
Graph Traversal (Graph Search)
• A traversal is a systematic procedure for exploring a graph by examining all

of its vertices and edges.

• Applications of graph search:

– Web Crawling

– Social Networking

– Network Broadcast

– Base for other algorithms

– … and more

• For example: a Web spider, or crawler, which is the data collecting part of a
search engine, must explore a graph of hypertext documents by examining
its vertices, which are the documents, and its edges, which are the
hyperlinks between documents.

1

Graph Traversal Algorithms

• Breadth First Search Algorithm (BFS):

– Start several paths at a time and advance in each step at a time

• Depth First Search Algorithm (DFS):

– Once a path is found, continue the search until the end of the

path.

2

Breadth First Search

• Given a graph G=(V,E) and a distinguished source vertex s, breadth-first

search

– Systematically explores the edges of G to “discover” every vertex that

is reachable from s.

– It computes the distance (smallest number of edges) from s to each

reachable vertex.

– Finds a shortest path from s to every other vertex in G.

– It also produces a “breadth-first tree” with root s that contains all

reachable vertices. It computes a breadth-first forest if G is not

connected (or possibly in directed graph).

– Determines (Check) whether G is connected or not.

– Computes the connected components of G.

Breadth-First Search 3

BFS Algorithm Pseudocode
𝑰𝒏𝒑𝒖𝒕: 𝐴 𝑔𝑟𝑎𝑝ℎ 𝐺 = (𝑉, 𝐸) 𝑎𝑛𝑑 𝑎 𝑠𝑡𝑎𝑟𝑡 𝑣𝑒𝑟𝑡𝑒𝑥 𝑠.

1 𝐹𝑜𝑟 𝐸𝑎𝑐ℎ 𝑣 ∈ 𝑉

2 𝑑𝑖𝑠𝑡 𝑣 := ∞, 𝑝𝑎𝑟 𝑣 := 𝑛𝑢𝑙𝑙 𝑎𝑛𝑑 𝑣. 𝑣𝑠𝑖𝑠𝑡𝑒𝑑 ∶= 𝐹𝑎𝑙𝑠𝑒.

3 𝐶𝑟𝑒𝑎𝑡𝑒 𝑎 𝑛𝑒𝑤 𝑒𝑚𝑝𝑡𝑦 𝑞𝑢𝑒𝑢𝑒 𝑄.

4 𝑑𝑖𝑠𝑡 𝑠 := 0 𝑎𝑛𝑑 𝑠. 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∶= 𝑇𝑟𝑢𝑒.

5 𝑄. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑠)

6 𝑊ℎ𝑖𝑙𝑒 𝑄 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦

7 𝑣 ∶= 𝑄. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒()

8 𝐹𝑜𝑟 𝐸𝑎𝑐ℎ 𝑢 ∈ 𝑎𝑑𝑗(𝑣)

9 𝐼𝑓 𝑢. 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 == 𝐹𝑎𝑙𝑠𝑒

10 𝑑𝑖𝑠𝑡(𝑢) ∶= 𝑑𝑖𝑠𝑡(𝑣) + 1.

11 𝑝𝑎𝑟 𝑢 ∶= 𝑣

12 𝑢. 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∶= 𝑇𝑟𝑢𝑒

13 𝑄. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒 𝑢
4

BFS Algorithm

Breadth-First Search 5

a

b

gd

e

f

c

h

BFS Algorithm

Breadth-First Search 6

∞

∞

∞

∞

∞

∞

∞

a

b

gd

e

f
c

h

Preparation (Initialization)

For every vertex v,

set the distance dist(v) := ∞ and the parent 𝑝𝑎𝑟𝑒𝑛𝑡(v) := null, v.visited=False.

Queue Q

∞

BFS Algorithm

Breadth-First Search 7

0

∞

∞

∞

∞

∞

∞

∞

a

b

gd

e

f

c

h

Preparation (Initialization)

Let us say our starting vertex is a, so

dist(a)=0, a.visited=True \\visited vertex colored red

Add s to queue Q.

a

Queue Q

BFS Algorithm

8

0

∞

∞

∞

1

1

∞

∞

a

b

gd

e

f

c

h

Iterations (While Q is not Empty)

𝑣:= 𝑄. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 \\Remove 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑓𝑟𝑜𝑚 𝑄
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑢 ∈ 𝐴𝑑𝑗(𝑣)

if u.visited==False
𝑑𝑖𝑠𝑡 𝑢 : = 𝑑𝑖𝑠𝑡 𝑣 + 1
𝑝𝑎𝑟 𝑢 : = 𝑣
u.visited=True
Q.enqueue(u) \\𝑎𝑑𝑑 𝑢 𝑡𝑜 𝑄.

a

Queue Q

b c

Queue Q

BFS Algorithm

Breadth-First Search 9

0

2

∞

2

1

1

∞

∞

a

b

gd

e

f
c

h

b c

Queue Q

ec d

Queue Q

Iterations (While Q is not Empty)

𝑣:= 𝑄. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 \\Remove 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑓𝑟𝑜𝑚 𝑄
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑢 ∈ 𝐴𝑑𝑗(𝑣)

if u.visited==False
𝑑𝑖𝑠𝑡 𝑢 : = 𝑑𝑖𝑠𝑡 𝑣 + 1
𝑝𝑎𝑟 𝑢 : = 𝑣
u.visited=True
Q.enqueue(u) \\𝑎𝑑𝑑 𝑢 𝑡𝑜 𝑄.

BFS Algorithm

Breadth-First Search 10

0

2

2

2

1

1

∞

∞

a

b

gd

e

f

c

h

ec d

Queue Q

fd e

Queue Q

Iterations (While Q is not Empty)

𝑣:= 𝑄. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 \\Remove 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑓𝑟𝑜𝑚 𝑄
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑢 ∈ 𝐴𝑑𝑗(𝑣)

if u.visited==False
𝑑𝑖𝑠𝑡 𝑢 : = 𝑑𝑖𝑠𝑡 𝑣 + 1
𝑝𝑎𝑟 𝑢 : = 𝑣
u.visited=True
Q.enqueue(u) \\𝑎𝑑𝑑 𝑢 𝑡𝑜 𝑄.

BFS Algorithm

Breadth-First Search 11

0

2

2

2

1

1

∞

∞

a

b

gd

e

f

c

h

ec d

Queue Q

fd e

Queue Q

Iterations (While Q is not Empty)

𝑣:= 𝑄. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 \\Remove 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑓𝑟𝑜𝑚 𝑄
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑢 ∈ 𝐴𝑑𝑗(𝑣)

if u.visited==False
𝑑𝑖𝑠𝑡 𝑢 : = 𝑑𝑖𝑠𝑡 𝑣 + 1
𝑝𝑎𝑟 𝑢 : = 𝑣
u.visited=True
Q.enqueue(u) \\𝑎𝑑𝑑 𝑢 𝑡𝑜 𝑄.

BFS Algorithm

Breadth-First Search 12

0

2

2

2

1

1

3

∞

a

b

gd

e

f

c

h

fd e

Queue Q

ge f

Queue Q

Iterations (While Q is not Empty)

𝑣:= 𝑄. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 \\Remove 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑓𝑟𝑜𝑚 𝑄
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑢 ∈ 𝐴𝑑𝑗(𝑣)

if u.visited==False
𝑑𝑖𝑠𝑡 𝑢 : = 𝑑𝑖𝑠𝑡 𝑣 + 1
𝑝𝑎𝑟 𝑢 : = 𝑣
u.visited=True
Q.enqueue(u) \\𝑎𝑑𝑑 𝑢 𝑡𝑜 𝑄.

BFS Algorithm

Breadth-First Search 13

0

2

2

2

1

1

3

∞

a

b

gd

e

f

c

h

ge f

Queue Q

f g

Queue Q

Iterations (While Q is not Empty)

𝑣:= 𝑄. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 \\Remove 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑓𝑟𝑜𝑚 𝑄
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑢 ∈ 𝐴𝑑𝑗(𝑣)

if u.visited==False
𝑑𝑖𝑠𝑡 𝑢 : = 𝑑𝑖𝑠𝑡 𝑣 + 1
𝑝𝑎𝑟 𝑢 : = 𝑣
u.visited=True
Q.enqueue(u) \\𝑎𝑑𝑑 𝑢 𝑡𝑜 𝑄.

BFS Algorithm

Breadth-First Search 14

0

2

2

2

1

1

3

3

a

b

gd

e

f

c

h

f g

Queue Q

g h

Queue Q

Iterations (While Q is not Empty)

𝑣:= 𝑄. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 \\Remove 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑓𝑟𝑜𝑚 𝑄
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑢 ∈ 𝐴𝑑𝑗(𝑣)

if u.visited==False
𝑑𝑖𝑠𝑡 𝑢 : = 𝑑𝑖𝑠𝑡 𝑣 + 1
𝑝𝑎𝑟 𝑢 : = 𝑣
u.visited=True
Q.enqueue(u) \\𝑎𝑑𝑑 𝑢 𝑡𝑜 𝑄.

BFS Algorithm

Breadth-First Search 15

0

2

2

2

1

1

3

3

a

b

gd

e

f

c

h

g h

Queue Q

h

Queue Q

Iterations (While Q is not Empty)

𝑣:= 𝑄. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 \\Remove 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑓𝑟𝑜𝑚 𝑄
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑢 ∈ 𝐴𝑑𝑗(𝑣)

if u.visited==False
𝑑𝑖𝑠𝑡 𝑢 : = 𝑑𝑖𝑠𝑡 𝑣 + 1
𝑝𝑎𝑟 𝑢 : = 𝑣
u.visited=True
Q.enqueue(u) \\𝑎𝑑𝑑 𝑢 𝑡𝑜 𝑄.

BFS Algorithm

Breadth-First Search 16

0

2

2

2

1

1

3

3

a

b

gd

e

f

c

h

h

Queue Q

Queue Q

Iterations (While Q is not Empty)

𝑣:= 𝑄. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒 \\Remove 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑒𝑥 𝑓𝑟𝑜𝑚 𝑄
𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑢 ∈ 𝐴𝑑𝑗(𝑣)

if u.visited==False
𝑑𝑖𝑠𝑡 𝑢 : = 𝑑𝑖𝑠𝑡 𝑣 + 1
𝑝𝑎𝑟 𝑢 : = 𝑣
u.visited=True
Q.enqueue(u) \\𝑎𝑑𝑑 𝑢 𝑡𝑜 𝑄.

BFS Algorithm

Breadth-First Search 17

0

2 22

11

3 3

a

b

g

e f

c

d

h

0

2

2

2

1

1

3

3

a

b

gd

e

f
c

h

• BFS Tree

• Computes the distance from s to each reachable vertex.

• Finds a shortest path from s to every other vertex in G.

Level 0

Level 1

Level 2

Level 3

BFS Algorithm Running time

• Let G be a graph with n vertices and m edges represented with

the adjacency list.

• BFS on a graph with n vertices and m edges takes 𝑂(𝑛 + 𝑚) time.

• Analysis:

– The initialization process takes 𝑂(𝑛) time.

– The operations of enqueuing and dequeuing take 𝑂(1) time, and so

the total time devoted to queue operations is 𝑂(𝑛) time.

– The total time spent in scanning adjacency lists is 𝑂(𝑚) time,

since the sum of the lengths of all the adjacency lists is 𝜃 𝑚 .
Recall that Sv deg(v) = 2m.

Total runtime: 𝑂(𝑛 + 𝑚)

Breadth-First Search 18

BFS Basics
• The Breadth First Search traversal of a graph will result into Tree/forest.

• What is the difference between applying BFS on a graph and a tree?

Traversal of a graph is different from tree because there can be a loop in graph

so we must maintain a visited flag for every vertex.

• The Data structure used in standard implementation of Breadth First Search is

Queue.

B

C

Breadth-First Search 19

Exercises

• What is the running time of BFS if we represent its input graph by

an adjacency matrix and modify the algorithm to handle this form of

input? Analyze the running time.

• Give the visited vertex order on running BFS on the following

graph, starting with the vertex s.

Breadth-First Search 20

Exercises

• Describe the details of an 𝑂 (𝑛 + 𝑚) time algorithm for computing

all the connected components of an undirected graph G with n

vertices and m edges.

Breadth-First Search 21

Depth First Search DFS Algorithm

• Follow path until you get stuck.

• If got stuck, backtrack path until reach unexplored neighbor.

• Continue on unexplored neighbor.

Breadth-First Search 22

Depth First Search

• Given a graph G=(V,E) and a distinguished source vertex s, depth-first

search

– Systematically explores the edges of G to “discover” every vertex that

is reachable from s.

– It also produces a “depth-first tree” with root s that contains all

reachable vertices. It computed a depth-first forest if G is not connected

(or possibly in directed graph).

– Determines (Check) whether G is connected or not.

– Computes the connected components of G.

– Cycle detection

Breadth-First Search 23

DFS Algorithm Pseudocode

𝑰𝒏𝒑𝒖𝒕: 𝐴 𝑔𝑟𝑎𝑝ℎ 𝐺 = (𝑉, 𝐸)

1 𝐹𝑜𝑟 𝐸𝑎𝑐ℎ 𝑣 ∈ 𝑉

2 𝑝𝑎𝑟 𝑣 := 𝑛𝑢𝑙𝑙

3 𝑣. 𝑣𝑠𝑖𝑠𝑡𝑒𝑑 ∶= 𝐹𝑎𝑙𝑠𝑒.

4 𝐹𝑜𝑟 𝐸𝑎𝑐ℎ 𝑣 ∈ 𝑉

5 𝐼𝑓 𝑣. 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 == 𝐹𝑎𝑙𝑠𝑒

6 DFS-visit(v)

24

𝐷𝐹𝑆 − 𝑣𝑖𝑠𝑖𝑡 𝑣

1 𝑣. 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∶= 𝑇𝑟𝑢𝑒

2 𝐹𝑜𝑟 𝐸𝑎𝑐ℎ 𝑢 ∈ 𝑎𝑑𝑗(𝑣)

3 𝐼𝑓 𝑢. 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 == 𝐹𝑎𝑙𝑠𝑒

4 𝑝𝑎𝑟 𝑢 ≔ 𝑣

5 DFS−visit(v)

DFS algorithm

Breadth-First Search 25

a b

d c

e

f

gh

DFS algorithm

Breadth-First Search 26

Stack: a

a b

d c

e

f

gh

DFS algorithm

Breadth-First Search 27

Stack: a b

a b

d c

e

f

gh

DFS algorithm

Breadth-First Search 28

Stack: a b c

a b

d c

e

f

gh

DFS algorithm

Breadth-First Search 29

Stack: a b c

a b

d c

e

f

gh

DFS algorithm

Breadth-First Search 30

Stack: a b c g

a b

d c

e

f

gh

DFS algorithm

Breadth-First Search 31

Stack: a b c g

a b

d c

e

f

gh

DFS algorithm

Breadth-First Search 32

Stack:

a b

d c

e

f

gh

DFS algorithm

Breadth-First Search 33

Stack: e

a b

d c

e

f

gh

DFS algorithm

Breadth-First Search 34

Stack:

a b

d c

e

f

gh

DFS algorithm

Breadth-First Search 35

a b

d c

e

f

gh

a

b

d

c

e

f

g

h

Depth-First Forest

DFS Running time

• Let G be a graph with n vertices and m edges represented with

the adjacency list.

• DFS on a graph with n vertices and m edges takes 𝑂(𝑛 + 𝑚) time.

• Analysis:

– Initialization loop in DFS : O(n)

– Main loop in DFS: O(n) exclusive of time to execute calls to DFS-
VISIT

– DFS-VISIT is called exactly once for each vV. For loop of DFS-
VISIT(u) is executed |Adj[u]| time. Since S |Adj[u]| = 2E,

Total runtime: 𝑂(𝑛 + 𝑚)

Breadth-First Search 36

DFS – Edges classification

• A DFS partitions the edges in four groups:

1) Tree edges: Are edges in the depth-first forest.

2) Back edges: Are those nontree edges (u,v) connecting a vertex u

to an ancestor v in a depth-first tree.

3) Forward edges (only in directed graphs): are those nontree

edges (u,v) connecting a vertex u to a descendant in a depth-

first tree.

4) Cross edges (only in directed graphs): Remaining edges.

Breadth-First Search 37

DFS – Edges classification

Breadth-First Search 38

a b

d c

e

f

gh

Back Edges

Forward Edges

Tree Edges

Cross Edges

DFS – Detection Cycles

Breadth-First Search 39

A graph G has a cycle if and only if any DFS has a back edge.

Directed Acyclic Graphs (DAG)

• A directed acyclic graph (or DAG for short) is a directed graph that

contains no cycles.

Breadth-First Search 40

It is a DAG,

since there is no cycle
It has a cycle

Exercises

• What is the running time of DFS if we represent its input graph by

an adjacency matrix and modify the algorithm to handle this form of

input? Analyze the running time.

• Give the visited vertex order on running DFS on the following

graph, starting with the vertex s.

Breadth-First Search 41

Exercises

• Give an O(|V| + |E|) time algorithm to remove all the cycles in a

directed graph G = (V, E). Removing a cycle means removing an

edge of the cycle. If there are k cycles in G, the algorithm should

only remove at most O(k) edges.

• How fast we can check if a directed graph is a DAG or not? Explain.

Breadth-First Search 42

43

DFS vs. BFS

Applications DFS BFS

Tree / forest, connected
components

 

Shortest paths and distances 

cycles 

