
Lecture 14—Dimensional Analysis 
 
First, let’s talk about dimensions. Every physical property we work 
with has dimensions—you may know these as the “units” on 
something. Take, for example, pressure. There’s a lot of ways we 
could describe the units on pressure. It could be in psi. It could be in 
psf. It could be N/m2. It can even be a Pascal. In the end, though, all 
these definitions have one thing in common. They are all a force 
divided by an area. So, the dimensions on pressure are FL-2. See 
how nice this is? Ok, let’s try another one. Kinematic viscosity. Look 
on your sheet—it’s often in square meters per second. That’d be   
L2T-1. Easy, right? There’s only one wrinkle. There are two common 
systems of dimension. One uses force, length, and time. The other 
uses mass, length, and time (these are abbreviated FLT and MLT). 
Since a force is just a mass times an acceleration, you can convert 
between one and the other, but notice that pressure becomes MLT-2 
in the MLT system (and notice that density goes from a relatively nice 
ML-3 to FL-4T2). Either system works—just go with whichever makes 
the most sense for your problem. Oh, and you sometimes need a 
fourth dimension—temperature. 
 
Let’s take a familiar example for how to perform a dimensional 
analysis—the Darcy friction factor for pipes. We know that friction 
factor (f) is a function of….the average velocity (V), the pipe diameter 
(D), the fluid density (ρ), the viscosity (µ) and the pipe roughness (ε). 
 
 ( )εµρ ,,,, DVff =  
 
This looks daunting at first (especially if you’re an experimental 
scientist). Picture what would have to happen to make an 
experimental matrix to determine friction factor! We’d need to hold all 
the other variables constant and then vary just one variable, then 
repeat. In short, we’ve got a huge experimental matrix and we’ll be 
here a while. THIS is what dimensional analysis is good for. We can 
express this problem (and others like it) in the following form: 
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Where Cπ is a dimensionless coefficient. This looks bad, but all it 
says is that some dependent variable α is the product of some 
constant times all the independent variables raised to constant 
powers. We know that the dimensions of α must equal the 
dimensions of the right hand side of the equation, so the fun begins. 
Consider the friction factor example: 
 
 54321 ccccc DVCf εµρπ=  
 
The dimensions on each variable are: 
 
 f = 1 
 V = LT-1 
 D = L 
 ρ = FT2L-4 = ML-3 
 µ = FTL-2 = ML-1T-1 

ε = L 
 

Since the left and right sides of the equation must have the same 
dimensions, we can set up the following: 
 
 ( ) ( ) ( ) ( ) ( ) 542324211000 ccccc LTFLTFLLLTTLF −−−=  
 
Which we can rewrite to: 
 
 ( ) ( ) ( ) 4321542342143000 cccccccccc TLFTLF ++−+−−++=  
 
So, 
 
 for F            c3 + c4 =0 
 for L        c1 + c2 - (4c3) - (2c4) + c5 =0 
 for T                -c1 + (2c3) + c4 =0 
 
And, 
 
 c3 = -c4      from the equation for F 
 c1 = 2(-c4) + c4 = -c4    from the equation for T 
 c2 = c4 – (4c4) + (2c4) – c5 = -c4-c5  from the equation for L 
 



Substituting these back into the original equation: 
 
 544544 cccccc DVCf εµρπ
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and finally, 
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So we’ve reduced the number of independent variables from five to 
two! This is a much nicer experimental matrix. The two dimensionless 
groups we’ve created are called pi terms (more on this later). 
 
Some important observations: 
 

• There’s nothing that says we can’t invert, square, take the sine 
of, or combine pi terms. They’re dimensionless and they’ll stay 
that way. 

• This analysis would have worked exactly the same way in MLT. 
Try it! 

• Notice that the first pi term is a Reynolds number! Many of our 
favorite dimensionless numbers fall out of dimensional analysis 
and are, in fact, pi terms. It makes sense to see them in fluid 
mechanics problems 

 
 
Here’s some common ones: 
 
Reynolds 

µ
ρVl  where viscosity is important (laminar flow) 

 
Froude  

gl
V  where gravity effects are important  

 

Weber  
σ

ρ lV 2

 where surface tension is important  

 
Euler  2V

p
ρ

 where static pressure is important (conduits) 



 
• It’s no accident we ended up with just two dimensionless 

groups. There’s a theorem to explain how many you get. 
You take the number of independent variables you have and 
subtract the number of dimensions you used. What’s left is 
the number of pi groups you can expect. This truth is called 
the Buckingham Pi theorem after its inventor. 

 
As a parting thought, suppose we hadn’t started with both density and 
dynamic viscosity in our analysis? We could do this whole thing by 
saying “look, I suspect that density and viscosity can be dealt with 
fully by combining the two into kinematic viscosity.” You could say 
ν=µ/ρ and be done with it. What would happen? Wait! Now there’s 
only four independent variables, so doesn’t the Buckingham Pi 
Theorem suggest that we can expect only one dimensionless 
variable? Well, no. Do the dimensions! 
 
 f = 1 
 V = LT-1 
 D = L 
 ν = L2T-1 

ε = L 
 
 
So there’s only two dimensions! So, only four variables, but 

only two dimensions, so still two groups. Try it yourself, and you’ll see 
you get the same answer again, with one important difference—the 
math was a whole lot easier. This points out an important aspect of 
dimensional analysis—you need to choose an appropriate set of 
variables. A lot of dimensional analysis is trying to winnow down a 
large variable list into a few variables that make sense. Let’s take a 
look… 
 


