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Minimum Spanning Tree

Spanning subgraph

« Subgraph of a graph G containing all the
vertices of G

Spanning tree
« Spanning subgraph that is itself a (free) tree

Minimum spanning tree (MST)

« Spanning tree of a weighted graph with
minimum total edge weight

Applications
« Communications networks
« Transportation networks
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Cycle Property

Cycle Property:

« Let T be a minimum spanning tree of a weighted graph G

* Letebeanedge of Gthatisnotin T and C let be the cycle formed by e with T
» Forevery edge f of C, weight(f) < weight(e)

Proof:
» By contradiction

« If weight(f) > weight(e) we can get a spanning tree of smaller weight by replacing e
with f

Replacing f with e
yields a better
spanning tree
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Partition Property:

Consider a partition of the vertices of G into
subsets U and V

Let e be an edge of minimum weight across the
partition

There is a minimum spanning tree of G
containing edge e

Replacing f with e yields

Proof: another MST
Let T be an MST of G V
If T does not contain e, consider the cycle C
formed by e with T and let f be an edge of C
across the partition
By the cycle property, weight(f) < weight(e)
Thus, weight(f) = weight(e) 3

We obtain another MST by replacing f with e
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Prim-Jarnik’s Algorithm

Idea:

« Similar to Dijkstra’s algorithm (for a connected graph)

« Pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting
froms

» Store with each vertex v a label d(v) = the smallest weight of an edge
connecting v to a vertex in the cloud

At each step:

« Add to the cloud the vertex u outside
the cloud with the smallest label

« Update the labels of the vertices
adjacent to u
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Prim-Jarnik” s Algorithm (cont.)

A priority queue stores the vertices
outside the cloud

« Key: distance
 Element: vertex

Locator-based methods
« insert(k,e) returns a locator

« replaceKey(l,k) changes the key of an
item

We store three labels with each vertex:

» Distance
» Parent edge in MST
» Locator in priority queue

Algorithm PrimJarnikMST(G)
Q <« new heap-based priority queue
s« avertex of G
for all v e G.vertices()
if v=s
setDistance(v, 0)
else
setDistance(v, «)
setParent(v, &)
| « Q.insert(getDistance(v), v)
setLocator(v,l)
while —Q.isEmpty()
u < Q.removeMin()
for all e € G.incidentEdges(u)

Z < G.opposite(u,e)

r < weight(e)

If r <getDistance(z)
setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)
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Example (contd.)

Minimum Spanning Tree 9



Analysis
Graph operations

— Method incidentEdges is called once for each vertex

Label operations
— We set/get the distance, parent and locator labels of vertex z O(deg(z)) times
— Setting/getting a label takes O(1) time

Priority queue operations

— Each vertex is inserted once into and removed once from the priority queue,
where each insertion or removal takes O(log n) time

— The key of a vertex w in the priority queue is modified at most deg(w) times,
where each key change takes O(log n) time

Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the graph is
represented by the adjacency list structure

— Recall that Z, deg(v) = 2m

The running time is O(m log n) since the graph is connected



Kruskal's Algorithm

A priority queue stores the edges At the end of the algorithm
outside the cloud « We are left with one cloud that
« Key: weight encompasses the MST

« Element: edge e Atree T which is our MST

Algorithm KruskalMST(G)
for each vertex V in G do
define a Cloud(v) of < {v}
let Q be a priority queue

Insert all edges into Q using their weights as the key
IR Z

while T has fewer than n-1 edges do
edge e = Q.removeMin()
Let u, v be the endpoints of e
{ check if edge is necessary to connect two clouds }
If Cloud(v) # Cloud(u) then
Addedgeeto T
Merge Cloud(v) and Cloud(u)
return T
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Data Structure for
Kruskal Algortihm

The algorithm maintains a forest of trees
An edge Is accepted it if connects distinct trees

We need a data structure that maintains a partition, i.e., a collection of
disjoint sets, with the operations:

— find(u): return the set storing u
— union(u,v): replace the sets storing u and v with their union




Representation of a

. O=O=O=0
Partition D¢

« [Each set is stored In a sequence

e Each element has a reference back to the set

— operation find(u) takes O(1) time, and returns the set of which u is a
member.

— In operation union(u,v), we move the elements of the smaller set to the
sequence of the larger set and update their references

— the time for operation union(u,v) is min(n,, n,), where n, and n, are the
sizes of the sets storing u and v

* Whenever an element is processed, it goes into a set of size at least double,
hence each element is processed at most logn times



Partition-Based Implementation

A partition-based version of Kruskal’ s Algorithm performs cloud merges as
unions and tests as finds.

O© 00 N O O & W DN P

Algorithm Kruskal(G):
Input: A weighted graph G.
Output: An MST T for G.
Let P be a partition of the vertices of G, where each vertex forms a separate set.
Let Q be a priority queue storing the edges of G, sorted by their weights
Let T be an initially-empty tree
while Q is not empty do
(u,v) <« Q.removeMinElement()
if P.find(u) !'= P.find(v) then
Add (uv)to T | Running time: O((n+m)logn) |
P.union(u,v)
return T
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Kruskal
Example
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Baruvka' s Algorithm

Like Kruskal’s Algorithm, Baruvka’s algorithm grows many “clouds” at once.

Algorithm BaruvkaMST(G)
T €V {just the vertices of G}
while T has fewer than n-1 edges do
for each connected component C in T do
Let edge e be the smallest-weight edge from C to another component in T.
if e is not already in T then
Addedgeeto T
return T

Each iteration of the while-loop halves the number of connected components in T,
* The running time is O(m log n).
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