Section 4.3: Derivatives of Exponential and Logarithmic Functions

The Derivative of $y = e^x$

$$\frac{d}{dx}\left[e^x\right] = e^x$$

and

$$\frac{d}{dx} \left[e^{f(x)} \right] = e^{f(x)} \cdot f'(x).$$

Example 1. Find the derivative of $f(x) = 5e^{3x} + 4e^{-2x} + 7e^x + 8$.

Example 2. Find the derivative of $f(x) = 2xe^{5x}$.

Example 3. Find the derivative of $f(x) = e^{x^2}(7x-3)^4$.

The Derivative of $y = \ln x$

$$\frac{d}{dx}\left[\ln x\right] = \frac{1}{x}$$

and

$$\frac{d}{dx}\left[\ln(f(x))\right] = \frac{1}{f(x)} \cdot f'(x).$$

Example 4. Find the derivative of $f(x) = 5 \ln(x^2 + 7x + 1)$.

Example 5. Find the derivative of $f(x) = (8x - 3) \ln(2x^2 + 5)$.

Example 6. Find the derivative of $f(x) = e^{-x} \ln(x+2)$.

Supplemental Exercises

Find the derivative f'. Do not simplify.

1.
$$f(x) = (3e^x + 2e^{-x} + 5)(7x + 8)$$

2.
$$f(x) = \frac{7e^x + 1}{3e^{-x} - 2}$$

3.
$$f(x) = (e^{9x} + 3) \ln(4x^2 + 11)$$

4.
$$f(x) = \frac{\ln(3x+1)}{x-7}$$

5.
$$f(x) = [\ln(2x - 1)]^3$$

ANSWERS

1.
$$f'(x) = [3e^x(1) + 2e^{-x}(-1)](7x+8) + (3e^x + 2e^{-x} + 5)[7]$$

2.
$$f'(x) = \frac{(3e^{-x} - 2)[7e^x(1)] - (7e^x + 1)[3e^{-x}(-1)]}{(3e^{-x} - 2)^2}$$

3.
$$f'(x) = [e^{9x}(9)] \ln(4x^2 + 11) + (e^{9x} + 3) \left[\frac{1}{4x^2 + 11} \cdot (8x) \right]$$

4.
$$f'(x) = \frac{(x-7)\left[\frac{1}{3x+1}\cdot(3)\right] - \ln(3x+1)[1]}{(x-7)^2}$$

5.
$$f'(x) = 3 \left[\ln(2x - 1) \right]^2 \cdot \left[\frac{1}{2x - 1} \cdot (2) \right]$$