2¥.\ Searching Methods in

Data Structure

Data Structures Department of Computer Science — University of Zakho

Search Types

» What is Searching?

= Searching is the process of finding a given value position in a list of values.

= |t decides whether a search key is present in the data or nof.

= To search an element in a given array, it can be done in following
ways:

= (Linear) Sequential Search

= Binary Search

» To search in an element in a binary free we can use:
= Binary Search Tree

Data Structures BirBré%ec?rrﬁrﬁTéenefs of Computer Science — Universi’ryQOf Zakho

Linear Search

® |n a linear search, the search key is compared with each element of
the array linearly. If there is a match, it returns the index of the array
between otherwise, it returns -1

» | inear search has complexity of O(n).

10| 5 (15|20|25 |35

st MINSAININT

Fig. Sequential Search

Data Structures BirBré%ec?rrﬁkﬁTéenef of Computer Science — Universi’ry3of Zakho

Binary Search

®» [fems are ordered in a sorted sequence
®» Find an element k

< < < < < < < < <

Binary Search

®» [fems are ordered in a sorted sequence
®» Find an element k

= After checking a key j in the sequence, we can tell if item with key k will come
before or affer it

ﬁlr'

o o The middle
= Which item should we compare against first?

Data Structures BirBré%ec?rrﬁrﬁTéenef of Computer Science — Universi’rysof Zakho

Binary Search: Find k = 52

Algorithm BinarySearch(S, k, low, high):
if ow > high then return NO_SUCH_KEY
mid «— |(low + high) / 2]
if key(mid) =k then return elem(mid)
if key(mid) < k then return BinarySearch(S, k, mid + 1, high)
if key(mid) > k then return BinarySearch(S, k, low, mid -1)

low high
| !

s |11 [18[22]34]41|52|54|63|68]74
o 1 2 3 4 5 6 7 8 9

Data Structures BirBré|§>ec§]rr'rcrk7hTerene’rS of Computer Science — Universi’ryéof Zakho

Binary Search: Find k = 52

Algorithm BinarySearch(S, k, low, high):
if ow > high then return NO_SUCH_KEY
mid «— |(low + high) / 2]
if key(mid) =k then return elem(mid)
if key(mid) < k then return BinarySearch(S, k, mid + 1, high)

if key(mid) > k thenreturn BinarySearch(S, k, low, mid -1)

low mid high

| | |

s |11 [18[22]34]41]|52|54|63|68]74
o 1 2 3 4 5 6 7 8 9

Data Structures BirBré|§>ec§]rr'rcrk7hTerene’rS of Computer Science — Universi’ry7of Zakho

Binary Search: Find k = 52

Algorithm BinarySearch(S, k, low, high):
if ow > high then return NO_SUCH_KEY
mid «— |(low + high) / 2]
if key(mid) =k then return elem(mid)
if key(mid) < k then return BinarySearch(S, k, mid + 1, high)
if key(mid) > k then return BinarySearch(S, k, low, mid -1)

low mid high

| ! |

s |11 [18]22|34]41]|52]|54| 63 |68]74
o 1 2 3 4 5 6 7 8 9

Data Structures BirBré|§>ec§]rr'rcrk7hTerene’rS of Computer Science — Universi’ry80f Zakho

Binary Search: Find k = 52

Algorithm BinarySearch(S, k, low, high):
if ow > high then return NO_SUCH_KEY
mid «— |(low + high) / 2]
if key(mid) =k then return elem(mid)
if key(mid) < k then return BinarySearch(S, k, mid + 1, high)
if key(mid) > k then return BinarySearch(S, k, low, mid -1)

mid
low hlgh

b
s | 11]18]2234]41[52]|54] 63]¢68]74

Data Structures BirBré|§>ec§]rr'rcrk7hTerene’rS of Computer Science — Universi’ry(?of Zakho

Binary Search

Algorithm BinarySearch(S, k, low, high):
if ow > high then return NO_SUCH_KEY
mid «— |(low + high) / 2]
if key(mid) =k then return elem(mid)
if key(mid) < k then return BinarySearch(S, k, mid + 1, high)
if key(mid) > k then return BinarySearch(S, k, low, mid -1)

Each successive call to BinarySearch halves the input, so the running
time is O(logn)

Data Structures BirBré%eé]rrTCrrhTéeneTS of Computer Science — Universi’rgloof Zakho

10

Exercises

= Write the iterative Implementation (Pseudocode) of binary search?e

+ >>) Binary Search Tree

Binary Search Tree

®» A binary search tree is a binary free where each internal node stores
a (key, element)-pair, and

= each elementin the left subtree is smaller than the roof
= each elementin the right subtree is larger than the root

= the left and right subtrees are binary search trees

®» An inorder tfraversal visits items in ascending order.

larger than 6

Data Structures Department of Computer Science — University of Zakho

13

BST — Insert(k, v)

» [dea
= find a free spot in the free and add a node which stores that item (k, v)

» Strategy
= start atrootr
= if kK <key(r), continue in left subtree

= if k> key(r), continue in right subtree

» Runfime is O(h), where h is the height of the tree

Data Structures Department of Computer Science — University of Zakho

14

BST — Insert Example

Insert the numbers 22, 80, 18, 2, 20, 20.
- 22

BST — Insert Example

BST — Insert Example

Insert the numlbers 22, 80, 18, 2, 20, 20, 19.

18

=t

BST — Insert Example

Insert the numlbers 22, 80, 18, 2, 20, 20, 19.

/9
PIoR G

BST — Insert Example

Insert the numlbers 22, 80, 18, 2, 20, 20, 19.
- 90

(2N
OEEC)ON

BST — Insert Example

Insert the numlbers 22, 80, 18, 2, 20, 20, 19.
- 20

Po
oo
o ©

BST — Insert Example

Insert the numlbers 22, 80, 18, 2, 20, 20, 19.
- 19

BST — Insert Example

Insert the numlbers 22, 80, 18, 2, 20, 20, 19.

BST — Search (Find)

» Find the node with key k

» Strategy

start atrootr

if kK = key(r), returnr

if kK <key(r), continue in left subtree

if kK > key(r), continue in right subtree

» Runtime is O(h), where h is the height of the free

Data Structures Department of Computer Science — University of Zakho

23

BST — Find Example

/20
HE>
oo
OO BN

BST - Delete

» Delete the node with key k

®» [hree cases to remove a node z:
= Case 0: z has no children.
= Case 1:z has a one child.

= Case 2: z has two children.

» Runtime is O(h), where h is the height of the free

Data Structures Department of Computer Science — University of Zakho

25

BST — Delete Example

» Case 0: z has no children.
= Simply just remove it.

For Example: Delete 9

Data Structures Department of Computer Science — University of Zakho

26

BST — Delete Example

» Case 0: z has no children.
= Simply just remove it.

For Example: Delete 9

Data Structures Department of Computer Science — University of Zakho

27

BST — Delete Example

» Case 1: z has a one child.

= |f z has just one child, then we elevate that child to take z ‘s position in the tree by modifying
z's parent to replace z by z's child.

For example: Delete 80 or Delete 20

Data Structures Department of Computer Science — University of Zakho

28

BST — Delete Example

For example: Delete 80

BST — Delete Example

Case 2: z has two children
- Find the first node y that follows z in an inorder traversal.

- Replace z with y.

Inorder: 9 20 22 80 90

For example: Delete 18

Data Structures Department of Computer Science — University of Zakho

30

BST — Delete Example

Case 2: z has two children
- Find the first node y that follows z in an inorder traversal.

- Replace z with y.

For example: Delete 18

Data Structures Department of Computer Science — University of Zakho

31

Exercises

®» You are given two sorted integer arrays A and B such that no infeger is
contained twice in the same array. A and B are nearly identfical. However,
B is missing exactly one number. Find the missing number in B.

® [nsert items with the following keys (in the given order) intfo an initially
empty binary search tree: 30, 40, 24, 58, 48, 26, 1 1, 1 3. Draw the free

after each insertion.

» Given a binary search tree, which traversal type would print the values in
the nodes in sorted ordere

a) Preorder

) Postorder

c) Inorder

d) None of the above

Data Structures Department of Computer Science — University of Zakho

32

