
Lecture 24—Probability Bed Load Equations 
 
Albert Einstein claimed that he became a physicist because he found 
sediment transport (in which he was originally trained) too intractable 
a problem. How typical, then, that his son decided to one-up dad by 
taking the problem on.  

H.A. Einstein, in 1942, tried a very different tack from the 
excess shear concept. Einstein described a turbulent fluid where 
forces vary in both space and time; the probability of movement of a 
particle depends on the probability that the fluid forces will exceed 
resistive forces. 

So, let’s consider a flat bed: 
 
 

 
 
 



And let’s assume that if a particle moves, it will move a distance L, 
which we can describe in terms of grain diameters, L=λ0D. 
 
From before, 
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And, from Einstein, 
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so, 
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We would like s℘  to be independent of time. 
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Einstein assumes 

sw
Dt ∝ , which is the time it takes for a grain to fall 

one diameter. From long ago, 
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where DCF
3
4

=  for spheres, and is given implicitly by Rubey (1933) 

to be: 
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Now we can formulate ℘. 
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Additionally, Einstein assumes that the probability will be some 
function of particle weight over the average lift on the particle. So, 
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Which V to choose? V is taken as the velocity at the top of the 
laminar boundary layer, and is expressed as V=11.6u*. This makes 
our equation: 
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Simplifying, 
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Now, let 
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B = . This makes the whole Einstein equation: 
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or just 
 
 ( ) ℘== ψφ BfA b  
 
Einstein settled on ( ) xexf −= for the functional relationship between 
φand ψ. He fit A and B for natural data, and ended up with A=0.465 
and B=0.391. It turns out that this relationship works pretty well, 
except at the tail of the graph (φ>0.4). This may be because A is no 
longer a constant, because λ0 isn’t constant due to large excess 
shear. Einstein refined his argument by stating that for high 
probability the particle wouldn’t be expected to settle after only one 
step (λ0D). He derived a new λ: 
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which yields curve (2) in the handout. 
 



The whole Einstein model was revised in 1950 by Brown, who fitted a 
new curve to Einstein’s data, based on ( ) 3−= xxf , rather than 
( ) xexf −= . Brown’s curve is: 

 

 
3

140 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ψ
φ  

 
This curve seems to apply well for low values of ψ (i.e. high τ0 and 
gb). Einstein’s and Brown’s curves are often used together, forming 
the Einstein-Brown bed load equation: 
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A few final comments. The Einstein-Brown equation is somewhat 
more realistic for large ψ (low τ0) than DuBoys and other excess 
shear models, because it shows some transport for τ<τc, whereas 
excess shear models show none. A major drawback of the Einstein-
Brown formulation, however, is that there are no bedform effects. 
 
 
 
 
 
 


