
Lecture 26—Runge-Kutta Techniques 
 
One problem with the Muskingum method is that it assumes that 
the storage equation is linear with depth (that is, it’s a simple 
arrangement of inflow, outflow, and constants...let’s talk about 
what that means). Although this simplifies calculation considerably, 
it doesn’t necessarily have anything to do with reality. A more 
accurate method would allow for the storage function to be any 
function of depth. This method (or rather these methods) are 
referred to as the Runge-Kutta methods. Let’s have a look 
 
Consider some reservoir or lake. We’d like to know how the flood 
will be attenuated during its passage through the reservoir (this 
would work for a river, too, because that’s basically a long, skinny 
lake). The method starts by stating the same continuity equation 
we’re used to: 
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where H is the head in the reservoir. Remember head? For 
standing water (like in a reservoir) H is just the depth. So, the 
storage in the reservoir is a function of the depth and the area, and 
the change in storage with depth is: 
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Sooooo, combining these two equations yields: 
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or just 
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From here, we can do the same finite differencing technique we 
did for the Muskingum method, and: 
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or just 
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where HHH nn ∆+=+1  
 
This solution is called the first-order Runge-Kutta method 
(sometimes the Euler method) and is effectively a linear solution 
for our dH/dt equation; it’d work great if H were a linear function of 
t. The problem, though, is that ∆H is not constant, but is instead a 
function of t {figure}. This means we introduce error when the true 
relation between H and t deviates from linear.  
 One way of solving this problem is to calculate ∆H at both 
the beginning and end of the time interval, and average the two.  


