Lecture 12—The Richards Equation and Green-Ampt Infiltration

We’ve looked at two fairly empirical ways of determining infiltration
rate. Unfortunately, each of them requires some sort of parameter
with little physical meaning, and therefore a lot of messing around for
each field area. What we'd like is a method that allows us to use data
we either can get easily, or which we already have.

Turns out we've not the first to worry about this. One approach was to
make an equation of what the author thought was happening, and
then tried to solve the equation. Here’s the concept...

A guy named Richard thought this one up. Consider Darcy’s Law:
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Where q is the water discharge, K is the hydraulic conductivity of the
soil, and 2—2 is the hydraulic gradient. You remember this from

groundwater, right? While we're here, though, remember our canon—
if the water goes in, and doesn’t come out, then it’s still there. What
this means in soils is that any change in the discharge with depth has
to be balanced with a change in the soil moisture. Like this:
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where 6 is the moisture content of the soil. This is a simple statement
of continuity, just like we had before. If water goes in (through
discharge), it increases the soil moisture. Because q is positive
downwards, there’s a little oddness with the minus sign, but that’s it.

Ok! So, we could combine these two equations:
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There's only one added bit of weirdness. In groundwater, we're used
to the flow being driven by hydraulic gradient—basically the slope of



the potentiometric surface. Here, flow is being driven by two things—
the pressure of the overlying water (basically, z), PLUS the “suck” of
capillary action drawing the water deeper into the soil (let’s call this y).
SO, for our purposes, h=z+y, and
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Ok, so %:1, right? And often people cut aa—‘” into two pieces,
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Why cut %—":into two pieces? It turns out that many people keep track

of something called soil water diffusivity (D), that combines
conductivity and capillary pressure:
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Which looks nice and pretty. We got here, remember, by applying
Darcy’s law in the vertical direction, and recasting discharge as a
change in the amount of soil moisture. Because some guy named
Richard thought this up, it's called Richard’s equation.



Ok. This is the actual important part. Remember how | talked about
different kinds of equations earlier? This is where is comes home to
roost. Horton’s equation is one kind of equation—it’s the kind you can
plug in your numbers for the variables, and you can get an answer.
It's the kind of thing we, as geologists, like. HOWEVER, there’s a
whole separate kind of equations—these aren’t equations that you
just put your values in, and get an answer, they’re a kind of shorthand
statement of how the world works. They’re sort of an equation to get
an equation. This particular one, if we could solve it, could be used to
make an equation for infiltration.

The problem is we can’t solve it. At least not directly. We could if we
had a computer simulation, but we can’t just make an equation that
answers this problem we set up. When scientists run up against this
problem, they start making simplifications, and hope that the
simplifications enable a solution to the equation. One example here
would be to take Richard’s equation, and say that K and D are not
functions of 8 (which they are). IF they aren’t, then the equation
reduces to:

which is solvable. In fact, the answer to this equation is Horton’s
equation. Yeesh, doesn’t anyone have an original idea?

Another way to approach this is to simplify the way you set up the
problem—basically, you know the world doesn’t really work this way,
but it makes it easier to get an answer. Such a simplification to
Richard’s equation was made by Green and Ampt, who decided it’s
easier to think of infiltration as a solid “front” of wetting moving
downward.

Green-Ampt infiltration

Horton’s equation and the @-index method have the same basic
drawback—they each require one parameter that’s hard to come by,
or has to be empirically determined for each watershed. We'd like an
equation that only has parameters that we can determine easily for



soils. Such an equation actually exists! But, it's not as pleasant as
Horton. Here’s the deal...

Consider a vertical column of soil:
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It has some initial amount of moisture in it (6;). As water falls on it, a
sharp line develops between “dry” soil (with moisture content 6,) and
“‘wet” soil (with moisture content equal to the porosity of the soil, n).
So, if you wanted to know how much water got added to the soil with
time (let’s call that F(f)), the answer would be:

()= Ly-0)

Where L is the depth of the wetting front.



For ease of use, let’s just define a variable that means “the difference
between the porosity and the initial moisture content”

Af = (77 - ei)
So, F(t)=LAd

Equally, we could take Darcy’s Law:
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And say that the discharge straight down is effectively the infiltration
rate, f. Because q is defined as positive up, and fis defined as
positive down, we can make a simple substitution:
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Here, we’re going to step from the differential equation (that we don't
like), to a less continuous version:
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Where the subscript “1” means at the surface, and “2” means just on
the dry side of the wetted front. The z part is easy—at the surface,
z,=0, and at the wetted front, z,=-L, so
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We’re only left with hy and h,. At the surface, there’s no capillary
action, and all we’re going to worry about is any pressure from
ponded water, so h;=h,, where hy is the depth of ponded water. At
depth, h, will be the sum of the pressure from the overlying water (L)
and capillary suction (), so h,=-L- y, and
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If ho is really small (we can fix it if it isn’t, but it's easier if it is).

Ok, next bit. We know that F(t)=LAg, so let’s put in % wherever

there’s an L.
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AND, the infiltration rate (f) is just the derivative of the cumulative

amount of infiltration (F), so f =‘jj—':

So,
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Hey! This is actually relatively easy to integrate! Yay! We could cross
multiply to make:
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And integrate to make:
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Which is the infamous Green-Ampt equation. The cool thing is,
though, that what we want (F or f) is a function of only things we can
figure out (porosity, initial moisture content, soil conductivity, and soil
capillary pressure). The problem is that you can’t easily put F on one
side, and all the other stuff on the other. This inability to separate the
equation means that the equation is nonlinear. There are a few



solutions—one is to make it linear—if you claim that %9 will be very
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So F(t)=Kt. This is not necessarily a good idea, but if you take a
nonlinear equation and force it to be linear, then you have linearized
the equation.

Another option is to set it up with F on both sides, like this:
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Then pick a value for F, put it in the right side of the equation, get an
answer for F that you put back into the right side of the equation,
which gives you a new F...Keep doing this until you don'’t get any
change. This is called iteration, and it is a fairly common way of
solving nonlinear equations (as an aside—Excel can iterate! I'll show
you). So, how do you know where to start from when making a guess
for F? A good starting point is the linearized answer: Kt.

There are tables and tables of data on the parameters you want.
Here's an example:



TABLE 4.3.1
Green-Ampt infiltration parameters for various soil classes

Soil class Porosity Effective Wetting front  Hydraulic
porosity soil suction conductivity
head
Ui 6, K
(cm) (em/h)

Sand 0.437 0.417 4.95 11.78
(0.374-0.500) (0.354-0.480) (0.97-25.36)

Loamy sand 0.437 0.401 6.13 2.99
(0.363-0.506) (0.329-0.473) (1.35-27.94)

Sandy loam 0.453 0.412 11.01 1.09
(0.351-0.555) (0.283-0.541) (2.67-45.47)

Loam 0.463 0.434 8.89 0.34
(0.375-0.551) (0.334-0.534) (1.33-59.38)

Silt loam 0.501 0.486 16.68 0.65
(0.420-0.582) (0.394-0.578) (2.92-95.39)

Sandy clay 0.398 0.330 21.85 0.15

loam (0.332-0.464) (0.235-0.425) (4.42-108.0)

Clay loam 0.464 0.309 20.88 0.10
(0.409-0.519) (0.279-0.501) (4.79-91.10)

Silty clay 0.471 0.432 27.30 0.10

loam (0.418-0.524) (0.347-0.517) (5.67-131.50)

Sandy clay 0.430 0.321 23.90 0.06
(0.370-0.490) (0.207-0.435) (4.08-140.2)

Silty clay 0.479 0.423 29.22 0.05
(0.425-0.533) (0.334-0.512) (6.13-139.4)

Clay 0.475 0.385 31.63 0.03
(0.427-0.523) (0.269-0.501) (6.39-156.5)

The numbers in parentheses below each parameter are one standard deviation around the parameter

value given. Source: Rawls, Brakensiek, and Miller, 1983.

I's worth noting that Horton is the equation we often talk about,
because it's relatively easy to sketch. It's not, however, the equation
that tends to get used in hydrology models. Green-Ampt is a nice
parametric equation that happens to be unpleasant to work with—
Horton is a crappy parametric equation that happens to be pleasant
to work with. Computers don’'t make parameters easier, but they do
make math easier. As a result, Green-Ampt has experienced a
renaissance with the explosion of computing power over the last few

decades.



