
1Data Structures Department of Computer Science – University of Zakho

Searching Methods in

Data Structure

2Data Structures Department of Computer Science – University of Zakho

Search Types

What is Searching?

▪ Searching is the process of finding a given value position in a list of values.

▪ It decides whether a search key is present in the data or not.

 To search an element in a given array, it can be done in following

ways:

▪ (Linear) Sequential Search

▪ Binary Search

 To search in an element in a binary tree we can use:

▪ Binary Search Tree

Binary Search Trees 2

3Data Structures Department of Computer Science – University of Zakho

Linear Search

 In a linear search, the search key is compared with each element of

the array linearly. If there is a match, it returns the index of the array

between otherwise, it returns -1

 Linear search has complexity of O(n).

Binary Search Trees 3

4Data Structures Department of Computer Science – University of Zakho

Binary Search

 Items are ordered in a sorted sequence

 Find an element k

Binary Search Trees 4

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

5Data Structures Department of Computer Science – University of Zakho

Binary Search

 Items are ordered in a sorted sequence

 Find an element k

▪ After checking a key j in the sequence, we can tell if item with key k will come

before or after it

▪ Which item should we compare against first?

Binary Search Trees 5

The middle

6Data Structures Department of Computer Science – University of Zakho

Binary Search: Find k = 52

Binary Search Trees 6

mid ← ⌊(low + high) / 2⌋

if key(mid) = k then return elem(mid)

if key(mid) < k then return BinarySearch(S, k, mid + 1, high)

Algorithm BinarySearch(S, k, low, high):

if key(mid) > k then return BinarySearch(S, k, low, mid -1)

if low > high then return NO_SUCH_KEY

11 18 22 34 41 52 54 63 68 74
0 1 2 3 4 5 6 7 8 9

low high

S

7Data Structures Department of Computer Science – University of Zakho

Binary Search: Find k = 52

Binary Search Trees 7

11 18 22 34 41 52 54 63 68 74
0 1 2 3 4 5 6 7 8 9

low highmid

S

mid ← ⌊(low + high) / 2⌋

if key(mid) = k then return elem(mid)

if key(mid) < k then return BinarySearch(S, k, mid + 1, high)

Algorithm BinarySearch(S, k, low, high):

if key(mid) > k then return BinarySearch(S, k, low, mid -1)

if low > high then return NO_SUCH_KEY

8Data Structures Department of Computer Science – University of Zakho

Binary Search: Find k = 52

Binary Search Trees 8

mid ← ⌊(low + high) / 2⌋

if key(mid) = k then return elem(mid)

if key(mid) < k then return BinarySearch(S, k, mid + 1, high)

Algorithm BinarySearch(S, k, low, high):

if key(mid) > k then return BinarySearch(S, k, low, mid -1)

if low > high then return NO_SUCH_KEY

11 18 22 34 41 52 54 63 68 74
0 1 2 3 4 5 6 7 8 9

low highmid

S

9Data Structures Department of Computer Science – University of Zakho

Binary Search: Find k = 52

Binary Search Trees 9

mid ← ⌊(low + high) / 2⌋

if key(mid) = k then return elem(mid)

if key(mid) < k then return BinarySearch(S, k, mid + 1, high)

Algorithm BinarySearch(S, k, low, high):

if key(mid) > k then return BinarySearch(S, k, low, mid -1)

if low > high then return NO_SUCH_KEY

11 18 22 34 41 52 54 63 68 74
0 1 2 3 4 5 6 7 8 9

low high
mid

S

10Data Structures Department of Computer Science – University of Zakho

Binary Search

Binary Search Trees 10

mid ← ⌊(low + high) / 2⌋

if key(mid) = k then return elem(mid)

if key(mid) < k then return BinarySearch(S, k, mid + 1, high)

Algorithm BinarySearch(S, k, low, high):

if key(mid) > k then return BinarySearch(S, k, low, mid -1)

if low > high then return NO_SUCH_KEY

Each successive call to BinarySearch halves the input, so the running

time is O(logn)

11Data Structures Department of Computer Science – University of Zakho

Exercises

Write the iterative Implementation (Pseudocode) of binary search?

12Data Structures Department of Computer Science – University of Zakho

Binary Search Tree

12

13Data Structures Department of Computer Science – University of Zakho

Binary Search Tree

 A binary search tree is a binary tree where each internal node stores

a (key, element)-pair, and

▪ each element in the left subtree is smaller than the root

▪ each element in the right subtree is larger than the root

▪ the left and right subtrees are binary search trees

 An inorder traversal visits items in ascending order.
6

92

41 8

less than 6 larger than 6

14Data Structures Department of Computer Science – University of Zakho

BST – Insert(k, v)

 Idea

▪ find a free spot in the tree and add a node which stores that item (k, v)

 Strategy

▪ start at root r

▪ if k < key(r), continue in left subtree

▪ if k > key(r), continue in right subtree

 Runtime is O(h), where h is the height of the tree

15Data Structures Department of Computer Science – University of Zakho

BST – Insert Example

Insert the numbers 22, 80, 18, 9, 90, 20.

22

16Data Structures Department of Computer Science – University of Zakho

BST – Insert Example

Insert the numbers 22, 80, 18, 9, 90, 20,19.

22

80

17Data Structures Department of Computer Science – University of Zakho

BST – Insert Example

Insert the numbers 22, 80, 18, 9, 90, 20, 19.

22

18

80

18Data Structures Department of Computer Science – University of Zakho

BST – Insert Example

Insert the numbers 22, 80, 18, 9, 90, 20, 19.

22

9

8018

19Data Structures Department of Computer Science – University of Zakho

BST – Insert Example

Insert the numbers 22, 80, 18, 9, 90, 20, 19.

22

90

8018

9

20Data Structures Department of Computer Science – University of Zakho

BST – Insert Example

Insert the numbers 22, 80, 18, 9, 90, 20, 19.

22

20

8018

9 90

21Data Structures Department of Computer Science – University of Zakho

BST – Insert Example

Insert the numbers 22, 80, 18, 9, 90, 20, 19.

22

8018

9 9020

19

22Data Structures Department of Computer Science – University of Zakho

BST – Insert Example

Insert the numbers 22, 80, 18, 9, 90, 20, 19.

22

8018

9 9020

19

23Data Structures Department of Computer Science – University of Zakho

BST – Search (Find)

 Find the node with key k

 Strategy

▪ start at root r

▪ if k = key(r), return r

▪ if k < key(r), continue in left subtree

▪ if k > key(r), continue in right subtree

 Runtime is O(h), where h is the height of the tree

24Data Structures Department of Computer Science – University of Zakho

BST – Find Example

Find the number 20

22

8018

9 9020

20

19

25Data Structures Department of Computer Science – University of Zakho

BST - Delete

 Delete the node with key k

 Three cases to remove a node 𝑧:

▪ Case 0: 𝑧 has no children.

▪ Case 1: 𝑧 has a one child.

▪ Case 2: 𝑧 has two children.

 Runtime is O(h), where h is the height of the tree

26Data Structures Department of Computer Science – University of Zakho

BST – Delete Example

 Case 0: 𝑧 has no children.

▪ Simply just remove it.

For Example: Delete 9

22

8018

9 9020

19

27Data Structures Department of Computer Science – University of Zakho

BST – Delete Example

 Case 0: 𝑧 has no children.

▪ Simply just remove it.

For Example: Delete 9

22

8018

9020

19

28Data Structures Department of Computer Science – University of Zakho

BST – Delete Example

 Case 1: 𝑧 has a one child.

▪ If 𝑧 has just one child, then we elevate that child to take 𝑧 ‘s position in the tree by modifying
z’s parent to replace z by z’s child.

For example: Delete 80 or Delete 20

22

8018

9 9020

19

29Data Structures Department of Computer Science – University of Zakho

BST – Delete Example

Case 1: 𝑧 has a one child.

For example: Delete 80

22

9018

9 20

19

30Data Structures Department of Computer Science – University of Zakho

BST – Delete Example

Case 2: z has two children

- Find the first node y that follows z in an inorder traversal.

- Replace z with y.

For example: Delete 18

22

8018

9 9020

19

Inorder: 9 18 19 20 22 80 90

31Data Structures Department of Computer Science – University of Zakho

BST – Delete Example

Case 2: z has two children

- Find the first node y that follows z in an inorder traversal.

- Replace z with y.

For example: Delete 18

22

8019

9 9020

32Data Structures Department of Computer Science – University of Zakho

Exercises

 You are given two sorted integer arrays A and B such that no integer is
contained twice in the same array. A and B are nearly identical. However,
B is missing exactly one number. Find the missing number in B.

 Insert items with the following keys (in the given order) into an initially
empty binary search tree: 30, 40, 24, 58, 48, 26, 1 1 , 1 3 . Draw the tree
after each insertion.

 Given a binary search tree, which traversal type would print the values in
the nodes in sorted order?

a) Preorder

b) Postorder

c) Inorder

d) None of the above

