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Abstract

In this article, we show that a certain sequence r of all rationd
numbersin theinterval (0, 1):

= (i)
J1o12 13 1 k_._m
B 2 ' 33" 44" m+1""" m+1""" m+1 |’
L=} [—— —
st block 2nd block 3rd block mth block

where (k, m+1) =1, is an amost convergent sequence in 1, and

its value of Banach limits L(r) =1/2 foral L e (1™)".
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Let 1™ be the Banach space of bounded sequences x = {x(n)};,_; of real

numbers with norm || x|, = sup| x(n)|. A Banach limit L is a linear and

bounded functional on |, which satisfies the three conditions:

@ if x:={x(N)ly_; €1” and x(n) >0, n=1, 2, ..., then L(x) > O;

(b) if x:={x(n)}y_; €1, and T is the translation operator: Tx :=

{x(2), x(3), ...}, then L(x) = L(Tx);
() L@) =1 wherel:={11, ..}

We know [4, p. 310] that there are infinitely many Banach limits in
(I*)*, the dual space of |*. Thus, it does not make sense to speak of
finding a particular vaue for Banach Ilimits of a sequence
X = {X(N)}y_1 € 1, because normaly the different Banach limits are
different functionals. It is, however, interesting that there are some elements

in 1 for which the values of all Banach limits are the same. For example,
L(x) = limy_,, X(n) for any Banach limit L, if X is an element of ¢, wherec
is the Banach space of convergent sequences of real numbers with the
superior norm. Furthermore, this phenomenon can happen on some elements

of 1”\c. Let

a={ 0,.,0,1 0.,0,1..}.

(m-DCtimes (1) times
Property (b) of Banach limits impliesthat for any Banach limit L,
L(a) = L(Ta) = --- = L(T™ a);
so by linearity and property (c) of Banach limits, we have that

L(a)+ L(Ta) + -+ L(T™ ) = L(1) = 1.
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Hence
L(a) = L(Ta) = - = L(T™ Ta) = T
Moreover, if
b={4.,4, 0..,0,%..,14 0.,0,.}
— — — —
k-times (m-k)-times k-times (m-k)-times
then

L(b) = L(a) + L(T™ ) + .. + L(T™K+q) = %

In[2], Lorentz called a sequence x = {x(n)},_; € 1™ almost convergent,

if its all Banach limit values L(x) arethe samefor L € (1°)". In this case,
we cal L(x) the F-limit of x. In his paper, Lorentz proved the following

main result:

Theorem 1 (Lorentz [2, Theorem 1]). A sequence X = {X(n)},_; € |

isalmost convergent with F-limit L(x) if and only if

i+n-1

lim % 3 x) =L

n—oo .
t=i

uniformlyini.
This Lorentz theorem offers a way to find values of Banach limits for

almost convergent sequencesin 1. Based on Lorentz [2] and Sucheston [4],
we give another way [1] to find the value of Banach limits of x, when xisan

almost convergent sequencesin |”.
Recalling some concepts, we created in [1].

Definition 1. A real number a is said to be a sub-limit of the sequence

x = {x(n)}h_q €17, if there exists a subsequence {x(ny)},_,; of x with
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limit a. The set of al sub-limits of x is denoted by S(x) and the set of al
limit points of S(x) isdenoted by S'(x).

Definition 2. Suppose a e S(x) for element X := {x(n)};_; €!”. A
subsequence {x(ny)}x_, of x is called an essential subsequence of a if it
converges to a, and for any subsequence {x(m)},-, of x with limit a, except
finite entries, al itsentries are entries of {x(ny )};_;.

Definition 3. Let x:={x(n)jj_; €!” and let {x(ny)}_, be a

subsequence of x. Define

() = lmaup{ap AL S =)

n—o i n

and

w () = timinfing L= M =120 28))

n

where A(E) is the number of elements of set E. w!({x(n)}) and w; ({x(ny)})

are called the upper weight and lower weight of the subsequence {x(ny )}le,

respectively. If wH({x(n)}) = wi ({X(nk)}), then the subsequence {x(n )},
is said to be weightable and the weight of {x(ny)}c_; is denoted by
w({x(ng)3), and

w({x(n)}) = wH({x(ni)}) = wi ({x(ng )}).

We verified [1, Theorem 1] that all essential subsequences of a,
a e S(x), have the same upper weight and lower weight, respectively. They

are called the upper weight and lower weight of a, and denoted by w"(a)

and wj(a), respectively. The weight of a is denoted by w(a), if w"(a) =

w (a). We have the following main results.
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Theorem 2 [1, Theorem 4]. Suppose x = {x(n)},_; € |” and the set of
all sub-limitsof x, S(x) = {ay, ay, ..., &y} isfinite, where g = aj, ifi=j.
If w(a;) exists for each t, 1<t < m, then x is almost convergent and for

*
k)

any Banach limit L € (1)

L(x) = Z aw(ay).

t=1

We see that for almost convergent sequence, the value of Banach limits
only dependent on the sub-limit points and their weights. From Theorem 2,
we abtain afamiliar formula.

Corollary 1[1, Corollary 2]. For a given positive integer m, let
X = {4, ..., Xn@), X(2), ..., X(2), -y X (N), ey Xyy(N), ...,
where for each t, lim,_,,, %(n) =&, 1<t <m Thenxisalmost convergent

*
)

and for any Banach limit L e (1”)

& +a+-+an
P :

L(x) =
We actually proved a more general result as below.

Theorem 3 [1, Theorem 6]. Suppose X = {X(nN)};_; € |* and S(x) is
infinite but countable and S'(x), the set of limit points of S(x), is a
nonempty finite set. If w(a) exists for all ae S(x), then x is almost

*
1

convergent and for any Banach limit L e (I™)

Lx)= Y awa).

aeS(x)

Natural gquestion can be asked that does there exist an almost convergent

sequence X € 1 for which S'(x) isaninfinite set? The answer is ‘Yes'. We
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proved more that S'(x) can be uncountable infinite in next Theorem 4 of
thisarticle.

We need some preliminary knowledge. Suppose m is a positive integer.
We define ¢(m) to be the number of integers k, 1< k < m such that
(k, m) = 1, which denotes that k and m are relative primes. The function ¢ is
called the Euler phi function [3, p. 54]. It is well known in number theory
that if m= p/1p32--- pt, where the p’s are distinct primes and a;,

1<i <t, arepositive integers, then [3, p. 58, Theorem 2.7]

t
om) =TT (p; ~Dpj i~

j=1
We introduce the following lemmas that we were unable to find in the

literatures.

Lemma 1. For any positive integer m,

LY k- %(p(m).

m
(k, m)=1,1<k<m

o a

Proof. Suppose that m= p/tp52---pt. Note that there are

cxl—l

]
1,23 ..., m-1:

p52 -+ p;t —1 numbers containing the factor of p; among the set of

P 2P, 3P - (pfl_lng ptat ~1)py,

there are p;1 pgz—l,

thesetof {1, 2, 3, ..., m—1}:

- pft — 1 numbers containing the factor of p, among

P2, 2P2, 3P2, - (pfclpgz_l"' Pt —1) po,

..., and there are ppS2 ... p™* ™ — 1 numbers containing the factor of p,

among theset of {1, 2, 3, ..., m—1}:
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B 2P, 3Py o (PEEPSZ - P - D

The sums of these t groups are

- 1 -
pfllpgz pt(lt(pfl 1pgz ptott ~1) = Em(pfl 1pgz ptat _1),

Nl N

- 1 _
pillpgz... ptott(pillpgz 1,..ptoct —1)=§"'|(pr1ng 1"'ptat _1),

1

-1 1 )
> pfllpgz pt“t(pf‘lpgz ptott ~1) = §m(pixlpgz ptat

_1),

respectively.

Gl—l (12—1 .

Similarly, there are p;* "p, -pf* =1 numbers containing the

factor of p;p, amongthesetof {1, 2, 3, ..., m—1}:

(12—1 .

PLP2, 2P1P2, 3PLP2, o (PY2 P52 70 pt — 1) pypy,

Qo

..., and there are p; 03—1—1 o —

Leepdit TR
pr_1p; amongthesetof {1, 2, 3, ..., m—1}:

1 _ 1 numbers containi ng the factor of

o

Pe_1Pt: 2Pt_1Pt, 3Pt _1Pt, - (P P RE Y — 1) pra Py

The sums of these ( ;j groups are

1 1 ape 1 oit g
5 PLpeZ o P (prY g2 e pt 1) = S m(pfp32 e pft 1),

1 - 1 1 ay-
2 P32 B (p{1pg2 e BT - 1) = Zmlpy - p{tE R ),

respectively, and so on.
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Finaly, there are pf‘l_lpgz_l--- p -1 numbers containing the

factor of pyp,--- py amongthesetof {1, 2, 3, ..., m—1}:

PLP2 - Pty 2P1Po Py - (PP -1 P52~ -1 Pt =) P Py

The sum of thisgroupis

1 pf(lp(xz ptat(p](-xl—l‘” pt(xt—l_l) _ m( a1— 1 . pt(xt_l_l)-
Thus,
k

(k,m)=1,1<k<m

(m 1) —gi[ N

B

i~
1T
L o — O‘j‘l a
—_ . p —
zz[ ]
[1
P |

t
-1Mm i
For 172[9?‘
=1

SUCEEEh HJ

+ Z[“'”’ [T e -

I<i<j<t k=i, |

t
o (D 1Z[p, 1 e +(1)t[]__[ p?"llﬂ

i ]
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363 o T

j=1 i#]

i Z p(l|1(x11HpOLk+

Ki<j<t k=i,

NEYS 12 T P+ (- 1>tH o’ 1(11)‘]

i ]

> I e+ +(1)t12|0,+(1)t

I<i<j<t k=i, j

% Z k = %(p(m).

(k,m)=1,1<k<m

137

Lemma 2. Suppose that m and | are positive integers with | > 1. Let

|
n= ern+m+l(p( j). Then
.
lim—=0.
| > N

Proof. We know that [3, p. 228, Theorem 6.21]

= —+ O(mInm),

T MB
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where f = 0O(g) means that there exists a constant ¢ >0 such that

| f(x)] < cg(x) foral xintheintersection of domains of f and g. Thus,

m-+|

n= Y o) - 3(””')2‘3”‘2 +O((m= 1)In(m + 1)) — O(mInm)

j=m+1

:LJ;?’lZ+O((m+I)In(m+|))—O(mInm),

which implies n = O(12). Hence
lim L 0. O
|>w N

Now we back to our goal of the following result.

Theorem 4. Define an element of 1 as follows:

re={r(j}
_, 1 12 13 1 k m
B _% 337 47477 m+1 " m+1" " m+1 T
1st block 2nd block 3rd block mth block

where (k, m+1) =1. Then S(r)= S(r) = [0, 1] is an uncountable set, and
r is an almost convergent sequence in 1* and also L(r)=1/2 for any

Banach limit L e (I*)".

Proof. It is well known that S'(r) = S(r) = [0, 1]. We just verify the
remaining parts of the conclusion. For al positive integers i, there exists an
integer msuch that

m+1

D oli) i< D oli).
j=2

j=2
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Let i= ernzz(p(j) +0, where 0<qg<e¢(m+1). For any positive

integers n and m, m is determined by i above, there is a positive integer |
such that

m-+| m+l+1
Do <i+n-1< > o).
j=2 j=2

m-+|

Let i +n—1=zj:2(p(j)+s, where 0 < s < o(m+1 +1). Then

m-+I
n:Z(p(j)+s—i+1
j=2
m-+I m
=Y e()+s=| > e(i)+a|+1
j=2 j=2
m-+I
= > o(i)+s-qg+1,
j=m+1
from which we have
m-+I
> e(i)=n-(em+)-aq)-s-1.
j=m+2

With the help of Lemma 1 and the fact of ¢(m) < m for any m, we have

i+n-1

=0
t=i

3 o(i)
> r(t)

=37 0(j)+1

v
S|k
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1 1 1
“n{m+2 Z Ko 1 Z k
L (k, m+2)=11<k<m+2 (k, m+1)=11<k<m+l
- m+|
1/1 1 1
= ﬁ_g@(me 2)+ -+ 5 0(m+ |)} = %t Zz o(t)
=m+

_n-(e(m+H-qg)-s-1

2n
21 _(em+h)-g+oem+l+1+1
-2 2n
1 m+D+(m+l+D+1
-2 2n

2 2n 2 2n 2n’

which holds for any positive integers n and any fixed positive integer i. We

2m+ 3
2n

goesto infinity as n goesto infinity. By Lemma 2, we have

i+n-1
P | .. (1 2m+3 | 1
Ilmln{ﬁz r(t)]Z“mmf(E_T_%)_E

n—oo =i n—oo

know that mis fixed when i is fixed, so lim,_, = 0. Note that |

foral i € N.

On the other hand, we have

i+n-1

%}:m)
t=I

> )
>

t:zrjnzz o(j)+1

IA
S|



The Value of Banach Limits on a Certain Sequence ... 141

1] 1 1
“nlmil 2 Kt 2 k
L (k, m+1)=1, 1<k<m+1 (k, m+1+1)=1,1<k<m+l+1
1[1 1
—F_E(p(m+1)+«"+§(p(m+| +l)}
_im“l (t)_n+cp(m+l+1)+q—s—1
~2n Z "= 2n
t=m+1

(e(m+1+1)-s)+q-1
2n

_1
2
1 m+l+1+m+1-1 1 2m+1 |
2 2n 2 2n 2n’

which holds for any positive integer n and any fixed positive integer i. We

2m+1

o = 0. Using Lemma 2 again, we have

know that lim,_,

i+n-1
Iimsup{% Z r(t)]<llmsup@ 2rr21:1+%j:%

n—oo t=i n— oo
foral i € N.
Summarizing the discussion above, we obtain that

. li+n—1 1
mn 2 r0=3
forall i € N. Thus,

lim (liilr(t)J = lim [1 I+Zn:lr(t)J

n—ool " t=i t=i
Using Lorentz’s formula (6) [2, p.169], we have:

. 1i+n -1 1|+n -1
h_rn[ﬁ Z r(t)]< L(r) < Ilm{ Z r(t)}

n—o t=i t=i
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for all Banach limits L € (1°)". Hence, L(r) = % foral Le(I®)" andr

isan almost convergent sequencein |, O

From the argument of Theorem 4, we have a new corollary of Lorentz’
theorem as follows:

Corollary 2. Suppose x = {X(n)};,_1 € 1”. If the following limits exist

with the same valuel,

i+n-1

Iim% 3 x)=1

nN—oo -
t=I

for all positive integers i € N, then x is an almost convergent sequence in

1 and L(x) = | for all Banach limits L e (I*)".

Notice. Corollary 2 is a complement of Theorem 6 in [1], which helps us
in verifying and finding the value of Banach limits for an almost convergent

sequence X = {x(n)};_4 € | with S(x) asan uncountable set.
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