
Lecture 16—The law of the wall 
 
How does velocity change with depth? 
 

 
 
From last time, 
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So how do we define turbulent viscosity? It turns out that horizontal 
turbulent velocity fluctuations are approximately equal to the 
distance momentum is transferred across times the velocity 
gradient: 
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where ℓ is the mixing length, defined as the characteristic length 
across which momentum is transferred in the flow.  
 
What about the shear stress acting on two adjacent layers in the 
flow? The force would be related to the velocity difference between 
the layers and the rate of mass transfer (which is a function of: 
how much mass is being transferred (ρ), the vertical turbulent 
velocity component (v'), and the area of transfer (A). The formula 
looks like this: 
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Remember that a shear stress is just force divided by area, so: 
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Now for the tricky part. Because there’s only so much fluid to be 
had, any fluid going up in v is related to a loss in horizontal velocity 
u. So: 
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So combining these, 
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Remember also that we said, 
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So for turbulent flow, 
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Minor problem. ℓ varies with distance from the bed. Mercifully, it 
probably varies linearly, so: 
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and, 
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Where y/h << 1 (that’s right near the bed), 
 
  

0

2
22 τρκ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
dy
udy  



 
Rearranging, 
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And integrating, 
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Finally, we define 
ρ
τ 0

* ≡u , so 
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Unfortunately, we can’t enforce u(0)=0 because ln(0) doesn’t exist. 
This is a problem for a velocity distribution that’s supposed to talk 
about what happens close to the bed. 
 
HOWEVER, we could define some length scale, y0, at which u 
approaches 0, and set u(y0)=0.  
 
THEN, our equation becomes, 
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which is the turbulent velocity profile near the bed. It is better 
known as the law of the wall.  
 
So what’s κ? It’s called von Karman’s constant and has been 
empirically determined to be 0.41 
 
What about y0? We could figure it out by measuring velocities 
empirically. It’s typically very small—smaller than the roughness 
elements on the bed. It’s commonly taken as a function of 
roughness elements on the bed, in fact: 
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particles on the bed reside (1σ above the median). 



 
As a cautionary note, this only works on a planar bed (so that sand 
grains are the only roughness elements, and not bedforms), and 
with well-sorted sediments. Note that it also ignores other forms of 
roughness, like plants and meandering. 
 
With these caveats, our velocity equation becomes: 
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Often, the law of the wall is applied as if it were valid throughout 
the flow (remember, it’s not). We can get away with this, though, 
because higher up in the flow, velocity doesn’t change much with 
depth. 
 
Last up, we need to define an average velocity for the law of the 
wall. It’s 
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which is a function only of relative roughness. 
 
Last worry. Remember how at the beginning of all this we had the 
expression, 
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This entire analysis has been based on a new definition of 
turbulent shear stress. But we have two components of shear 
stress—one turbulent and one viscous. To be correct, we need to 
include both components in our velocity distribution: 
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Dealing with this little annoyance will be the subject of our next 
lecture. 


