
of
Antigens with ELISA Sensitivity”, Advanced Materials Interfaces, 2200891 1-8 (2022)
Liquid Crystal Spherical Caps in Magnetic & Electric Fields
We  
carry  
out  
both  
experimental  
and  
theoretical  
studies  
of  
the  
director  
structure  
in  
magnetic
and  
electric  
fields  
of  
nematic  
liquid  
crystal  
drops  
forming  
spherical  
cap  
shape,  
with  
initial  
director
structure  
perpendicular  
to  
the  
air  
and  
glass  
boundaries.
At  
sufficiently  
high  
magnetic  
or  
electric  
fields
a  
metastable  
inversion  
wall  
forms  
in  
the  
middle  
of  
the  
drop  
perpendicular  
to  
the  
fields  
and  
then
moves  
outward.  
In  
DC  
magnetic  
and  
low-frequency  
electric  
fields,  
the  
wall  
direction  
is  
unchanged
during  
the  
motion,  
while  
under  
high  
frequency  
(>120Hz)  
electric  
fields  
the  
defect  
wall  
rotates  
parallel
to the field.
The  
linear  
displacement  
of  
the  
electric  
field-induced  
defect  
wall  
combined  
with  
the  
threshold
for  
director  
deformation  
enables  
to  
determine  
both  
the  
bend  
elastic  
constant  
and  
the  
rotational
viscosity.  
Drops  
with  
uniform  
director  
structure  
can  
be  
used  
as  
tunable  
optical  
lenses,  
where  
the  
focal
length  
can  
be  
controlled  
by  
light  
polarization,  
viewing  
angle,  
magnetic,  
or  
electric  
fields.  
  
  
  
  
  
Uniform
electric   
field-induced   
generation,   
rotation,   
and   
linear   
movement   
of   
defect   
walls   
is   
a   
unique
phenomenon in soft matters.
         
Articles Published:
  
  
  
  
[1]  
P.  
Salamon,  
Z.  
Karaszi,  
V.  
Kenderesi,  
Á.  
Buka,  
A.  
Jákli,  
Liquid  
crystal  
spherical  
caps  
in  
  
  
  
  
 
magnetic fields, Phys. Rev. Res. 2 (2020), https://doi.org/10.1103/physrevresearch.2.023261 023261.
  
  
  
  
[2]  
Z.  
Karaszi,  
P.  
Salamon,  
Á.  
Buka,  
A.  
Jákli,  
Lens  
shape  
liquid  
crystals  
in  
electric  
fields,
Journal  
of  
Molecular  
Liquids  
334  
(2021)  
116085,  
https://doi.org/10.1016/j.molliq.2021.116085  
0167-
7322.
  
  
  
  
[3]  
Zoltán  
Karaszi,  
Marcell  
Máthé,  
Péter  
Salamon,  
Ágnes  
Buka,  
Antal  
Jákli;  
“Electric  
field
induced  
buckling  
of  
inversion  
walls  
in  
lens-shape  
liquid  
crystal  
droplets”,  
Journal  
of  
Molecular  
Liquids
365, 120177-1-7 (2022)
  
  
  
  
  
  
  
  
  
  
[4]  
Zoltán  
Karaszi,  
Marcell  
Máthé,  
Péter  
Salamon,  
Ágnes  
Buka,  
Antal  
Jákli;  
“Lens-shaped
nematic  
liquid  
crystal  
droplets  
with  
negative  
dielectric  
anisotropy  
in  
electric  
and  
magnetic  
fields”,
Liquid Crystals, DOI: 10.1080/02678292.2022.2134594, published online (October 24, 2022)
  
  
  
  
  
[5]  
Ágnes  
Buka,  
Péter  
Salamon,  
Marcell  
Máthé,  
Zoltán  
Karaszi,  
Antal  
Jákli,  
“Nematic
liquid   
crystals   
in   
lens   
shape   
geometry”,   
Liquid   
Crystals   
(Invited   
paper)   
(January   
30,   
2023),
10.1080/02678292.2023.2168307
Flexo-ionic Effect of Ionic Liquid Crystal Elastomers (iLCE)
Flexoelectricity   
that   
couples   
electric   
polarization   
with   
strain   
gradient   
has   
been   
studied
independently  
in  
both  
crystals  
and  
liquid  
crystals  
since  
the  
1960s[1,2].  
In  
crystalline  
solids  
the
electric  
polarization  
is  
attributed  
to  
the  
electron  
displacenet  
of  
centrosymmetric  
crystals.  
In  
liquid
crystals  
it  
arises  
when  
the  
director  
of  
anisometric  
(pear-  
or  
bent-shape)  
molecules  
have  
splay  
or
bend deformations resulting in a net polarization.
Recently,  
a  
new  
class  
of  
electromechanical  
coupling  
is  
introduced  
which  
is  
very  
similar  
to  
the
flexoelectric  
effect  
except  
for  
that  
the  
induced  
polarization  
is  
due  
to  
displacement  
of  
differently
sized  
of  
cations  
and  
anions  
[3–7].
These  
materials  
possess  
very  
large  
flexo-ionic  
coefficients  
(29  
–  
323
μC/m), Such a large effect may be useful in soft robotics, sensors, and micro power generation.
Motivated  
by  
those  
work,  
we  
study  
flexo-ionic  
effects  
of  
a  
new  
class  
of  
materials,  
ionic  
liquid
crystal  
elastomers.  
We  
investigate  
the  
material  
properties  
(elastic  
modulus,  
phase  
transition,  
ionic
conductivity, morphology) and the alignment dependence of flexo-ionic coefficients.  
[1]   Mayer, R.M. Piezoelectric Effects in Liquid Crystals. Phys. Rev. Lett. 1969, 22, 25–29.
[2]   
Kogan,   
S.M.   
Piezoelectric   
effect   
during   
inhomogeneous   
deformation   
and   
acoustic
scattering of carriers in crystals. Sov. Phys. Solid State 1964, 5, 2069.
[3]  
Rajapaksha,  
C.P.H.;  
Feng,  
C.;  
Piedrahita,  
C.;  
Cao,  
J.;  
Kaphle,  
V.;  
Lüssem,  
B.;  
Kyu,  
T.;
Jákli,  
A.  
Poly(ethylene  
glycol)  
Diacrylate  
Based  
Electro‐Active  
Ionic  
Elastomer.  
Macromol.  
Rapid
Commun. 2020, 41, 1900636, doi:10.1002/marc.201900636.
[4]  
  
Feng,  
C.;  
Rajapaksha,  
C.P.H.;  
Cedillo,  
J.M.;  
Piedrahita,  
C.;  
Cao,  
J.;  
Kaphle,  
V.;  
Lussem,
B.;  
Kyu,  
T.;  
Jákli,
A.I.  
Electro-responsive  
Ionic  
Liquid  
Crystal  
Elastomers.  
Macromol.  
Rapid  
Commun.
2019, 1900299, doi:DOI: 10.1002/marc.201900299.
[5]  
  
Piedrahita,  
C.R.;  
Yue,  
P.;  
Cao,  
J.;  
Lee,  
H.;  
Rajapaksha,  
C.P.;  
Feng,  
C.;  
Jákli,  
A.;  
Kyu,  
T.
Flexoelectricity  
in  
Flexoionic  
Polymer  
Electrolyte  
Membranes:  
Effect  
of  
Thiosiloxane  
Modification  
on
Poly(ethylene  
glycol)  
Diacrylate  
and  
Ionic  
Liquid  
Electrolyte  
Composites.
ACS
Appl.  
Mater.  
Interfaces
2020, 12, 16978–16986, doi:10.1021/acsami.0c02328.
[6]    
Albehaijan,    
H.A.;    
Piedrahita,    
C.R.;    
Cao,    
J.;    
Soliman,    
M.;    
Mitra,    
S.;    
Kyu,    
T.
Mechanoelectrical  
Transduction  
of  
Polymer  
Electrolyte  
Membranes:  
Effect  
of  
Branched  
Networks.
ACS Appl. Mater. Interfaces 2020, 12, 7518–7528, doi:10.1021/acsami.9b15599.
[7]  
A.  
Albehaijan,  
H.;  
Cao,  
J.;  
R.  
Piedrahita,  
C.;  
Jákli,  
A.;  
Kyu,  
T.  
Role  
of  
Cationic  
Size  
and
Valency  
in  
Mechanoelectrical  
Transduction  
of  
Ion-Containing  
Polymers.  
ACS  
Sustain.  
Chem.  
&
Eng. 2021, 0, doi:10.1021/acssuschemeng.0c08252.
Microlens Arrays
The  
LC-based  
microlens  
array  
has  
attractive  
applications  
in  
optoelectronics,  
integrated  
optics,
optical  
fiber  
switches,  
information  
processing,  
optical  
communications,  
and  
imaging  
processing  
etc.
Most  
of  
the  
Liquid  
crystal  
microlens  
arrays  
required  
very  
delicate  
fabrication  
process.  
We  
study
cholesteric   
liquid   
crystal   
microlens   
arrays   
with   
different   
configurations   
which   
shows   
unique
geometrical  
and  
optical  
properties.  
Our  
focus  
is  
to  
develop  
simple,  
cost-effective  
fabrication  
process
for   
microlenses   
using   
different   
cholesteric   
liquid   
crystal   
mixtures   
and   
investigate   
the   
optical
capabilities of the microlenses for various applications.
  
[1]  
K.  
Perera,  
A.  
Nemati,  
E.  
Mann,  
T.  
Hegmann  
and  
A.  
Jákli,  
”Converging  
microlens  
array
using  
nematic  
liquid  
crystals  
doped  
with  
chiral  
nanoparticles”,
ACS
Applied  
Materials  
and  
Interfaces,
13, 4574-4582 (2021); DOI: https://dx.doi.org/10.1021/acsami.0c21044 -Cover Picture
  
[2]  
Kelum  
Perera,  
H  
Nilanthi  
Padmini,  
Elizabeth  
Mann  
and  
Antal  
Jákli,  
“Polymer  
Stabilized
Paraboloid  
Liquid  
Crystal  
Microlenses  
with  
Integrated  
Pancharatnam–Berry  
Phase”,
Advanced  
Optical
Materials, 2101510 (1-8) (2021)
  
[3]  
Kelum  
Perera,  
Nilanthi  
Haputhantrige,  
Md  
Sakhawat  
Hossain  
Himel,  
Md  
Mostafa,  
Alex
Adaka,  
Oleg  
D.  
Lavrentovich  
and  
Antal  
Jákli,  
“Electrically  
tunable  
chiral  
liquid  
crystal  
lens  
arrays”
SPIE 12658-30 (August 1.2023)
Textiles and Wearable Sensors
Based  
on  
a  
simple  
process  
we  
proposed  
recently[1]  
to  
clad  
  
conventional  
monofilament  
fibers
with   
   
liquid   
crystal/polymer   
composites,   
we   
are   
developing   
fibers   
that   
retain   
the   
responsive
properties of the LCs but in a highly flexible/drapable format.
The  
monofilament  
core  
makes  
these  
fibers  
much  
more  
rugged  
with  
a  
magnified  
response  
to
external  
stimuli  
when  
compared  
to  
previously  
reported  
LC-core  
fibers  
produced  
by  
electrospinning
or  
airbrushing.  
The  
sensitivity  
of  
the  
response  
of  
individual  
fibers  
can  
be  
tuned  
over  
a  
broad  
range
by  
varying  
the  
composition  
of  
the  
LCs.  
Complex  
fabrics  
can  
be  
easily  
woven  
from  
fibers  
that  
respond
to  
different  
external  
stimuli,  
such  
as  
temperature  
variation,  
chemical  
concentrations,  
and  
pressure.
The  
fabrics  
can  
be  
fashioned  
into  
garments  
that  
can  
sense  
and  
report  
the  
state  
of  
health  
of  
the
wearer or the status of their environment.
[1]  
Guan  
Y,  
Agra-Kooijman  
DM,  
Fu  
S,  
Jákli  
A,  
West  
JL  
(2019)  
Responsive  
Liquid-Crystal-Clad
Fibers    
for    
Advanced    
Textiles    
and    
Wearable    
Sensors.    
Advanced    
Materials,    
:1902168-1–5.
https://doi.org/10.1002/adma.201902168
[2]  
Deña  
Mae  
Agra-Kooijman,  
Md  
Mostafa,  
Mourad  
Krifa,  
Linda  
Ohrn-McDaniel,  
John  
L.  
West,
Antal  
Jákli,  
Liquid  
Crystal  
Coated  
Yarns  
for  
Thermo-Responsive  
Textile  
Structures,  
Fibers,  
11,  
3
(2023);  https://doi.org/10.3390/fib1101000
Ferroelectric Nematic Liquid Crystals
The  
recently  
discovered  
ferroelectric  
nematic  
(N_F)  
liquid  
crystals  
(LCs)  
with  
over  
0.04  
C/m2
ferroelectric   
polarization   
and   
104   
relative   
dielectric   
constants,   
coupled   
with   
sub-millisecond
switching,  
offer  
potential  
applications  
in  
high-power  
super  
capacitors  
and  
low  
voltage  
driven  
fast
electro-optical devices.
We   
studied   
electrical,   
optical,   
and   
electro-optical   
studies   
of   
a   
ferroelectric   
nematic   
LC
material  
doped  
with  
commercially  
available  
chiral  
dopants.  
While  
the  
N_F  
phase  
of  
the  
undoped  
LC
is  
only  
monotropic,  
the  
chiral  
N_F  
phase  
is  
enantiotropic,  
indicating  
a  
chirality  
induced  
stabilization
of  
the  
polar  
nematic  
order.  
Compared  
to  
undoped  
N_F  
material,  
a  
remarkable  
improvement  
of  
the
electro-optical  
switching  
time  
is  
demonstrated  
in  
the  
chiral  
doped  
materials.  
The  
color  
of  
the  
chiral
mixtures  
that  
exhibit  
a  
selective  
reflection  
of  
visible  
light  
in  
the  
chiral  
N_F  
phase,  
can  
be  
reversibly
tuned  
by  
0.02-0.1V/µm  
in-plane  
electric  
fields,  
which  
are  
much  
smaller  
than  
typically  
required  
in
full-color   
cholesteric   
LC   
displays   
and   
do   
not   
require   
complicated   
driving   
scheme.[1]   
The   
fast
switchable  
reflection  
color  
at  
low  
fields  
has  
potential  
applications  
for  
LC  
displays  
without  
backlight,
smart windows, shutters and e-papers.
We    
studied    
the    
physical    
properties    
of    
a    
new    
compound,    
4-nitrophenyl    
4-[(2,4-
dimethoxylbenzoyl)oxy]-2-fluorobenzoate   
(RT11001)   
synthesized   
by   
RobertTwieg.   
This   
material
exhibits  
multiple,  
highly  
polar,  
ferroelectric  
nematic  
phases  
that  
have  
not  
been  
previously  
reported.
We   
employ   
a   
wide   
range   
of   
physical   
characterization   
methods   
including   
differential   
scanning
calorimetry  
(DSC),  
mass  
density  
measurement,  
optical  
birefringence,  
polarizing  
optical  
microscopy
(POM),  
dielectric  
spectroscopy,  
electric  
current  
analysis,  
electro-optical  
switching,  
small-angle  
and
wide-angle  
x-ray  
scattering  
measurements  
to  
show  
that  
RT11001  
has  
multiple,  
distinct  
ferroelectric
phases.  
We  
argue  
that  
the  
highest  
temperature  
phase  
is  
a  
polar  
nematic  
fluid  
with  
non-polar  
smectic
clusters.  
Directly  
below  
appears  
to  
be  
a  
transition  
to  
another  
polar  
nematic  
phase  
containing  
polar
positionally  
ordered  
clusters.  
Lastly,  
there  
are  
indications  
of  
an  
additional,  
polar  
biaxial  
liquid
crystal phase at lower temperatures. [2]
We  
presented  
experimental  
results  
and  
theoretical  
considerations  
of  
novel  
electromechanical
effects  
of  
ferroelectric  
nematic  
liquid  
crystal  
droplets  
coexisting  
with  
the  
isotropic  
melt.  
We  
find
that  
the  
droplets  
have  
flat  
pancake-like  
shapes  
that  
are  
thinner  
than  
the  
sample  
thickness  
as  
long  
as
there  
is  
room  
to  
increase  
the  
lateral  
droplet  
size.  
In  
the  
center  
of  
the  
droplets  
a  
wing-shaped  
defect
with  
low  
birefringence  
is  
present  
that  
moves  
perpendicular  
to  
a  
weak  
in-plane  
electric  
field,  
and
then  
extends  
and  
splits  
in  
two  
at  
higher  
fields.  
Parallel  
to  
the  
defect  
motion  
and  
extension,  
the
entire  
droplet  
drifts  
along  
the  
electric  
field  
with  
a  
speed  
that  
is  
independent  
of  
the  
size  
of  
the
droplet  
and  
is  
proportional  
to  
the  
amplitude  
of  
the  
electric  
field.  
After  
the  
field  
is  
increased  
above
1mV/m  
the  
entire  
droplet  
gets  
deformed  
and  
oscillates  
with  
the  
field.  
These  
observations  
led  
us  
to
determine  
the  
polarization  
field  
and  
revealed  
the  
presence  
of  
a  
pair  
of  
positive  
and  
negative  
bound
electric charges due to divergences of polarization around the defect volume. [3]
In  
collaboration  
with  
researchers  
at  
the  
Wigner  
Research  
Centre  
for  
Physics,  
we  
studied  
RM734
sessile  
drops.  
The  
director  
profile  
was  
found  
to  
be  
radial  
at  
the  
LC-air  
interface  
in  
the  
N  
phase.
When  
the  
top  
surface  
transitions  
to  
the  
N_F  
  
phase  
while  
the  
bottom  
is  
still  
at  
the  
N  
phase,  
the
director  
is  
spiraling.  
When  
the  
entire  
drop  
is  
in  
the  
N_F  
  
phase,  
the  
director  
and  
the  
ferroelectric
polarization  
have  
a  
circular  
distribution.  
Additionally,  
it  
was  
demonstrated  
that  
a  
thermal  
gradient-
induces  
a  
circular  
motion  
of  
particles  
placed  
on  
the  
drop.
A  
simple  
model  
shows  
that  
the  
tangential
arrangement  
of  
the  
ferroelectric  
polarization  
combined  
with  
the  
vertical  
thermal  
gradient  
and  
the
pyroelectricity  
of  
the  
fluid  
drives  
the  
rotation  
of  
the  
tracer  
particles  
that  
become  
electrically
charged  
in  
the  
fluid.[4]  
  
In  
frame  
of  
this  
collaboration  
we  
also  
studied  
sessile  
droplets  
and  
fluid
bridges  
of  
a  
ferroelectric  
nematic  
liquid  
crystal  
in  
externally  
applied  
electric  
fields  
are  
presented.  
It
is  
found  
that  
above  
a  
threshold,  
the  
interface  
of  
the  
fluid  
with  
air  
undergoes  
a  
fingering  
instability
or  
ramification,  
resembling  
to  
Rayleigh-type  
instability  
observed  
in  
charged  
droplets  
in  
electric
fields  
or  
circular  
drop-type  
instabilities  
observed  
in  
ferromagnetic  
liquids  
in  
magnetic  
field.  
The
frequency  
dependence  
of  
the  
threshold  
voltage  
was  
determined  
in  
various  
geometries.  
The  
nematic
director  
and  
ferroelectric  
polarization  
direction  
was  
found  
to  
point  
along  
the  
tip  
of  
the  
fingers  
that
appear  
to  
repel  
each  
other,  
indicating  
that  
the  
ferroelectric  
polarization  
is  
essentially  
parallel  
to  
the
director.   
The   
results   
are   
interpreted   
in   
connection   
to   
the   
Rayleigh   
and   
circular   
drop-type
instabilities.  [5]
Freestanding  
slender  
ferroelectric  
nematic  
fluid  
filaments  
forming  
at  
zero  
electric  
field  
or
stabilized   
under   
axial   
electric   
fields   
between   
suspending   
wires   
are   
described.   
The   
electric
stabilization  
is  
similar  
to  
those  
observed  
in  
dielectric  
fluids  
such  
as  
water,  
but  
the  
voltages  
required
are  
three  
orders  
of  
magnitude  
smaller  
in  
ferroelectric  
nematic  
materials  
than  
in  
dielectric  
fluids.
The  
stabilization  
can  
be  
also  
achieved  
by  
low  
frequency
AC  
voltages  
that  
lead  
to  
transversal  
coupled
damped  
vibrations.
The  
analysis  
of  
the  
results  
can  
provide  
the  
ferroelectric  
tension  
and  
the  
viscosity
of  
the  
material,  
while  
the  
measurements  
of  
the  
transient  
electric  
current  
can  
provide  
the  
measure
of  
the  
ferroelectric  
polarization  
and  
the  
switching  
time.  
[6]  
The  
observed  
effects  
are  
not  
only
unique  
and  
novel,  
thus  
have  
fundamental  
scientific  
merits,  
they  
may  
also  
prove  
to  
have  
practical
applications such as their use in nano-fluidic in micron-size logic devices, switches, and relays.
[1]  
Chenrun  
Feng,  
Rony  
Saha,  
Eva  
Korblova,  
David  
Walba,  
Samuel  
N.  
Sprunt,  
and
Antal  
Jákli,
“Electrically  
Tunable  
Reflection  
Color  
of  
Chiral  
Ferroelectric  
Nematic  
Liquid  
Crystals”,  
Adv.  
Optical
Mater. 2021, 2101230
[2]  
Rony  
Saha,  
Pawan  
Nepal,  
Chenrun  
Feng,  
Md  
Sakhawat  
Hossein,  
James  
T.  
Gleeson,  
Samuel
Sprunt,  
Robert  
J.  
Twieg,  
Antal  
Jákli,  
“Multiple  
ferroelectric  
nematic  
phases  
of  
a  
highly  
polar  
liquid
crystal compound”,  arXiv:2104.06520v  and Liq. Cryst., 49, (13), 1784-1796
[3]  
Kelum  
Perera,  
Rony  
Saha,  
Pawan  
Nepal,  
Rohan  
Dharmarthna,  
Md  
Sakhawat  
Hossain,  
Md
Mostafa,  
Alex  
Adaka,  
Ronan  
Waroquet,  
Robert  
J.  
Twieg  
and  
Antal  
Jákli,  
Ferroelectric  
Nematic
Droplets  
in  
their  
Isotropic  
Melt,  
ArXiv  
2209.09363  
(2022);  
Soft  
Matter,  
  
19,  
347  
–  
354  
(2023),  
DOI:
10.1039/D2SM01395A
[4]  
Marcell  
Tibor  
Máthé,  
Ágnes  
Buka,
Antal  
Jákli,  
Péter  
Salamon,  
“Ferroelectric  
nematic  
liquid
crystal thermo-motor”, ArXiv: 2201.07556 (2022); Physical Review E, 105, L052701 (2022)
[5]   
Marcell   
Tibor   
Máthé,   
Bendegúz   
Farkas,   
László   
Péter,   
Ágnes   
Buka,  
Antal   
Jákli,   
Péter
Salamon,  
“Electric  
field-induced  
interfacial  
instability  
in  
a  
ferroelectric  
nematic  
liquid  
crystal”,  
 
arXiv:2210.14329v1, Scientific Reports, 13:6981 (2023)
[6]   
Marcell   
Tibor   
Máthé,   
Kelum   
Perera,   
Ágnes   
Buka,   
Péter   
Salamon,  
Antal   
Jákli,   
“Fluid
ferroelectric filaments”, ArXiv: 2307.16588,