
Design & Analysis of Algorithms

• Course Website:

- moodle.uoz.edu.krd

• Instructor: Abdulhakeem Othman Mohammed

– Office Hours: Monday 10:30–12:30, and by appointment

– Email: a.mohammed@uoz.edu.krd

– Questions? (Piazza)

1

mailto:a.mohammed@uoz.edu.krd
piazza.com/uoz.edu.krd/fall2019/daaf2019

Books

• Textbook:

Algorithm Design: Foundations, Analysis, and
Internet Examples, by Michael T. Goodrich and
Roberto Tamassia, 1st edition, Wiley, 2001

• An excellent reference:

Introduction to Algorithms, 3rd Edition, by T.H.
Cormen, C.E. Leiserson, R.L. Rivest, and C.
Stein, MIT, 2009.

2

Course Requirements

• Homework 10%

– Good preparation for exams

– Homework is weighted based on different problems

• Quiz 10%

– Good preparation for exams

• Midterm Exams 40% (Two midterms, each 20%)

– (closed book, no calculators, one sheet (both sides) of notes)

– During Tutorial Time.

• Final Exam 40%

– (closed book, no calculators)

• Participation 5% (Extra Credits)

– Engagement in class and on Piazza
3

Late Policy

• Late Policy

– Homework must be turned in by the end of class on the

due-date.

– Unexcused late homework is not accepted.

– Missed exams and missed homework are only excused if

absence was essential and can be fully documented.

4

Tools you need

5

Example: Design an inventory system which can quickly find an item.

• What data structure to use?

stack

linked list

queue

array

tree

hash table
graph

Tools you need

6

Example: Design an inventory system which can quickly find an item.

linked list

array

hash table

• What approach to take?

• Are there any existing algorithms

that could be used/modified?

Brute force

Dynamic programming

Divide and conquer

Greedy method

Prune and search

Tools you need

7

Example: Design an inventory system which can quickly find an item.

• How to determine which solution is best?

Rationalization

Proof of correctness

• Does it work as required?

• How much memory is required? How

long does it take?

Big-oh notation

Amortization

Complexity analysis

linked list

array

hash table

Design & Analysis of Algorithms

• How to evaluate algorithms (correctness, complexity)

– Notations and abstractions for describing algorithms

• Advanced data structures and their analysis

• Fundamental techniques to solve the vast array of unfamiliar

problems that arise in a rapidly changing field

– Up to date grasp of fundamental problems and solutions

– Approaches to solve

• To think algorithmically like a ‘real’ computer scientist
8

Course Content

• A list of algorithms

– Learn the code

– Trace them until you are convinced that they work

– Implement them.

class InsertionSortAlgorithm extends SortAlgorithm

{

void sort(int a[]) throws Exception {

for (int i = 1; i < a.length; i++) {

int j = i;

int B = a[i];

while ((j > 0) && (a[j-1] > B)) {

a[j] = a[j-1];

j--; }

a[j] = B;

}

}

9

Course Content
• A survey of algorithmic design techniques

• Abstract thinking

• How to develop new algorithms for any problem that may
arise

10

Start with some math

11

Time complexity

as a function

t(n) = Q(n2)

Classifying functions

Input Size

T
im

e

Counting primitive operations

• Sequences and summations

• Linear functions

• Logarithmic and exponential functions

Recurrence Relations

T(n) = a T(n/b) + f(n)

Data Structures

12

linked list

vector
hash table

&

dictionaries

graph

stack

top

queue

front rear

A

B C

K LE

F I

D

H G

tree

J

6

2 8

7 91 4

5

binary search tree

3

6

2 8

7 91 4

5

red black tree

3 1

3 2

4 67 5

heap

&

priority queues

8 9

Searching & Sorting

13

insertion sort selection sort heap sort merge sort quick sort

7

1 8

5

9

4

3

626

2 8

7 91 4

53

Fundamental Techniques

14

Greedy Algorithms Divide and Conquer

Dynamic Programming

Graphs & Graph Algorithms

15

Graph search

Network flow

Shortest path

Minimum Spanning Tree

Useful Learning Techniques

• You are expected to read ahead (before the lecture)

– This will facilitate more productive discussion during class

• Guess at potential algorithms for solving a problem

– Look for input instances where your algorithm is wrong

• Practice explaining

– You’ll be tested on your ability to explain material

• Ask questions

– Why is it done this way and not that way?

16

Design an Algorithm

Given two integer arrays A and B, is there an integer i which is in

both arrays?

19

Algorithm 1

For Each a ∈A

For Each b ∈ B

If a = b Then

Return “Yes”

Return “No”

20

Algorithm 2

Sort A and B.

Set i := 0 and j := 0.

While i < |A| and j < |B|

If A[i] = B[j] Then

Return “Yes”

Else If A[i] < B[j] Then

Set i := i + 1.

Else If A[i] > B[j] Then

Set j := j + 1.

Return “No”

21

Question

Which algorithm is better and why?

22

