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 Recurrence Relations

 Ex: Fibonacci Sequence

 Summations
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Introduction
 Sequences are ordered lists of elements. 

 1, 2, 3, 5, 8

 1, 3,  9, 27, 81, …….

 Sequences arise throughout mathematics, computer 
science, and in many other disciplines, ranging from 
botany to music.

 We will introduce the  terminology to represent 
sequences and sums of the terms in the sequences.
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Sequences
Definition: A sequence is a function from a subset of 
the integers (usually either the set {0, 1, 2, 3, 4, …..} or   
{1, 2, 3, 4, ….} ) to a set S.

 We use the notation {𝑎𝑛} to describe the sequence. 

 an represents an individual term of the sequence {an}

 The notation  an is used to denote the image of the 
integer n.  We can think of an as the equivalent of f(n)
where f is a function from  {0,1,2,…..} to S.
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Sequences 
Example: Consider the sequence           where

5



Geometric Progression
Definition: A geometric progression is a sequence of the form:

where the initial term a and the common ratio r are real numbers.

Ex:
1. Let a = 1 and r = −1. Then:

2. Let  a = 2 and r = 5. Then:

3. Let a = 6 and r = 1/3. Then:
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Arithmetic Progression
Definition: An arithmetic progression is a sequence of the 
form:

where the initial term a and the common difference d are 
real numbers.
Ex:
1. Let a = −1 and d = 4: 

2. Let  a = 7 and d = −3: 

3. Let a = 1 and d = 2: 
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Strings
Definition: A string is a finite sequence of characters 
from a finite set (an alphabet).

 Sequences of characters or bits  are important in 
computer science.

 The empty string is represented by λ.

 The string  abcde has length 5.
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Recurrence Relations
Definition: A recurrence relation for the sequence {an}

is an equation that expresses an in terms of one or 
more of the previous terms of the sequence, namely, 
a0, a1, …, an-1, for all integers n with n ≥ n0, where n0 is a 
nonnegative integer. 

 The initial conditions for a sequence specify the terms 
that precede the first term where the recurrence 
relation takes effect. 

A sequence is called a solution of a recurrence relation if 
its terms satisfy the recurrence relation.
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Questions about Recurrence Relations
Example 1: Let {an} be a sequence that satisfies the 
recurrence relation an = an-1 + 3 for n = 1,2,3,4,….  and 
suppose that a0 = 2. What are a1 , a2 and a3? 

[Here a0 = 2 is the initial condition.]

What are a1, a2, and a3?
Solution: We see from the recurrence relation that

a1 = a0  + 3 = 2 + 3 = 5

a2 = 5 + 3 = 8

a3 = 8 + 3 = 11
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Questions about Recurrence Relations
Example 2: Let {an} be a sequence that satisfies the 
recurrence relation an = an-1 – an-2 for n = 2,3,4,…. and 
suppose that a0 = 3 and a1 = 5. What are a2 and a3? 

[Here the initial conditions are a0 = 3 and a1 = 5. ]

What are a2 and a3?

Solution: We see from the recurrence relation that

a2 = a1 - a0  = 5 – 3 = 2

a3 = a2 – a1  = 2 – 5 = –3
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Fibonacci Sequence
Definition: Define the  Fibonacci sequence, f0 ,f1 ,f2,…, by:

 Initial Conditions: f0 = 0, f1 = 1
 Recurrence Relation: fn = fn-1 + fn-2

Example: Find  f2 ,f3 ,f4 , f5 and f6 .

Answer:
f2 = f1 + f0  = 1 + 0 = 1,
f3 = f2 + f1  = 1 + 1 = 2,
f4 = f3 + f2 = 2 + 1 = 3,
f5 = f4 + f3  = 3 + 2 = 5,
f6 = f5 + f4  = 5 + 3 = 8.
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Solving Recurrence Relations
 Finding a formula for the nth term of the sequence 

generated by a recurrence relation is called solving the 
recurrence relation. 

 Such a formula is called a closed formula.

 Many methods for solving recurrence relations (Ch. 8)

 Here we illustrate by example the method of iteration
in which we need to guess the formula. The guess can 
be proved correct by the method of induction (Ch. 5).
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Iterative Solution Example
Method 1: Working upward, forward substitution

Let {an} be a sequence that satisfies the recurrence relation 
an = an-1 + 3 for n = 2,3,4,….  and suppose that a1 = 2.

a2 = 2 + 3

a3 = (2 + 3) + 3 = 2 + 3 ∙ 2 

a4 = (2 + 2 ∙ 3) + 3 = 2 + 3 ∙ 3

.

.

.

an = an-1 + 3  = (2 + 3 ∙ (n – 2)) + 3 = 2 + 3(n – 1)
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Iterative Solution Example
Method 2: Working downward, backward substitution
Let {an} be a sequence that satisfies the recurrence 
relation  an = an-1 + 3 for n = 2,3,4,….  and suppose that 
a1 = 2.

an = an-1 + 3
= (an-2 + 3) + 3 = an-2 + 3 ∙ 2 
= (an-3 + 3 )+ 3 ∙ 2  = an-3 + 3 ∙ 3

.

.

.
= a2 + 3(n – 2)   = (a1 + 3) + 3(n – 2) = 2 + 3(n – 1)
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Financial Application
Example: Suppose that a person deposits $10,000.00 in 
a savings account at a bank yielding 11% per year with 
interest compounded annually. How much will be in 
the account after 30 years?

Let Pn denote the amount in the account after 30
years. Pn satisfies the following recurrence relation:

Pn = Pn-1 + 0.11Pn-1 = (1.11) Pn-1

with the initial condition  P0  = 10,000

Continued on next slide 
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Financial Application
Pn = Pn-1 + 0.11Pn-1 = (1.11) Pn-1

with the initial condition  P0  = 10,000

Solution: Forward Substitution

P1 = (1.11)P0

P2 = (1.11)P1 = (1.11)2P0

P3 = (1.11)P2 = (1.11)3P0

:

Pn = (1.11)Pn-1 = (1.11)nP0 =     (1.11)n 10,000

Pn = (1.11)n 10,000  (Can prove by induction, covered in Ch. 5)

P30 = (1.11)30 10,000 = $228,992.97

17



Useful Sequences

18

Example: Conjecture a formula for an if the first 10 terms of the sequence {an} 

are   1, 7, 25, 79, 241, 727, 2185, 6559, 19681, 59047
Solution: an = 3n - 2



Summations
 Sum of  terms                                        from the sequence

 The notation:

represents

 The variable j is called the index of summation. It runs 
through all the integers starting with its lower limit m and 
ending with its upper limit n. 
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Summations
Examples:






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Geometric Series
Sums of terms of geometric progressions

Proof: Let To compute Sn , first multiply both sides of the 
equality by r and then manipulate the resulting 
sum as follows: 

Continued on next slide  21

By the distributive property



Geometric Series

Shifting the index of summation with k = j + 1.

Removing k = n + 1 term and 
adding k = 0 term.

Substituting S for 
summation formula

∴

From previous slide.
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Continued on next slide 



Geometric Series
∴

if r ≠1

if r = 1
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Solving for Sn

QED

From previous slide.



Double summations
 To evaluate the double sum, first expand the inner 

summation and then continue by computing the outer 
summation:
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Summation with set and function
 We can use summation notation to add all values of a 

 Function

 terms of an indexed set

where the index of summation runs over all values in a set. 
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to represent the sum of the values f (s), for all members s of S.



Example
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Some Useful Summation Formulae 

Later we 
will prove 
some of 
these by 
induction.

Proof in text 
(requires calculus)

Geometric Series: We 
just proved this.
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