Minimum Spanning Trees

Outline and Reading

Minimum Spanning Trees (7.3)

— Definitions

— Acrucial fact
The Prim-Jarnik Algorithm (7.3.2)
Kruskal's Algorithm (7.3.1)
Baruvka's Algorithm (7.3.3)

Minimum Spanning Tree

Spanning subgraph

« Subgraph of a graph G containing all the
vertices of G

Spanning tree
« Spanning subgraph that is itself a (free) tree

Minimum spanning tree (MST)

« Spanning tree of a weighted graph with
minimum total edge weight

Applications
« Communications networks
« Transportation networks

Minimum Spanning Tree 3

Cycle Property

Cycle Property:

« Let T be a minimum spanning tree of a weighted graph G

* Letebeanedge of Gthatisnotin T and C let be the cycle formed by e with T
» Forevery edge f of C, weight(f) < weight(e)

Proof:
» By contradiction

« If weight(f) > weight(e) we can get a spanning tree of smaller weight by replacing e
with f

Replacing f with e
yields a better
spanning tree

Minimum Spanning Tree 4

Partition Property:

Consider a partition of the vertices of G into
subsets U and V

Let e be an edge of minimum weight across the
partition

There is a minimum spanning tree of G
containing edge e

Replacing f with e yields

Proof: another MST
Let T be an MST of G V
If T does not contain e, consider the cycle C
formed by e with T and let f be an edge of C
across the partition
By the cycle property, weight(f) < weight(e)
Thus, weight(f) = weight(e) 3

We obtain another MST by replacing f with e

Minimum Spanning Tree 5

Prim-Jarnik’s Algorithm

Idea:

« Similar to Dijkstra’s algorithm (for a connected graph)

« Pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting
froms

» Store with each vertex v a label d(v) = the smallest weight of an edge
connecting v to a vertex in the cloud

At each step:

« Add to the cloud the vertex u outside
the cloud with the smallest label

« Update the labels of the vertices
adjacent to u

Minimum Spanning Tree

Prim-Jarnik” s Algorithm (cont.)

A priority queue stores the vertices
outside the cloud

« Key: distance
 Element: vertex

Locator-based methods
« insert(k,e) returns a locator

« replaceKey(l,k) changes the key of an
item

We store three labels with each vertex:

» Distance
» Parent edge in MST
» Locator in priority queue

Algorithm PrimJarnikMST(G)
Q <« new heap-based priority queue
s« avertex of G
for all v e G.vertices()
if v=s
setDistance(v, 0)
else
setDistance(v, «)
setParent(v, &)
| « Q.insert(getDistance(v), v)
setLocator(v,l)
while —Q.isEmpty()
u < Q.removeMin()
for all e € G.incidentEdges(u)

Z < G.opposite(u,e)

r < weight(e)

If r <getDistance(z)
setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

Minimum Spanning Tree

Minimum Spanning Tree 8

Example (contd.)

Minimum Spanning Tree 9

Analysis
Graph operations

— Method incidentEdges is called once for each vertex

Label operations
— We set/get the distance, parent and locator labels of vertex z O(deg(z)) times
— Setting/getting a label takes O(1) time

Priority queue operations

— Each vertex is inserted once into and removed once from the priority queue,
where each insertion or removal takes O(log n) time

— The key of a vertex w in the priority queue is modified at most deg(w) times,
where each key change takes O(log n) time

Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the graph is
represented by the adjacency list structure

— Recall that Z, deg(v) = 2m

The running time is O(m log n) since the graph is connected

Kruskal's Algorithm

A priority queue stores the edges At the end of the algorithm
outside the cloud « We are left with one cloud that
« Key: weight encompasses the MST

« Element: edge e Atree T which is our MST

Algorithm KruskalMST(G)
for each vertex V in G do
define a Cloud(v) of < {v}
let Q be a priority queue

Insert all edges into Q using their weights as the key
IR Z

while T has fewer than n-1 edges do
edge e = Q.removeMin()
Let u, v be the endpoints of e
{ check if edge is necessary to connect two clouds }
If Cloud(v) # Cloud(u) then
Addedgeeto T
Merge Cloud(v) and Cloud(u)
return T

Minimum Spanning Tree

Data Structure for
Kruskal Algortihm

The algorithm maintains a forest of trees
An edge Is accepted it if connects distinct trees

We need a data structure that maintains a partition, i.e., a collection of
disjoint sets, with the operations:

— find(u): return the set storing u
— union(u,v): replace the sets storing u and v with their union

Representation of a

. O=O=O=0
Partition D¢

« [Each set is stored In a sequence

e Each element has a reference back to the set

— operation find(u) takes O(1) time, and returns the set of which u is a
member.

— In operation union(u,v), we move the elements of the smaller set to the
sequence of the larger set and update their references

— the time for operation union(u,v) is min(n,, n,), where n, and n, are the
sizes of the sets storing u and v

* Whenever an element is processed, it goes into a set of size at least double,
hence each element is processed at most logn times

Partition-Based Implementation

A partition-based version of Kruskal’ s Algorithm performs cloud merges as
unions and tests as finds.

O© 00 N O O & W DN P

Algorithm Kruskal(G):
Input: A weighted graph G.
Output: An MST T for G.
Let P be a partition of the vertices of G, where each vertex forms a separate set.
Let Q be a priority queue storing the edges of G, sorted by their weights
Let T be an initially-empty tree
while Q is not empty do
(u,v) <« Q.removeMinElement()
if P.find(u) !'= P.find(v) then
Add (uv)to T | Running time: O((n+m)logn) |
P.union(u,v)
return T

Minimum Spanning Tree 14

Kruskal
Example

17

18

19

Minimum Spanning Tree

20

Minimum Spanning Tree

21

Minimum Spanning Tree

22

Minimum Spanning Tree

23

Minimum Spanning Tree

24

Minimum Spa

nning Tree

25

Minimum Spa

nning Tree

26

Minimum Spa

nning Tree

27

Minimum Spanning Tree

Baruvka' s Algorithm

Like Kruskal’s Algorithm, Baruvka’s algorithm grows many “clouds” at once.

Algorithm BaruvkaMST(G)
T €V {just the vertices of G}
while T has fewer than n-1 edges do
for each connected component C in T do
Let edge e be the smallest-weight edge from C to another component in T.
if e is not already in T then
Addedgeeto T
return T

Each iteration of the while-loop halves the number of connected components in T,
* The running time is O(m log n).

Minimum Spanning Tree 29

Baruvka
Example

Baruvka
Example

Minimum Spanning Tree

31

Minimum Spanning Tree

