
Section 1.4



Section Summary
 Predicates 

 Propositional functions

 Quantifiers

 Universal Quantifier

 Existential Quantifier

 Negating Quantifiers

 De Morgan’s Laws for Quantifiers

 Translating English to Logic

2



Propositional Logic Not Enough
 If we have: 

“All men are mortal.”

“Socrates is a man.”

 Does it follow that “Socrates is mortal?”

 Can’t represent this in propositional logic. Need a 
language that talks about objects, their properties, and 
their relations. 

 Later we’ll see how to draw inferences. 
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Introducing Predicate Logic
 Predicate logic uses the following new features:

 Variables:   x, y, z

 Predicates: P(x), M(x), R(x,y) statements that are either 
true or false based on the value of its variables

 Quantifiers (to be covered in a few slides):

 Propositional functions are a generalization of 
propositions. 

 They contain variables and a predicate, e.g., P(x)

 They become propositions (and have truth values) when

 their variables are replaced by a value from their domain, or

 their variables are bound by a quantifier
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Propositional Functions
The statement P(x) is said to be the value of the propositional 
function P at x. 

Ex: Let P(x) denote  “x > 0” and the domain be the integers. 
Then:

 P(-3)   is false.

 P(0)   is false.

 P(3)  is true. 

Often the domain is denoted by U. So in this example U is 
the integers.
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Examples of Propositional 
Functions
Ex: Let “x + y = z” be denoted by  R(x, y, z) and U (for all 
three variables) be the integers. Find the truth value of:

 R(2,-1,5)

Solution:  F

 R(3,4,7)

Solution: T

 R(x, 3, z)

Solution: Not a Proposition
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Examples of Propositional 
Functions
Ex: Let Q(x, y, z) denote  “x - y = z”, with U as the 
integers. Find the truth value of:

 Q(2,-1,3)

Solution:  T

 Q(3,4,7)

Solution: F

 Q(x, 3, z)

Solution:  Not a Proposition
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Compound Expressions
 Connectives from propositional logic carry over to predicate 

logic. 
 Ex: If P(x) denotes  “x > 0,” find these truth values:

 P(3) ∨ P(-1)     T
 P(3) ∧ P(-1)     F
 P(3) → P(-1)    F
 P(-1) → P(3)    T

 Expressions with variables are not propositions and therefore 
do not have truth values.  For example,
 P(3) ∧ P(y)
 P(x) → P(y)     

 When used with quantifiers, these expressions 
(propositional functions) become propositions.
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Quantifiers
 We need quantifiers to express the meaning of English 

words including “all” and “some”:
 “All men are Mortal.”
 “Some cats do not have fur.”

 The two most important quantifiers are:

 Universal Quantifier, “For all,”   symbol: 

 Existential Quantifier, “There exists,”  symbol: 
 We write as  x P(x) and x P(x).
 x P(x) asserts P(x) is true for every (all) x in the domain.
 x P(x) asserts P(x) is true for some x in the domain.
 The quantifiers are said to bind the variable x in these 

expressions. 

Charles Peirce (1839-1914)
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Universal Quantifier
x P(x) is read as “For all x, P(x)” or “For every x, P(x)”

Examples:

 If P(x) denotes  “x > 0” and U is the integers, then x P(x) 
is false.

 If P(x) denotes  “x > 0” and U is the positive integers, then     
x P(x) is true.

 If P(x) denotes  “x is even” and U is the integers,  then 
xP(x) is false.
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Existential Quantifier
x P(x) is read as “For some x, P(x)”,  or as “There is an x such 
that P(x),”  or “For at least one x, P(x).” 

Examples:

 If P(x) denotes  “x > 0” and U is the integers, then xP(x) is 
true. It is also true if U is the positive integers.

 If P(x) denotes  “x < 0” and U is the positive integers,  then    
xP(x) is false.

 If P(x) denotes  “x is even” and U is the integers,  then     
xP(x) is true.
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Uniqueness Quantifier (optional)
 !x P(x) means that P(x) is true for one and only one x  in the 

domain.

 This is commonly expressed in English in the following 
equivalent ways:
 “There is a unique x such that P(x).” 

 “There is one and only one x such that P(x)”

 Examples:
1. If P(x) denotes  “x + 1 = 0”  and U is the integers, then !x P(x) is 

true. 

2. But if P(x) denotes  “x > 0,”  then !x P(x) is false.

 The uniqueness quantifier is not really needed as the restriction 
that there is a unique x such that P(x) can be expressed as:  

x (P(x) ∧y (P(y) → y =x))
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Thinking about Quantifiers
 When the domain is finite, we can think of quantification as 

looping through the elements of the domain.
 To evaluate x P(x) loop through all x in the domain. 

 If at every step P(x) is true, then x P(x) is true. 
 If at a step P(x) is false, then x P(x) is false and the loop 

terminates. 

 To evaluate x P(x) loop through all x in the domain. 
 If  at some step, P(x) is true, then x P(x) is true and the loop 

terminates. 
 If the loop ends without finding an x for which P(x) is true, then x 

P(x) is false.

 Even if the domains are infinite, we can still think of the 
quantifiers this fashion, but the loops will not terminate in some 
cases.
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Properties of Quantifiers
The truth value of x P(x) and  x P(x)  depends on both the 
propositional function P(x) and on  the domain U. 

Examples:
 If U is the  positive integers and P(x) is the statement           

“x < 2”, then x P(x) is true, but  x P(x)  is false. 
 If U is the negative integers and P(x) is the statement           

“x < 2”, then both x P(x) and   x P(x)  are true. 
 If U consists of 3, 4, and 5,  and P(x) is the statement           

“x > 2”, then  both x P(x) and  x P(x)  are true.
 If U consists of 3, 4, and 5, and P(x) is the statement         “x

< 2”, then  both x P(x) and   x P(x)  are false. 
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Precedence of Quantifiers
 The quantifiers  and   have higher precedence than 

all the logical operators.

 For example, x P(x) ∨ Q(x)  means (x P(x))∨ Q(x)

 x (P(x) ∨ Q(x)) means something different.

 Unfortunately, often people write x P(x) ∨ Q(x)  when 
they mean  x (P(x) ∨ Q(x)). 
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Translating from English to Logic
Example:  Translate the following sentence into 

predicate logic: “Every student in this class has taken a 
course in Java.”

Solution: First decide on the domain U. 
 Solution 1: If U is all students in this class, define a 

propositional function J(x) denoting “x has taken a 
course in Java” and translate as x J(x). 

 Solution 2: But if U is all people, also define a 
propositional  function S(x) denoting “x is a student in 
this class” and translate as     x (S(x)→ J(x)).

x (S(x) ∧ J(x)) is not correct.  What does it mean?
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Translating from English to Logic
Example 2: Translate the following sentence into 

predicate logic: “Some student in this class has taken a 
course in Java.” 

Solution: First decide on the domain U. 

 Solution 1: If U is all students in this class, translate as 
x J(x)

 Solution 2: But if U is all people, then translate as                 
x (S(x) ∧ J(x)) 

x (S(x)→ J(x)) is not correct. What does it mean?
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Logical Equivalences
 Assume S and T are two statements involving 

predicates and quantifiers. 

 S and T are logically equivalent if and only if they have 
the same truth value for every predicate substituted
into these statements and for every domain used, 
denoted S ≡T.

 Ex:  x ¬¬S(x) ≡ x S(x)
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Thinking about Quantifiers as 
Conjunctions and Disjunctions
 If the domain is finite

 a universally quantified proposition is equivalent to a conjunction
of propositions without quantifiers for each element in the domain 

 an existentially quantified proposition is equivalent to  a disjunction 
of propositions without quantifiers for each element in the domain. 

 Ex: If U consists of the integers 1,2, and 3:

 Even if the domains are infinite, you can still think of the 
quantifiers in this fashion, but the equivalent expressions 
without quantifiers will be infinitely long.
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Negating Quantified Expressions
 Consider x J(x)

“Every student in your class has taken a course in Java.”

Here J(x) is “x has taken a course in Java” and 

the domain is students in your class. 

 Negating the original statement gives:

 “It is not the case that every student in your class has 
taken Java.”

 This implies that “There is a student in your class who 
has not taken Java.”

Symbolically ¬x J(x)  and x ¬J(x) are equivalent
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Negating Quantified Expressions 
(continued)
 Now Consider  x J(x)

“There is a student in this class who has taken a course in 
Java.”

Where J(x) is “x has taken a course in Java.”

 Negating the original statement gives

 “It is not the case that there is a student in this class who 
has taken Java.”

 This implies that “Every student in this class has not
taken Java”

Symbolically ¬ x J(x)  and  x ¬J(x) are equivalent
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De Morgan’s Laws for Quantifiers

The rules for negating quantifiers are:
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When true? When false?

¬xP(x) ≡ x¬P(x) For every x, P(x) is false. There is an x for which 
P(x) is true.

¬xP(x) ≡ x¬P(x) There is an x for which P(x) 
is false.

P(x) is true for every x.



Examples Translating from English 
to Logic
 “Some student in this class has visited Mexico.”

Solution:  Let U be all people. 

M(x) = “x has visited Mexico”

S(x) = “x is a student in this class,”

x  (S(x) ∧ M(x))

 “Every student in this class has visited Canada or 
Mexico.”

Solution: Add C(x) = “x has visited Canada.”

x (S(x)→ (M(x)∨C(x)))
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Additional Examples
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Translate these statements into logic, where the domain 
consists of all animals and R(x)= “x is a rabbit” and 
H(x)=“x hops”.

1. Every animal is a rabbit and hops.

2. There exists an animal such that if it is a rabbit then 
it hops.

3. Every rabbit hops.

4. Some hopping animals are rabbits.

5. There exists an animal that is a rabbit and hops.

6. Some rabbits hop.

7. If an animal is a rabbit, then that animal hops.

8. All rabbits hop. 
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Translate these statements into logic, where the domain 
consists of all animals and R(x)= “x is a rabbit” and H(x)=“x 
hops”.

1. Every animal is a rabbit and hops. ∀x(R(x) ∧ H(x)) 

2. There exists an animal such that if it is a rabbit then it 
hops. ∃x(R(x)→H(x)) 

3. Every rabbit hops. ∀x(R(x) → H(x)) 

4. Some hopping animals are rabbits. ∃x(R(x) ∧ H(x)) 

5. There exists an animal that is a rabbit and hops.       
∃x(R(x) ∧ H(x)) 

6. Some rabbits hop. ∃x(R(x) ∧ H(x)) 

7. If an animal is a rabbit, then that animal hops. ∀x(R(x)→
H(x)) 

8. All rabbits hop. ∀x(R(x) → H(x)) 
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Let Q(x) be the statement “x ≥ 2x” and the domain 
consist of all integers. What are these truth values?

1. Q(0)

2. Q(-1)

3. Q(1)

4. ∀xQ(x)

5. ∃xQ(x)

6. ∃x¬Q(x) 

7. ∀x¬Q(x) 
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Let Q(x) be the statement “x ≥ 2x” and the domain 
consist of all integers. What are these truth values?

1. Q(0) True. 0 ≥ 0. 

2. Q(-1) True. -1 ≥ -2

3. Q(1) False. 1 ≥ 2

4. ∀xQ(x) False. When x=1 is a counterexample

5. ∃xQ(x) True. When x=0 is an example.

6. ∃x¬Q(x) True. When x=1 is an example

7. ∀x¬Q(x) False. When x=0 is a counterexample.
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Let Q(x) be the statement “x = x4 ” and the domain 
consist of all integers. What are these truth values?

1. Q(0)

2. Q(1)

3. Q(2)

4. Q(-1)

5. ∀xQ(x)

6. ∃xQ(x)
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Let Q(x) be the statement “x = x4 ” and the domain 
consist of all integers. What are these truth values?

1. Q(0) True. 0 = 0

2. Q(1) True. 1 = 1

3. Q(2) False. 2 = 16

4. Q(-1) False. -1 = 1

5. ∀xQ(x) False. When x=2 is a counterexample.

6. ∃xQ(x) True. When x=0 is an example.
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